
REVIEW ARTICLE

Tracing skin aging process: a mini- review of in vitro
approaches

Sophia Letsiou

Received: 18 January 2021 / Accepted: 4 March 2021 / Published online: 15 March 2021

� The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract Skin is a rather complex, yet useful organ

of our body. Besides, skin aging is a complicated

process that gains a growing interest as mediates many

molecular processes in our body. Thus, an efficient

skin model is important to understand skin aging

function as well as to develop an effective innovative

product for skin aging treatment. In this mini review,

we present in vitro methods for assessments of skin

aging in an attempt to pinpoint basic molecular

mechanisms behind this process achieving both a

better understanding of aging function and an effec-

tive evaluation of potential products or ingredients

that counteract aging. Specifically, this study presents

in vitro assays such as 2D or 3D skin models, to

evaluate skin aging-related processes such as skin

moisturization, photoaging, wound healing, meno-

pause, and skin microbiome as novel efforts in the

designing of efficacy assessments in the development

of skincare products.

Keywords In vitro studies � 2D cell cultures � 3D
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Introduction

Skin is a complex organ which provides a protective

barrier between the organism and the environment

preventing of invasion of pathogens, physical or

chemical assaults as well as a loss of water or other

substances essential for skin function (Proksch et al.

2008; Yousuf et al. 2018). It consists of an outer

epidermal layer, an inner dermal layer and

hypodermis.

Skin function depends on the cellular compart-

ments of these three layers. Specifically, epidermis is a

multi-layered epithelium that consists mainly of

keratinocytes which maintain an equilibrium of pro-

liferation in basal layer and undergo differentiation

which strengthens the cytoskeleton, establishes an

intercellular diffusion barrier and results in a special-

ized form of programmed cell death, known as

cornification (Eckhart and Zeeuwen 2018). The aging

effect on epidermis layer, is the thinning and the

impairment of epidermal barrier recovery after dam-

age which suggests that the re-supplementation chain

from the stem cell pool becomes less efficient over

time (Gruber et al. 2020). Apart from keratinocytes the

epidermis consists of a network of melanocytes and

Langerhans cells which depends on epidermis home-

ostasis to function properly. Any disturbance of

intercellular coordination between the different cell

types contributes to the age-related decline in epider-

mal immune function and pigment regularity
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(Rognoni and Watt 2018). On the other hand, dermis

consists mainly of extracellular matrix (ECM) related

compartments such as proteins and fibroblasts which

are the dominant cells. Dermis can be divided into the

papillary layer which is densely populated by fibrob-

lasts and reticular dermis which contains collagen

fibres. The effect of aging to this layer is the

disorganization of ECM which depends mainly on

the alteration of ECM’s proteins turnover or the

accumulation of post-translational modifications

(Driskell et al. 2013). Moreover, wrinkles and sagging

of skin are mainly due to changes in the dermal

compartments in aging, such as decreased synthesis

and increased remodeling or degradation of dermal

matrix components. In chronologically aged skin, the

fibrillar ordering of dermal elastin is impaired (Rittie

and Fisher 2015). Similarly, type I collagen, the most

abundant dermal extracellular matrix protein is a

target of both chronological- and photo-aging which

both promote degradation, lack of ordering and

reduced production of this protein (Rittie and Fisher

2015). Also, the dermis contains nerve endings and

Schwann cells, endothelial cells organized in vessels,

pericytes, mast cells, tissue macrophages and other

cells of the immune system (Lai-Cheong and McGrath

2017). Beneath the dermis is a layer of white adipose

tissue, the hypodermis, which contains adipocytes that

massively accumulate lipids upon their maturation.

The effect of aging is the thinning of hypodermis layer

(Rittie and Fisher 2015).

Skin aging, like other organs, is characterized by a

progressive loss of functionality and regenerative

potential. More than other organs, skin aging process

is the outcome of two biological factors, intrinsic

aging where alterations occur over a lifetime, and

extrinsic aging where skin alterations are attributed to

external factors such as environmental and lifestyle

(Farage et al. 2008; Rittie and Fisher 2015). On the

other hand, the systematic hallmarks of aging (López-

Otı́n et al. 2013) apply to the various compartments

and cell types of the skin (Tigges et al. 2014), but cells

which reside for a long time span in the tissue appear

to be affected more severely by loss of cellular

maintenance and repair mechanisms than highly

proliferative cells that are replaced frequently (Suk-

seree et al. 2018a, b). With the advent of biotechnol-

ogy, the effect of aging on skin function is gaining a

growing interest in the developed countries as many

consumers opt for multifunctional products to defend

aging (Rincón-Fontán et al. 2020; Duan et al. 2020).

Besides, the growing concern regarding the potential

ecotoxicity of cosmetics or personal care products has

led many consumers to opt for products with proven

scientific efficacy and shreds of evidence for non-

ecotoxicity activity (Juliano and Magrini 2017; Vita

et al. 2018; Bilal et al. 2020; Letsiou et al. 2020a, b).

For these reasons, it is necessary to understand skin

function and particularly the aging process and how it

influences the mechanical behavior of skin, as these

findings can then be implemented in cosmetic devel-

opment and clinical studies. A combination of

methodologies is needed both to understand the aging

process as well as to find innovative approaches for

skin aging treatment. In vitro skin, models are a useful

tool for a better understanding of the skin aging

process as they provide an insight into many molec-

ular pathways. Thus, in vitro studies play a funda-

mental role in understanding whether a newly

discovered compound or ingredient could be suit-

able for clinical trials. In this mini-review, we present

recent in vitro based methods related to skin aging to

evaluate and understand the aging process as well as to

identify the suitable agents for aging treatment. We

focused on functions related to the skin aging process

such as intrinsic and extrinsic aging, skin moisturiza-

tion, wound healing, menopause, and skin

microbiome.

The intrinsic and extrinsic aging process

Aging is a process that is influenced by both intrinsic

and extrinsic factors (Lee et al. 2020a). Skin alter-

ations of intrinsic factors depend on normal biological

processes while typical extrinsic factors are UV

exposure, IR exposure, smoking, (Kammeyer and

Luiten 2015; Newton et al. 2015). Clinical aging signs

are wrinkles, fine lines, sagging, wound healing, skin

pigmentations, and thin epidermis junctions (DEJ).

However, at a molecular level, during the aging

process fibroblasts as well as keratinocytes lose their

ability of self-renewing and many alterations on the

function of sweat glands are observed (Rittié and

Fisher 2015). Besides, collagen which is the most

representative compartment of the extracellular matrix

(ECM), due to age, undergoes gradual fragmentation

by the overexpressed matrix metallo proteases

(MMPs) leading to loss of skin mechanical properties
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and dermal cell functions (Rattan 2015; Pittayapruek

et al. 2016). Furthermore, photoaging which is based

on extrinsic factors causes deep wrinkles, loss of

elasticity, dryness, pigmentation disorders as well as

cancerous lesions. At the molecular level, the excess

reactive oxygen species (ROS) induce the expression

of MMPs leading to ECM component degradation

such as collagen (Taylor 2005; Kammeyer and Luiten

2015; Newton et al. 2015; Murai et al. 2018).

Moreover, the stratum corneum (SC) rate is reduced

drastically and damage on the connective tissues is

observed (Taylor 2005; Duval et al. 2014; Rittié and

Fisher 2015; Kammeyer and Luiten 2015; Löwenau

et al. 2017; Damiani et al. 2018).

To begin with, organ culture of human dates back

over 50 years (Beaven and Cox 1965), has undergone

significant improvements to optimize skin explants

suitable for research studies involving therapeutics

and formulations. The main benefit of using skin

explants is that they can be used in a variety of studies

such as investigations of environmental stress, skin

aging and skin disease (Lebonvallet et al. 2010; Xu

et al. 2012). According to previous reports (Beaven

and Cox 1965; Lebonvallet et al. 2010; Park et al.

2015; Vostálová et al. 2018), the main drawback of

skin explants is the loss of tissue integrity and

keratinocytes differentiation after * 14 days. How-

ever, a recent study has demonstrated a Human

Explant Skin Culture (HESC) which is structurally

viable and metabolically active for up to 9 days in

culture and can be employed for preclinical testing of

delivery and efficacy of skin therapeutics (Neil et al.

2020).

On the other hand, the simplest and cost-effective

method to simulate the skin aging process is the 2D

culture of fibroblasts, keratinocytes, or melanocytes

evaluating for different molecular readouts such as

MMPs activity, melanin content, tyrosinase activity,

mitochondrial integrity, genes expression related to

aging (Kovacs et al. 2010; Letsiou et al.

2017, 2020b, e; Nakamura et al. 2018; Yoshimoto

et al. 2018; Lago and Puzzi 2019). Moreover, as

oxidative stress and cell apoptosis play a major role in

aging process, different molecular readouts such as

mitochondrial DNA damage, singlet oxygen oxidizes

guanine to 8-oxoguanine (8-oxoG), MMPs, glycopro-

teins, collagen I,III,VII, transcription factor activator

protein 1 (AP-1), transforming growth factor beta

(TGF-b) (Jenkins 2002; Rinnerthaler et al. 2015; Gu

et al. 2020), transcription factor NRF2 and haem-

oxygenase (HO-1) (Peter Jorgensen 2014) could be

used as targets of skin aging in 2D culture fibroblasts.

Additionally, other in vitro biological markers of

aging could be b- galactosidase activity, p16 expres-

sion, and proliferation rate (Damiani et al. 2018; Gu

et al. 2020). Moreover, 2D culture can be used for

in vitro bioactivity assessments of natural substances

that can counteract the aging process (Peter Jorgensen

2014; Kostyuk et al. 2018; Letsiou et al. 2020a, b, c).

According to these studies, the important role of

in vitro 2D models in skin aging research is empha-

sized as these models do not only decipher the

molecular mechanism of the aging process but also

aids in the investigation of innovative natural sub-

stances that counteract the aging process.

However, the 2D in vitro models have some

limitations as they lack skin barrier function, 3D

models were introduced back in 1970 (Van Wezel

1967; Knazek et al. 1972). From the 1980’s, recon-

stituted human epithelium (RHE) skin models were

developed, in part for human irritancy studies (Botham

et al. 1998). These cultures allowed differentiation of

an intact stratum corneum in an air–liquid interface

that more closely resembled the in vivo human skin

barrier. One interesting study (Löwenau et al. 2017)

based on the comparison between irradiated and non-

irradiated 3D RHE model. Interestingly, irradiated

RHE showed some special characteristics compared to

normal RHE such as decreased keratinocyte viability,

increased permeability of caffeine, testosterone, and

nanocarriers, while the release of interleukin-1 (IL-1)

and interleukin-8 (IL-8) and increased number of

senescence-associated b-galactosidase positive ker-

atinocytes indicated stress-mediated cellular senes-

cence (Löwenau et al. 2017). Moreover, irradiated

RHE had thinner stratum corneum possibly due to

flattened keratinocytes and/or exfoliated corneocytes

(Löwenau et al. 2017). Another interesting model was

based on a pigmented skin model comprising a

melanocyte-containing epidermis cultured on a living

fibroblast embedded-dermal equivalent (Duval et al.

2014). This skin model emphasizes the role of dermal

fibroblasts in skin pigmentation in microscopic and

macroscopic level (Duval et al. 2014). Moreover, a 3D

RHE model was used for phototoxicity assessments as

well as for the quantification of free radicals produc-

tion (Albrecht et al. 2019). Furthermore, another study

presented a skin model based on the co-culturing of

123

Biogerontology (2021) 22:261–272 263



fibroblasts and keratinocytes on collagen- gly-

cosaminoglycan- chitosan scaffold (Diekmann et al.

2016).

One of the limitations of these 3Dmodels is the fact

that they lack immune cells (Nakamura et al. 2018).

This observation led to the development of a recon-

structed human skin that contained keratinocytes,

melanocytes, and Langerhans cells to evaluate sun-

screen efficacy and additional parameters that are

correlated with the immunosuppression induced by

UV-radiation (Duval et al. 2003). Some years later, in

similar terms, another group developed a 3D recon-

structed human epidermis supplemented with mono-

cytes to study the effect of the aging-induced glycation

process in cell differentiation (Pageon et al. 2017).

In principal, in 3D skin models, different biochem-

ical markers such as keratins, lipids (e.g. ceramides,

phospholipids), proteins (e.g. involucrin, loricrin),

interleukins (e.g. IL6, IL8) can be identified so as to

assess skin irritation, phototoxicity and inflammation

(Netzlaff et al. 2005). Moreover, the 3D skin models

can be used for skin photoaging assessments as they

provide interesting findings on different molecular

readouts such asMMPs, p53, p21WAF1/Cip1, and Ki-

67 which were mainly detected in the basal layers of

the histological section of RHE by means of mono-

clonal antibodies (Torricelli et al. 2017; Karapetsas

et al. 2019). On the other hand, under oxidative stress

protein carbonyl measurements can evaluate for skin

aging in 3D model (Cotovio et al. 2001).

In conclusion, the 3D models were proven useful in

the simulation of skin function related to the aging

process. There is a wide range of commercially

available reconstructed skin models including skin

such as ZK 1350 (Liebsch et al. 1995), EpiDermTM

(Lı́šková 2020), T-skinTM (Bataillon et al. 2019),

MelanoDermTM (Lee et al. 2020b; Park et al. 2020),

EpiSkinTM (Chen et al. 2020), SkinEthicTM RHPE

(Zeitoun et al. 2020) and The PhenionTM FT Skin

model (Pfuhler et al. 2020) that can be used for aging

and phototoxicity studies.

Skin moisturization process

Skin moisturization is another key factor related to the

skin aging process as it influences physical and

mechanical properties (Mojumdar et al. 2017). Skin

moisturization is connected to the function of the

stratum corneum (SC) which is the outer layer of the

epidermis and influences the function of the skin

barrier (Mojumdar et al. 2017). The SC consists of

corneocytes which are anucleated dead cells filled

with keratin filaments and wrapped with cornified

envelope (Boncheva et al. 2008; Mojumdar et al.

2017). The corneocytes are associated with SC

mechanical properties which are highly influenced

by the moisturization process as previous studies

supported the notion that water content in SC is of

primary importance in SC flexibility. When hydrated

SC, water is primarily taken up by the corneocytes. It

has been hypothesized that the corneocytes control SC

viscoelastic properties through the plasticization of the

keratin filament macromolecules by water (Elias

2007; Björklund et al. 2013). At low relative hydration

(RH) values, the keratin filaments are present in a rigid

state, whereas a recent study has shown that there is a

change in the molecular mobility of certain amino

acids in the keratin filament upon hydration (Björk-

lund et al. 2013). Corneocytes connect to each other

through corneodesmosomes, producing high mechan-

ical strength and creating a physical, chemical, and

immunological barrier. Those junctions loosen as

corneocytes migrate towards the skin surface leading

to desquamation (Elias 2007). Abnormalities of SC are

connected with skin diseases such as atopic dermatitis

(Watanabe et al. 1991), eczema (Thune 1989), psori-

asis (Ghadially et al. 1996), senile xerosis (HORII

et al. 1989), and hereditary ichthyosis (Paige et al.

1994). The balance between the sufficient supply of

water and the reduction of it which is known as Trans

Epidermal Water Loss (TEWL), is regulated by lipids

and Natural Moisturizing Factors (NMF) (Verdier-

Sévrain and Bonté 2007). NMFs are water-soluble

compounds of low molecular weight including urea,

lactic acid, and various amino acids (Maeno 2019).

Interestingly, UV can damage SC by destroying the

skin’s natural moisturizing process. It is important to

note that NMFs are found only in SC cells and ensure a

wet environment as in SC many hydration-dependent

enzymatic reactions take place. Therefore, if water SC

content is reduced, many normal enzymatic processes

cannot take place leading to the visible appearance of

dryness, roughness, scaling, and flaking (Verdier-

Sévrain and Bonté 2007).

There is limited work in in vitro assays related to

the skin moisturization process. Specifically, the 2D

models based on cell cultures model of normal human

epidermal keratinocytes (NHEK) (Sugiyama et al.
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2014), skin explant (Del Carmen Velazquez Pereda

et al. 2009; Sundaram et al. 2016) and 3D recon-

structed human epidermis (RHE) (Régnier et al. 1992;

Barbotteau et al. 2005; Capallere et al. 2018) models

are proposed for in vitro assessments in skin moistur-

ization. Specifically, the 2D cell cultures based on

keratinocytes provide an insight into the skin hydra-

tion process targeting the transcripts of genes that

encode proteins important in this process such as

aquaporin 3(AQP3) which together with hyaluronate

receptor CD44 and intercellular adhesion protein

E-cadherin are important regulators of skin moistur-

ization (Chaudhuri and Bojanowski 2017; Choi et al.

2019). Moreover, studies focusing on skin explant

demonstrated the efficacy of moisturizing agents (Del

Carmen Velazquez Pereda et al. 2009; Sundaram et al.

2016). Also, focusing on in vitro 3D Reconstructed

Human Epidermis (RHE) model, which is composed

of normal human dermal fibroblasts (NHDF) and

NHEK cell types, it is a short-term clinical dimension

of skin hydration since this model is considered to be

similar to human skin as far as differentiation markers,

morphology, and functional characteristics are con-

cerned. RHE is metabolically and mitotically active

while it exists in many stages of maturity (Poumay and

Coquette 2006). Since RHE models can be efficiently

used to mimic in vitro skin functions there are two

commercially available—SkinEthicTM RHE and

EPISKINTM RHE- which are widely used by the

chemical, pharmaceutical, and cosmetic industry

(Green et al. 1979; Prunieras 1979). Lastly, recent

studies have shown that tape stripping in combination

or no with confocal microscopy can be another way to

assess skin moisturization and skin barrier function

(Davies et al. 2015, 2017; Olesen et al. 2019). The 3D

models seem to contribute more on the understanding

of skin moisturization process/mechanism compared

to other models.

Wound healing process

Wound healing is a physiological, complicated, age-

dependent, and evolutionary process that aims to

maintain skin integrity after an injury (Wang et al.

2018). Wound healing has three main and partially

overlapping phases: inflammation, cell proliferation,

and tissue remodeling and it is regulated by both

chemicals (e.g. growth factors) and biomechanical

stimuli (stresses/strains) (Flanagan 2013; Kim et al.

2019). Both keratinocytes and fibroblasts have an

important role during this process. Fibroblasts migrate

into the wound in response to transforming growth

factor beta 1 (TGF-b1), platelet-derived growth factor
(PDGF), and fibroblasts growth factor (FGF), where

they proliferate and produce a new ECM . Some

fibroblasts differentiate into myofibroblasts and are

responsible for wound contraction and the deposition

of additional matrix. Moreover, epidermal ker-

atinocytes migrate to the wound to cover it with new

epidermis (Martin 1997; Wang et al. 2018; Kim et al.

2019). Interestingly, the migration of keratinocytes is

related to an Epithelial-Mesenchymal Transition

(EMT) process giving to epithelial cells a migratory

ability (Haensel and Dai 2018). During the tissue

remodeling phase of wound healing, keratinocytes

stop their migration and reverse their EMT-like

phenotype. Moreover, myofibroblasts become apop-

totic, angiogenesis stops, a cellular scar is formed,

collagen type III is gradually dominated by collagen

type I, and the disorganized collagen fibers are

rearranged and aligned (Wang et al. 2018; Kim et al.

2019).

Although wound healing is a complicated process,

there have been some in vitro studies that tried to

decipher the molecular mechanism. These studies

entailed single cell and co-culture models as well as

organotypic multicellular constructs (Ashrafi et al.

2018). To start with, the simplest, fastest, and most

inexpensive method is the ‘scratch assay’’ based on the

2D single-cell culture of keratinocytes or fibroblasts

(Buisson et al. 1996; Cha et al. 1996; Gottrup et al.

2000; Henemyre-Harris et al. 2008; Demirovic and

Rattan 2011; Kim et al. 2013; Ud-Din and Bayat

2017a; Letsiou et al. 2020d). The migration of the cells

can be visualized by microscopy (Calderon et al.

1996). Additionally, other parameters that can be

evaluated are protein production, protein secretion,

viability, gene expression, and differentiation (Ud-Din

and Bayat 2017a).

Moreover, skin explants have been used to study

wound repair as well as inflammation in the skin

besides testing the effects of different therapeutics

(Cho et al. 2013; Ud-Din and Bayat 2017a). The main

advantage of skin explants is that provide a 3D-

structure that show intercellular interaction between

keratinocytes and fibroblasts. Specifically, the micro-

environment of cells as well as cell–matrix interaction

which are integral in wound healing can be shown in

123

Biogerontology (2021) 22:261–272 265



this model (Nayak et al. 2013; Cho et al. 2013; Sami

et al. 2019). Even though a variety of wound types

have been studied with skin explants (Nayak et al.

2013; Sami et al. 2019) the main disadvantage is that

these models lack innervation which is significant for

the understating of skin repair, scar formation and

desquamation of cells cannot be observed as well as

standardization and consistency (Cho et al. 2013; Ud-

Din and Bayat 2017b).

Recently, a viable 3D skin model was reported to

evaluate in vitro wound healing process (Iyer et al.

2018). In this model keratinocytes and fibroblasts are

seeded in a collagen scaffold. The results showed that

cell migration was increasing as keratinocytes and

fibroblasts were in proximity. Also, the most signif-

icant keratinocyte migration was seen in the constructs

with small cell growth proposing that fibroblasts

promote keratinocyte migration over proliferation in

the wound healing process (Iyer et al. 2018).

On the other hand, a 3D Transwell system or

Boyden chamber assay with the co-culture of ker-

atinocytes and fibroblasts overcome the limitations of

the monolayer in vitro systems (Butler et al. 2008; Iyer

et al. 2018). In more detail, in this assay a two-layered

chamber of two different cell cultures separated by a

porous material that allows cell migration to occur.

The migratory cells can be stained and visualized with

imaging (Pastar et al. 2017). Additionally, another

novel construction was a de-cellularized epidermis

that was re-seeded with keratinocytes and fibroblasts

to monitor the wound healing process (Xie et al. 2010).

Moreover, another study presented a 3D tissue-engi-

neered construct of porous sericin matrix by co-

culturing keratinocytes on the upper surface and

fibroblasts and the lower surface which showed high

potential as skin equivalent to monitor in vitro wound

healing process (Nayak et al. 2013).

The use of organotypic skin equivalent is rather

interesting for the evaluation of in vitro wound healing

process. It came into the light after the observation of

the significant interaction between fibroblasts and

keratinocytes acts as an important regulator for the

formation as well as the function of the ECM

(Ghaffari et al. 2009). Generally, the organotypic skin

equivalents consist of immortalized human ker-

atinocytes which are grown on surfaces coated with

type I collagen and fibroblasts (Pastar et al. 2017). To

this, one study used an organotypic skin equivalent

known as the raft model, which consists of a normal

adult, neonatal, and keloid fibroblasts and ker-

atinocytes, to evaluate the effectiveness of photody-

namic therapy in the context of keloid scars (Chiu et al.

2005). An updated version of organotypic skin equiv-

alents was proposed by Van den Broek et al. (2012)

who developed a model based on adipose-derived

mesenchymal stem cells. This model had many

potentials in the therapeutics field as it represents the

hypertrophic scar both macroscopically and micro-

scopically while maintaining the characteristics of the

epidermal and dermal scar. In a similar study (Belle-

mare et al. 2005) it was developed a fully differenti-

ated epidermis by using keratinocytes that were

obtained from hypertrophic scars and were seeded

on a matrix that consisted of fibroblasts. This structure

presented abnormal scar characteristics such as dermal

and epidermal thickness (Bellemare et al. 2005). Last

but not least, the novel organ-on-chip technology

seems to be promising in the field of skin biology and

especially in the biology of the wound healing process.

In more detail, the organ-on-chip technology consists

of a microfluidic device that can support the culture of

many different cell lines, in different layers under a

controlled environment highly mimicking the multi-

level organ functions. Recently, Biglary et al. (2019)

used a wound-on-a-chip model to mimic a wound and

evaluate the inflammatory milieu of the wound

microenvironment upon application of different active

compounds. It is important to highlight, that this

microfluidic device has three interconnected channels

and co-cultured fibroblasts, endothelial cells, and

macrophages (Biglari et al. 2019). Besides, a recent

study assessed cell migration related to the wound

healing process based on Electric cell-substrate

impedance sensing (ECIS) (Letsiou et al. 2020d).

This method allowed the dynamics of scratch repair to

be observed in real-time.

The 2D model as well as a wound-on-a-chip and

ECIS-based models seems to contribute more on the

understanding of wound healing mechanism, while the

3D models seem contribute more on the outcome of

wound healing process, serving as screening tools for

the identification of an effective compound which

promote cell migration, cell proliferation related to

wound healing process.
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Menopause process

Menopause is an aging-related factor associated

mostly with the intrinsic mechanism (Affinito et al.

1999; Remoué et al. 2013; Reus et al. 2020). This

physiological process is a result of changes to ovarian

follicular activity and has effects on the skin. Specif-

ically, menopause can cause severe skin-related

problems in women such as alopecia, skin dryness,

loss of skin elasticity, and skin atrophy leading to

increased anxiety, reduced self-esteem, and low

quality of life (Affinito et al. 1999; Remoué et al.

2013; Reus et al. 2020). Therefore, many pharmaco-

logical and cosmetic companies proceed on the

development of innovative products to improve skin

quality. To this attempt, in vitro models represent an

essential and interesting tool for the discovery as well

as the efficacy assessment of bioactive compounds

that counteract menopause-related skin disorders.

An interesting study was conducted by Remoue

et al. (Remoué et al. 2013) based on the 2D cell culture

of primary human dermal fibroblasts. Cells were

cultured in four different ways so as to simulate

nonmenopausal and menopausal conditions. Under

these conditions, cell proliferation, matrix metallo-

proteinase-1, and metalloproteinase-3 (MMPs)

release, collagen deposition, and procollagen gene

expression were evaluated by using cellular and

molecular approaches. The main outcome of this

study was that the results reflect most of the effects that

are observed in vivo.

In 2016, Bogdanowicz (Bogdanowicz et al. 2016)

proposed a study based on in vitro and ex vivo models

to evaluate the antielastase and antiglycation MMP-12

potential of glycylglycine oleamide (GGO), as glyca-

tion is a consequence of ageing and happens especially

in dermal proteins such as type I collagen and elastin.

Even though this kind of study is far from an ideal

model for menopause, it is indeed a viable approach

for the screening of potential antiglycation and

antielastase substances, which are claims that are

becoming more common among skin care cosmetics.

In addition, Yoshimoto et al. (2018) proposed a

method using normal human fibroblasts from foreskin

exposed to UVA irradiation. After irradiation, cells

were evaluated regarding different characteristics

related to aging and senescence, such as the senes-

cence marker b-galactosidase, reactive oxygen species
(ROS) evaluation, and p16 expression. The results

showed that repeated UVA radiation to cells led to

typical senescence markers, such as increased SA-b-
galactosidase staining, flattening and larger cells with

a larger diameter ratio, higher levels of ROS, yellow-

ish coloration (accumulation of oxidized proteins,

carbonylated proteins, and advanced glycation end

products) and increased p16 expression. Therefore,

this model could represent an additional and comple-

mentary approach for evaluating menopause aged

skin.

Furthermore, Mainzer et al. (2018) proposed an

epidermis model (reconstructed human epidermis—

RHE) with IGF-1R knockdown. Cell proliferation,

colony forming assay, adhesion assay, immunola-

belling, quantification of epidermal thickness, gene

expression analysis by real-time PCR and protein

expression analysis by Western blotting were evalu-

ated by this model. The results showed that RHE with

IGF-1R knockdown had a loss of function of the

stratum basale. However, this model is interesting as it

mimics the function of epidermis under hormonal

decline that appears in menopause making a really

useful tool for the investigation of menopausal effects

in skin.

All of the aforementioned models mimic well the

function of epidermis under hormonal changes related

to menopause. However, further work is needed to

decipher better this process.

Skin microbiome

Skin microbiota is an important part of skin barrier as

it regulates inflammation and immune response pro-

cesses (Zhai et al. 2018). Skin pathological state

occurs in compositional imbalance of skin micro-

biome as a result of different factors such as aging

(Kong et al. 2012; Schommer and Gallo 2013; Prescott

et al. 2017; Tett et al. 2017; Rocha and Bagatin 2018).

Skin aging is a process that entails the changing of the

dominant bacteria of skin (Grice and Segre 2011;

Shibagaki et al. 2017).

The advent of next-generation sequencing tech-

nologies has revolutionized our view of human-

associated microbial communities. Using DNA

sequencing methodology, we are now able to charac-

terize and analyze microbiomes with greater precision

and accuracy, and less bias compared to culture-based

approaches. A common approach used to identify

bacterial populations is based on sequencing of the

123

Biogerontology (2021) 22:261–272 267



small subunit bacterial 16S ribosomal RNA (rRNA)

gene. Most of the studies based on DNA sequencing

investigated different skin disorders such as acne and

rosacea, body odor and atopic dermatitis, psoriasis,

skin immunity (Grice and Segre 2011; Grice 2014;

Byrd et al. 2018). Although, skin aging is accompa-

nied by an alteration on skin microbiome little is

known about how the composition of these changes

during the course of aging are related to skin microbes.

A recent study (Li et al. 2020) based on 16S ribosomal

DNA and internal transcribed spacer ribosomal DNA

sequencing revealed that skin microbiome plays a

significant regulatory role in skin aging -related

functions such as immune response, resistance to

ultraviolet, and biosynthesis of age-related substances.

In addition, other studies supported that specific

bacteria such as Lactobacillus and Cutibacterium

(formerly Propionibacterium) are associated with skin

hydration (Grice and Segre 2011; Byrd et al. 2018).

More studies are needed to associate skin aging signs

such as wrinkles ore sagging with skin microbiome

alterations.

Conclusions

According to the literature cited in this work, there is

evidence that some in vitro assays are proven more

effective than others however, its necessary to identify

the most effective in vitro approaches before the

conduction of clinical assessments. Nevertheless,

additional research is needed to understand more the

skin aging-related molecular processes, this mini-

review indicates the need to develop integrated and

standardized in vitro assays that enable to the identi-

fication and understanding of important molecular

skin aging processes in addition to assessments of

cosmetic raw materials efficacy.

The criteria established by the most important

international organizations, allied with the alternative

biotechnological methods currently available, point

toward establishing a routine analysis of skin aging

impact, allowing the selection or replacement of raw

materials according to their skin aging impact and thus

generating cosmetic/personal care products that are

more sustainable and effective for skin.
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