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Abstract The Membrane Theory of Aging proposes

that lifespan is inversely related to the level of

unsaturation in membrane phospholipids. Calorie re-

striction (CR) without malnutrition extends lifespan in

many model organisms, which may be related to

alterations in membrane phospholipids fatty acids.

During the last few years our research focused on

studying how altering the predominant fat source affects

the outcome of CR in mice. We have established four

dietary groups: one control group fed 95 % of a pre-

determined ad libitum intake (in order to prevent

obesity), and three CR groups fed 40 % less than

ad libitum intake. Lipid source for the control and one of

the CR groups was soybean oil (high in n-6 PUFA)

whereas the two remaining CR groups were fed diets

containing fish oil (high in n-3 PUFA), or lard (high in

saturated and monounsaturated fatty acids). Dietary

intervention periods ranged from 1 to 18 months. We

performed a longitudinal lifespan study and a cross-

sectional study set up to evaluate several mitochondrial

parameters which included fatty acid composition, H?

leak, activities of electron transport chain enzymes,ROS

generation, lipid peroxidation, mitochondrial ultrastruc-

ture, and mitochondrial apoptotic signaling in liver and

skeletal muscle. These approaches applied to different

cohorts ofmicehave independently indicated that lard as

a fat source often maximizes the effects of 40 % CR on

mice. These effects could be due to significant increases

of monounsaturated fatty acids levels, in accordance

with the Membrane Theory of Aging.
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Aging is the time-dependent progressive decline in

physiological function with decreased fertility and

increased susceptibility of the organism to endogenous

and external threats, leading to a wide variety of

related diseases such as degenerative and neoplastic

disorders. Scientists have demonstrated a strong

interest not only in unravelling the causes of aging,

but also in discovering how we can manipulate

potential causes of aging to decrease, stop, or even

revert its rate of progression (Sousa-Victor et al. 2014;

Li and Izpisua-Belmonte 2014). Denham Harman

proposed that aging is the result of deleterious

interactions between free radicals and cellular con-

stituents (Harman 1956). Despite some current con-

troversy, the so-called mitochondrial Free Radical

Theory of Aging still stands today as one of the most

widely cited theories to explain the causes of aging

(Barja 2013, 2014). Closely related to this theory, the

Membrane Theory of Aging proposes that lifespan is

inversely related to the degree of unsaturation of

membrane phospholipids (Pamplona et al. 1998, 2002;

Hulbert et al. 2007; Hulbert 2008; Pamplona and Barja

2011). Alterations involved in aging are indeed

multifactorial and involve diverse tissue-specific pro-

cesses at the organismal level, such as genomic

instability, telomere attrition, epigenetic alterations,

loss of proteostasis, deregulated nutrient sensing,

mitochondrial dysfunction, cellular senescence, stem

cell exhaustion, and altered intracellular communica-

tion (López-Otı́n et al. 2013). Some of these hallmarks

point to the mitochondria as playing an essential role

in the aging process.

Calorie restriction (CR) without malnutrition in-

creases maximum lifespan and prevents or delays the

onset of pathophysiological changes in multiple

species (Sohal and Weindruch 1996). Despite inten-

sive research to elucidate how CR improves longevity,

the mechanisms responsible for the retardation of

aging with CR are not yet entirely understood,

although it is generally accepted that longevity-

promoting effects of CR can be mediated, at least

partially, by the optimization of mitochondrial func-

tion (López-Lluch et al. 2006).

Mitochondrial fatty acids, calorie restriction

and longevity

Fatty acids are components that could influence

lifespan in CR animals. As stated above, the Mem-

brane Theory of Aging proposes that lifespan is

inversely related to the level of unsaturation, and in

particular the level of n-3 polyunsaturated fatty acids

(PUFA) in membrane phospholipids (Pamplona et al.

1998, 2002; Hulbert et al. 2007; Hulbert 2008;

Pamplona and Barja 2011). Of note, only two traits

currently correlate inversely with maximal longevity

among animal species: both the rate of reactive oxygen

species (ROS) generation in mitochondria and the

degree of fatty acid unsaturation of tissue membranes

(Pamplona and Barja 2011; Barja 2014). In accor-

dance, a decrease in long-chain PUFA in mitochon-

drial membrane phospholipids may be a mechanism

contributing to the anti-aging effects of CR (Laganiere

and Yu 1989, 1993; Yu et al. 2002). Interestingly, the

drug atenolol, a b1-blocker that decreases fatty acid

unsaturation in heart and skeletal muscle mitochondria

and changes the lipid profile towards that found in

long-lived mammals, reverted several age-associated

detrimental alterations in mice but did not extend

longevity, possibly due to unwanted side effects of the

drug (Sánchez-Román et al. 2010, 2014; Gómez et al.

2014). Furthermore, a recent lipidomic approach has

demonstrated that CR significantly altered the hepatic

lipidome in male C57BL/6 mice and caused a change

in the relative abundance of specific triglycerides and

phosphatidylethanolamines and reduced hepatic

1-palmitoyl-2-glutaryl-sn-glycero-3-phosphatidyl-

choline content, a specific product of phospholipid

peroxidation (Jové et al. 2014). Less susceptibility of

membranes to peroxidation was explained on the basis

of a redistribution in the type of unsaturation: CR

increased monounsaturated fatty acids (MUFA) in

liver, whereas the levels of PUFA were decreased

without any observed changes in saturated fatty acids

(SFA). These specific changes may be the result of a

metabolic reprogramming leading to lower levels of

oxidative damage which could contribute to the

increased lifespan of CR mice (Jové et al. 2014).

These recent observations are in agreement with the

theories that link fatty acid composition of mitochon-

drial phospholipids to aging, with lipid peroxidation as

the mechanism through which fatty acids influence
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lifespan. In addition, mitochondrial phospholipid fatty

acids could also influence aging by altering the activity

of membrane proteins (Innis and Clandinin 1981;

Daum 1985; Dowhan et al. 2004; Lee 2004; Marsh

2008), membrane permeability (Brand et al. 1994;

Brookes et al. 1998), ROS production (Ramsey et al.

2005; Hagopian et al. 2010) or other membrane-linked

processes. Membrane n-6 and n-3 fatty acids of 20

carbons in length may also serve as precursors for the

formation of eicosanoids, which modulate inflamma-

tory responses (Calder 2004, 2007; Schmitz and Ecker

2008; Deckelbaum and Torrejon 2012). It has been

recently demonstrated that chronic, progressive low-

grade inflammation induced by knockout of the nfkb1

subunit of the transcription factor NF-kB induces

premature aging in mice (Jurk et al. 2014). Thus,

membrane phospholipid fatty acids may influence

aging by promoting oxidative damage, influencing

mitochondrial function and modulating inflammation.

Dietary lipids and lifespan

There is considerable interest in the role that specific

dietary lipids play in human health and longevity

(Lands 2014). In particular, several epidemiological

studies have focused on the potential adverse effects of

saturated fats (Staessen et al. 1997; Kromhout et al.

2000; Leosdottir et al. 2005; Tucker et al. 2005; Chen

et al. 2011) and the positive effects of fish oil (König

et al. 2005; León et al. 2008; Yamagishi al. 2008;

Gopinath et al. 2011). It has been reported that

saturated fat consumption is positively associated with

coronary heart disease mortality (Tucker et al. 2005;

Chen et al. 2011) and all-cause mortality in men

(Staessen et al. 1997; Kromhout et al. 2000). In

contrast, several studies have reported that fish oil

consumption is negatively associated with coronary

heart disease mortality (König et al. 2005; León et al.

2008; Yamagishi al. 2008). However, these retrospec-

tive studies do not contain the dietary controls needed

to truly determine if a specific fat source alone is

capable of altering longevity. To address this question,

a few rodent longevity studies have been completed

where the animals were fed diets that differed only in

their lipid component. Most of these studies have

largely been completed in short-lived mouse or rat

models and have produced mixed results. For exam-

ple, it has been reported that lifespan is increased in

autoimmune lupus-prone mice fed a diet containing

fish oil versus corn oil (Jolly et al. 2001; Halade et al.

2010). Other studies, however, have indicated that

lifespan is decreased in both diabetic rats fed fish

versus corn oil (Berdanier 1992) and senescence-

accelerated mice fed fish oil (Tsuduki et al. 2011) or

perilla oil (source of 18:3 n-3) (Umezawa et al. 2000)

versus safflower oil. Moreover, a recent longevity

study carried out with long-lived, male, B6C3F1 mice

fed diets supplemented with krill oil and Lovaza, a

pharmaceutical grade fish oil, beginning at 12 months

of age, has demonstrated a 6.6 % lifespan shortening

relative to controls (Spindler et al. 2014). Thus, there

is little information about the influence of dietary fatty

acids on lifespan in long-lived strains of mice (or rats).

Also, previous studies in humans and rodents have

been almost exclusively completed in individuals

allowed ad libitum access to food, and it is not known

if specific lipids have the same effect on health and

longevity under either CR or ad libitum feeding

conditions.

Optimization of pro-longevity actions of CR diets

It is generally assumed that the reduction in caloric

intake itself is the major dietary factor responsible for

the extension of life with feeding restriction in the rat.

In addition, it is also clear that an extreme reduction of

methionine intake can extend the life of rats to a

similar extent as can CR (Masoro 2006). However,

little is known about whether there is an optimum diet

composition for promoting lifespan extension with

CR. A number of diets, with a range of ingredients,

have been used for CR and aging studies (Pugh et al.

1999), but so far very few studies have attempted to

compare diets to ascertain if dietary composition

influences the response to CR. It has been reported that

mean lifespan is increased in CR rats consuming a diet

with sucrose versus cornstarch as the primary carbo-

hydrate source (Murtagh-Mark et al. 1995). It has also

been shown that the upper 10th percent survival is

slightly increased in CR rats consuming a high versus

moderate protein diet (Masoro et al. 1989). The

potential importance of dietary composition to the

retardation of aging with CR is reinforced by the

recent idea that differences in diet composition could

have contributed to the different outcomes in the two

studies investigating the influence of CR on lifespan in
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rhesus macaques (Cava and Fontana 2013; Colman

et al. 2014). In particular, the study at the Wisconsin

National Primate Research Center (WNPRC) demon-

strated a longevity increase in the CR group (Colman

et al. 2009) while no differences were observed

between diet groups in the National Institute of Aging

(NIA, NIH) study (Mattison et al. 2012). Interestingly,

if we compare the diets used in the WNPRC and NIA

rhesus macaques studies, it is unveiled that all of the

NIA monkeys received a whole-food diet rich in

phytochemicals whereas the WNPRC monkeys re-

ceived semipurified diets with sucrose and corn oil.

Although experimental validation is needed, the

possibility exists that the beneficial effects on lifespan

of the combination of phytochemical-rich pescov-

egetarian diets and mild CR in the NIA control

monkeys are already maximized (Cava and Fontana,

2013). Additional information is clearly needed to

determine the extent to which diet composition

influences the response to CR.

Calorie restriction diets differing in the major fat

source

Since fatty acids profile may play a prominent role in

determining the positive effects of CR on longevity

(Jové et al. 2014), manipulation of membrane fatty

acids by feeding CR animals with diets containing

different lipid compositions is a valuable strategy to

determine their role in CR intervention. We have

focused our research on how altering the predominant

fat source affects the outcome of CR in mice. For these

studies, C57BL/6 J mice were randomly assigned into

4 dietary groups fed semi-purified diets based on the

AIN-93 formulas. The control group was fed 95 % of a

pre-determined ad libitum intake (12.5 kcal) in order

to prevent obesity, whereas the CR dietary groups

were fed 40 % less than ad libitum intake. All diets

were identical except for dietary lipid source, which

was soybean oil (high in n-6 PUFA) for both control

and one of the CR groups. The two remaining CR

groups were fed diets containing either fish oil (high in

n-3 PUFA) or lard (high in saturated and monoun-

saturated fatty acids) as main sources of dietary fat

respectively. Soybean oil (14 % of total fat content)

was added to the fish oil (AIN93G and AIN93M) and

lard (AIN93M only) diets to insure adequate intake of

linoleic acid. Three independent cohorts of mice were

subjected to dietary intervention. Two of these cohorts

were maintained at the University of California, Davis

and used in a longitudinal lifespan study and a cross-

sectional study set up to evaluate several mitochon-

drial parameters which included fatty acid composi-

tion, H? leak, activities of electron transport chain

(ETC) enzymes, ROS generation and lipid peroxida-

tion in liver and skeletal muscle. The third cohort was

maintained at the University Pablo de Olavide (Sevil-

la, Spain) and used in a cross-sectional study set up to

evaluate mitochondrial ultrastructure and mitochon-

drial apoptotic signaling. The aim of this paper is to

provide a comprehensive review of these previous

investigations, and the main results of our studies are

summarized in the following sections.

The effect of dietary fat on mitochondrial fatty acid

composition in CR mice

In ad libitum fed animals, it has been shown that

dietary lipids can alter the fatty acid profile of

mitochondrial membranes in multiple tissues, includ-

ing liver, heart, brain, and skeletal muscle (Yamaoka

et al. 1988; Quiles et al. 2002; Ramsey et al. 2005;

Tahin et al. 1981). Do these alterations also occur in

CR animals? Our first major goal was to determine if

alterations in dietary lipids could lead to changes in

mitochondrial phospholipids fatty acid composition in

CR mice, since a previous study has reported that CR

dampened dietary fat-induced changes in liver plasma

membrane phospholipid composition (Cha and Jones

2000). Membrane n-3 fatty acid levels were increased

in all phospholipids classes in both skeletal muscle

(Chen et al. 2012) and liver mitochondria (Chen et al.

2013) in 1 month CR mice consuming fish oil

compared to all other diet groups. Similarly, mem-

brane linoleic acid (18:2 n-6) levels were increased in

liver and skeletal muscle mitochondria from CR mice

consuming soybean oil (high in 18:2 n-6) compared to

all other CR groups. In liver, this increase in 18:2 n-6

took place in all phospholipids, while in skeletal

muscle the increase of 18:2 n-6 was due primarily to

phosphatidylcholine. Mice consuming lard had in-

creased levels of MUFA in liver and skeletal muscle

phospholipids, but the MUFA increase in skeletal

muscle was limited to phosphatidylcholine (Chen et al.

2012, 2013). In the case of mice fed experimental diets

for 8 mo, it was found that fish oil markedly increased
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n-3 fatty acids whereas soybean oil increased 18:2 n-6

levels in skeletal muscle mitochondrial phospholipids

(Chen et al. 2014). Taken together, our results

demonstrate that skeletal muscle and liver mitochon-

drial phospholipid fatty acids readily change to reflect

the dietary fat source in CR mice, indicating that

dietary lipid manipulations can be used to test the role

of mitochondrial membrane phospholipid fatty acid

composition on CR action.

Mitochondrial proton leak

Mitochondrial H? leak, whereby protons bypass the

ATP synthase and passively cross the mitochondrial

inner membrane, is a major energy expending process

responsible for approximately 20 % of resting energy

expenditure (Ramsey et al. 2000). Overall H? leak is

thought to consist of basal leak that is unregulated and

inducible leak that is regulated by either the uncou-

pling proteins or the adenosine monophosphate/

adenine nucleotide translocase (Brookes et al. 2005).

It is well established that basal H? leak increases with

age (Hagen et al. 1997; Harper et al. 1998; Lal et al.

2001) although the CR effects on H? leak have

provided conflicting results, with CR inducing a

decrease (Hagopian et al. 2005), increase (Lambert

and Merry 2004), or no change (Ramsey et al. 2004;

Lambert and Merry 2005) in liver mitochondrial H?

leak. In the case of skeletal muscle, proton leak is

either not altered or decreased with CR depending on

duration of CR and/or animal age (Asami et al. 2008).

Thus, we were interested in determining how CR

and dietary fat affect H? leak in both liver and skeletal

muscle of mice fed our experimental diets. In liver, 1

month of CR did not markedly alter H? leak in

comparison with the control group. However, when

comparing the three CR groups that differed in fat

source, we found that the lowest H? leak occurred in

CR-Lard group whereas the CR-Fish animals had

increased H? leak (Chen et al. 2013). Similarly, in

skeletal muscle, mitochondrial H? leak was also lower

in CR mice consuming lard compared to all other

groups (Chen et al. 2012), although these differences

disappeared at 8 months CR (Chen et al. 2014). It has

previously been shown that age-related changes in H?

leak kinetics of skeletal muscle mitochondria pri-

marily take place in control rather than in CR mice

(Asami et al. 2008). It is thus possible that time-related

differences in H? leak kinetics between CR and

control mice reflect the fact that CR mitigates age-

related changes in H? leak. The mechanism through

which dietary fatty acids influence mitochondrial H?

leak is not entirely clear. Comparative studies have

reported that membrane unsaturation index (UI) and

n-3 PUFA are positively correlated with mitochondrial

H? leak (Porter et al. 1996; Brookes et al. 1998).

However, studies using liposomes have found that

proton leak through phospholipid bilayers (lipid–lipid

interactions) account for only a small amount of

mitochondrial H? leak (Brookes et al. 1997) and

studies using a range of mammalian species indicate

that mitochondrial membrane area has a much greater

influence on proton leak than membrane fatty acid

composition (Porter et al. 1996). In our studies, the

fact that differences in H? leak among the diet groups

disappeared in skeletal muscle at 8 months of CR,

despite the fact that mitochondrial fatty acid compo-

sition continued to differ dramatically between

groups, supports the notion that membrane fatty acid

composition is not the primary determinant of mito-

chondrial H? leak. Additional research is needed to

determine if dietary lipids influence mitochondrial H?

leak by altering mitochondrial morphology, changing

interactions between membrane proteins and fatty

acids or other processes. In sum, our results suggest

that lard may help to induce mitochondrial changes

which conserve energy in CR mice. Such an adapta-

tion may be beneficial when animals are faced with

maintaining energetically costly post-mitotic tissues

while decreasing energy intake.

Activities of the mitochondrial electron transport

complexes

In liver mitochondria, we found that 1 month of CR

did not significantly alter ETC enzyme activities

(Chen et al. 2013). This is in contrast with previous

results obtained with skeletal muscle mitochondria,

which showed that the activities of ETC Complexes I,

III and IV were lower in mitochondria from CR

compared with control mice at 10 months of age (or

*26 weeks of CR). However, at older age

(20 months), CR mice did not experience the age-

related decrease in ETC enzyme activity observed in

control animals (Desai et al. 1996). Young adult rats

(8–10 months old) on CR for 4.5–6.5 months were
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also reported to have lower Complex IV activity in

muscle mitochondria compared with their age-

matched ad libitum controls (Hepple et al. 2006).

When we studied the effect of dietary fat in CRmice, it

was found that the CR-Fish group had lower Complex

I activity than the CR-Soy group and lower Complex II

activity than both the CR-Soy and CR-Lard groups. A

decrease in Complex I activity in the CR-Lard group

was the only difference between the CR-Lard and CR-

Soy groups. Our results point out the importance of the

tissue under study (liver vs. muscle) and the duration

of CR regime on the effects of this intervention in ETC

enzyme activities. Furthermore, dietary lipids can

differentially influence the activities of ETC enzymes

in mitochondria from CR mice, which agrees with the

previously reported role of cardiolipin fatty acid

composition on ETC activities (Chen et al. 2013).

Mitochondrial ROS generation

CR has been reported to decrease mitochondrial

production of ROS in a variety of tissues (Gredilla

and Barja 2005; Sohal and Weindruch 1996), but the

influence of short-term CR on liver ROS production is

not entirely clear since studies in rats have reported

that ROS production is not decreased in liver

mitochondria following 1 month 40 % CR (Ramsey

et al. 2004). Furthermore, 6–7 weeks 8.5 or 25 % CR

did not change ROS production in liver mitochondria

although different markers of protein oxidation,

glycoxidation and lipoxidation were significantly

decreased (Gomez et al. 2007). In contrast, it has

been reported that ROS production is decreased at

6 weeks of 40 % CR in rat liver mitochondria

respiring on pyruvate/malate (Gredilla et al. 2001).

In our model, we found that 1 month of CR did not

decrease ROS production in liver mitochondria respir-

ing on either substrate alone or substrate plus rotenone

(an inhibitor of Complex I). In addition, a decrease in

ROS production was only observed with CR when

liver mitochondria were respiring on pyruvate/malate

plus the Complex III antimycin A (Chen et al. 2013).

When we tested the effect of dietary fat, it was

found that mitochondrial H2O2 production was sig-

nificantly lower in the CR-Fish compared with the

other CR groups under all substrate (succinate, or

pyruvate/malate, or pyruvate/malate/succinate) and

substrate plus inhibitor conditions (Chen et al. 2013).

These results are in accordance with our previous

results obtained with fat-1 mice, which express the C.

elegans fat-1 gene encoding a desaturase that uses n-6

fatty acids as a substrate for the formation of n-3 fatty

acids. Liver mitochondria obtained from these mice

were enriched in n-3 PUFA and had lower H2O2

production when respiring on either succinate or

succinate/glutamate/malate compared with control

mice (Hagopian et al. 2010).

Long-term (1 year or longer) CR decreases ROS

production in skeletal muscle mitochondria (Bevilac-

qua et al. 2005; Drew et al. 2003), whereas ROS

production was either decreased (Bevilacqua et al.

2004) or not changed (Gredilla et al. 2004) with short-

term CR. Skeletal muscle ROS production was not

altered in mitochondria respiring on substrates in the

absence of ETC inhibitors from short-term CR mice

(Faulks et al. 2006). In accordance with these previous

studies, we found that H2O2 production was not altered

at 1 month ofCR inmitochondria respiring on substrate

(succinate, pyruvate/malate, or succinate/pyru-

vate/malate) without ETC inhibitors, but was altered

in the presence of ETC inhibitors with a diminished

ROS producing capacity in both Complexes I and III in

all three CR groups regardless of dietary fat, without

significant differences among CR groups (Chen et al.

2012). However, after 8 months of CR there were no

differences between control and CR groups in H2O2

production regardless of substrates and/or inhibitors

used. The CR-Lard group had decreased ROS produc-

ing capacity from complex III although dietary lipids

had little influence on ROS produced from backflow

into complex I (Chen et al. 2014).

In sum, short-term CR may decrease maximal

capacity for ROS production from Complex III in liver

mitochondria (Chen et al. 2013). In addition, our

studies with mice fed CR diets with different fat

sources support the idea that phospholipid fatty acid

composition may have a major influence on liver

mitochondrial ROS production. Fish oil consumption

changes mitochondrial phospholipid fatty acid com-

position and decreases ROS production in both

Complexes I and III (Chen et al. 2013). In skeletal

muscle CR produces relatively rapid (within 1 month)

changes in the mitochondrial ETC which could

influence ROS production under conditions which

increase the reduction state of the ETC components

(i.e. in the presence of ETC inhibitors). Changes

elicited by short-term CR may be due to protein
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modifications and/or ETC complex assembly, and are

unlikely to be related to fatty acid modifications (Chen

et al. 2012). Although these alterations were attenuat-

ed by age, a protective effect of CR-Lard diet against

mitochondrial ROS production under certain assay

conditions becomes increasingly apparent in skeletal

muscle from mice fed on a long-term CR regime.

Thus, the length of CR and/or age may influence

changes between dietary lipid groups in ROS produc-

tion by skeletal muscle mitochondria (Chen et al.

2014).

Lipid peroxidation

A cornerstone of the Membrane Theory of Aging is

that increased lipid peroxidation and oxidative dam-

age to membranes with increased levels of highly

unsaturated fatty acids (HUFA) lead to a decrease in

lifespan (Pamplona et al. 1998, 2002; Hulbert et al.

2007; Hulbert 2008; Pamplona and Barja 2011). In the

case of liver mitochondria there were no differences in

lipid peroxidation (thiobarbituric acid–reacting sub-

stance (TBARS) assay) between the CR-Soy and

control groups, and among the three CR groups, at

1 month of CR, which indicates that liver mitochon-

drial lipid peroxidation is not altered by dietary lipid

source in short-term CR mice (Chen et al. 2013). We

observed that skeletal muscle mitochondria from the

CR-Fish group had increased lipid peroxidation com-

pared with both control and CR-Lard groups, despite

consuming a diet containing twice the amount of the

antioxidant t-butylhydroquinone as the other groups

(Chen et al. 2012). These results are in agreement with

other studies showing that fatty acid UI is positively

associated with the level of mitochondrial oxidative

damage (Herrero et al. 2001; Pamplona et al. 2004).

Long-term ingestion of fish oil increased oxidative

stress and decreased lifespan in senescence-accelerat-

ed mice (Tsuduki et al. 2011), but we did not observe

any significant differences between any of the groups

of mice in mitochondrial lipid peroxidation at

8 months of CR (Chen et al. 2014). However, it has

to be taken into account that these results were

obtained by using TBARS method, which has proven

to work reasonably well when applied to defined

systems, such as liposomes and microsomes, but also

to be prone to interferences when applied to body

fluids and tissue samples (Meagher and Fitzgerald

2000). Thus, these observations should be taken with

caution until confirmed by additional methodologies.

Markers of mitochondrial ultrastructure

and dynamics

Liver was studied in mice fed experimental diets for 6

and 18 months starting at an age of 3 months.

Mitochondria from CR-Lard fed young adult mice

showed increased size compared with all other diets,

but this parameter remained unaltered in CR-Fish and

CR-Soy compared with the control group (Khraiwesh

et al. 2013). CR also induced changes in mitochondrial

shape, with a decrease of circularity coefficients in all

CR groups, and particularly in CR-Fish, compared

with the control group. In addition, the number of

cristae per mitochondrion was significantly higher in

all CR groups compared with the control group, which

could represent a metabolic adaptation to the low-

energy state under CR conditions (Khraiwesh et al.

2013). The percentage of cell volume occupied by

mitochondria and the number of mitochondria per cell

volume unit were significantly increased in all CR

groups compared with the control group, which agrees

with a previous quantitative study (López-Lluch et al.

2006). On the other hand, no differences in these

parameters were observed among the three CR groups

(Khraiwesh et al. 2013). Interestingly, similar changes

were also observed in mice fed a diet supplemented

with resveratrol, a mimetic of CR (Agarwal and Baur

2011; Villalba and Alcaı́n 2012).

In the case of 21 months old mice, CR also resulted

in increased mitochondrial number and volume,

although these results also depended on the fat source

since CR-Lard and CR-Soy groups exhibited larger

mitochondria than the CR-Fish group. Mitochondrial

shape also varied with CR in old mice, with more

spherical mitochondria being found in all the CR

groups regardless of dietary fat. Mean number of

cristae per mitochondria and mean crista length were

also increased when comparing CR animals with

controls and this change was also affected by dietary

fat, since a sequential increase in cristal length was

found with CR-Soy[CR-Lard[CR-Fish[ control

(Khraiwesh et al. 2014). These results contrast with

those reported in young mice subjected to 6 months of

CR where mitochondria of increased size were found

only in the CR-Lard group (Khraiwesh et al. 2013).
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We found increased levels of proteins related to

mitochondrial fission (Fis1 and Drp1) by CR in young

adults, but no changes were detected in proteins

involved in mitochondrial fusion (Mfn1, Mfn2 and

OPA1). Our results on Drp1 and Fis1 are in accordance

with previous investigations (Nisoli et al. 2005; López-

Lluch et al. 2006) showing an increased number of

mitochondria together with an increase in parameters

related to mitochondrial biogenesis in animals subject-

ed to CR. A similar result has been reported in animals

fed a resveratrol-supplemented diet (Baur et al. 2006).

Interestingly, the effect of CR on fission proteins was

exacerbated by lard and diminished by fish oil, even

while liver mitochondria were the largest in CR-Lard

compared with the other dietary groups (Khraiwesh

et al. 2013). However, these dietary fat-induced differ-

ences in markers of mitochondrial dynamics were

attenuated by aging (Khraiwesh et al. 2014).

In sum, modification of mitochondrial ultrastruc-

ture by CR and dietary lipid composition is influenced

by age and/or duration of dietary intervention. Long-

term CR is associated with increases of mitochondrial

abundance and cristal number and length in mouse

liver. The increase of mitochondrial abundance by this

intervention is independent of level of fatty acid

unsaturation (Khraiwesh et al. 2013) and is also

produced by the CRmimetic resveratrol. Interestingly,

although some of the changes are attenuated by aging,

the effect of dietary fat under CR conditions is more

pronounced in aged mice.

Apoptotic signaling

Apoptosis regulates cellular turnover in mitotic tissues

(such as liver) and is involved in the onset of sarcopenia

in aging skeletal muscle (Evan and Littlewood 1998;

Kanzler and Galle 2000; Dirks and Leeuwenburgh

2002, 2004; Phillips and Leeuwenburgh 2005; Chung

and Ng 2006; Adams and Cory 2007; Marzetti et al.

2008a, b, 2009; Seo et al. 2008; Wohlgemuth et al.

2010; Hanahan and Weinberg 2011). Our studies of

apoptotic signaling were carried out on mice fed

experimental diets for 6 or 18 months starting at an age

of 3 months and analyses were performed both in liver

and in skeletal muscle. An age-linked increase in the

mitochondrial apoptotic pathway was detected with

CR in liver, including a decrease in Bcl-2/Bax ratio, an

enhanced release of cytochrome c to the cytosol and

higher caspase-9 activity. However, these changes

were not fully transmitted to the effectors AIF and

caspase-3. In addition, CR (which completely abated

aging-related inflammatory alterations in liver) and

dietary fat altered the activities of caspases-8, -9 and -3.

Of note, two well-recognized makers of aging liver, as

DNA fragmentation and nuclear mean area, were

dramatically increased in all aged animals with the

remarkable exception of the CR-Lard group (López-

Domı́nguez et al. 2014a).

In skeletal muscle, 6 months of CR downregulated

several proapoptotic mediators, such as lipid hy-

droperoxides, plasma membrane neutral sphin-

gomyelinase, Bax levels, and release/accumulation

of cytochrome c and AIF into the cytosol. CR also

improved structural features of gastrocnemius fibers

by increasing cross-sectional area and decreasing

circularity of fibers in cross sections. Fish oil aug-

mented the protective effect of CR in young animals,

decreasing plasma membrane neutral sphingomyeli-

nase, Bax levels, caspase-8 and -9 activities, while

increasing levels of the antioxidant coenzyme Q at the

plasma membrane, and potentiating the increase of

cross-sectional area and the decrease of fiber circu-

larity in cross sections. Many of these changes were

not observed in the CR-Lard group (López-Dom-

ı́nguez et al. 2013). On the other hand, the most

prominent change observed in aged mice was found

for caspase-9 activity, a marker of mitochondrial

apoptosis, which exhibited a dramatic increase with

aging in the CR-Fish group but not with CR-Lard,

while CR-Soy showed an intermediate effect (López-

Domı́nguez et al. manuscript in preparation).

Our observations support the idea that the influence

of CR and dietary fat on apoptotic signaling in liver and

skeletalmuscle is age dependent. Lard elicits protective

changes in hepatic homeostasis with aging in mice fed

under CR (López-Domı́nguez et al. 2014a). In addition,

although fish oil attenuates skeletal muscle apoptotic

signaling in young CR mice, most of these changes

were abolished or even reverted in aged mice, with a

significant decrease of caspase-9 activity, a marker of

mitochondrial apoptosis, in the CR-Lard group.

Effect of dietary fat on lifespan in CR mice

Lifespan was increased in CR mice consuming lard[
soybean oil [ fish oil-containing diets (López-
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Domı́nguez et al. 2014b). There were no differences in

prevalence of neoplasms or other major measures of

end-of-life pathology between the three CR diet

groups. Thus, differences in lifespan between the

CR-Lardmice and the other CR groups were likely due

to delay in onset of disease rather than preventing the

occurrence of specific disease conditions. Longevity

improvement in the CR-Lard group is consistent with

the Membrane Theory of Aging, and questions the

efficacy of feeding diets high in PUFA to CR animals.

Furthermore, these results suggest that lipid composi-

tion of the diet should be considered when designing

diets to maximize lifespan extension with CR.

A possible explanation for dietary fat source effects

on lifespan in CR mice

There has been considerable interest in the possible

health benefits of dietary n-3 PUFA for humans and

other animals, mainly by the role of these fatty acids in

inflammation (Lands 2014). In particular, n-3 PUFA

form eicosanoids, resolvins and docosanoids, which

are anti-inflammatory, in contrast with n-6 PUFA,

which form pro-inflammatory eicosanoids (Calder

2004, 2007, 2012). Also, some studies have reported

that fat mass is decreased in rodents (Jones 1989; Hill

et al. 1993; Su and Jones 1993; Baillie et al. 1999;

Tsuboyama-Kasaoka et al. 2008) and humans (Couet

et al. 1997; Noreen et al. 2010) consuming diets

containing fish oil (n-3 PUFA). Fatty acid-induced

changes in mitochondria could be a major contributor

to this decrease in adiposity (Nakamura et al. 2014).

There is evidence that consumption of fish oil

increases mitochondrial biogenesis (Flachs et al.

2005), at least in some tissues, and increases capacity

for mitochondrial fatty acid oxidation (Halminski

et al. 1991; Ide et al. 2000). Dietary fish oil has been

shown to increase the activities of enzymes involved

in fatty acid oxidation (Ide et al. 2000; Hong et al.

2003) and, in particular, to increase the activity of the

membrane-bound enzyme carnitine palmitoyltrans-

ferase I (Power et al. 1994; Power and Newsholme

1997; Hong et al. 2003), which plays a central role in

regulating the rate of mitochondrial b-oxidation.
There is also some evidence that diet-induced increas-

es in mitochondrial n-3 PUFA alter the activities of

ETC enzymes (Yamaoka et al. 1988; McMillin et al.

1992; Barzanti et al. 1994; Infante et al. 2001),

although additional work is needed to determine the

extent of these changes. We have reported that

mitochondrial ROS production may be decreased in

response to increased mitochondrial phospholipid n-3

PUFA, and this may contribute to protect the mito-

chondria from oxidative damage (Ramsey et al. 2005;

Hagopian et al. 2010). Thus, fish oil induces a number

of beneficial mitochondrial changes which may lead to

increased lifespan in ad libitum fed animals.

The possibility exists, however, that dietary n-3

PUFA may not be beneficial to CR animals. CR

induces many of the same physiological changes as

dietary n-3 PUFA, including decreased ROS produc-

tion (Sohal and Weindruch 1996; Gredilla and Barja

2005), adiposity (Ramsey and Hagopian 2006; Speak-

man and Mitchell 2011) and inflammation (Chung

et al. 2001; Fontana 2009), and increased mitochon-

drial biogenesis (López-Lluch et al. 2006; Nisoli et al.

2005; Civitarese et al. 2007) and fatty acid oxidation

(Bruss et al. 2009). Thus, n-3 PUFAmay not be able to

induce additional changes in CR animals. On the other

hand, long chain n-3 PUFA are very susceptible to

peroxidation (Crockett 2008). Increased peroxidiz-

ability of membranes from CR animals consuming

diets enriched in n-3 fatty acids could cause impaired

mitochondrial function and decreased lifespan, as

previously indicated (Pamplona et al. 1998; Hulbert

et al. 2007; Hulbert 2008; Pamplona and Barja 2011),

and these alterations could be particularly important if

n-3 PUFA induce no benefits beyond those already

obtained by CR per se. There is evidence that

consumption of diets high in saturated and monoun-

saturated fatty acids may increase ETC activity in old

rats (Bronnikov et al. 2010). It has also been reported

that mitochondrial ROS production and oxidative

damage are decreased (Huertas et al. 1999; Mataix

et al. 2006; Mujahid et al. 2009) and mitochondrial

function is improved (Mataix et al. 2006) in animals

consuming diets high in monounsaturated fats versus

diets high in PUFA. Thus, the possibility exists that

diets high in saturated and/or monounsaturated fatty

acids may show clear benefits in CR animals that are

not overweight and have low levels of inflammation.

Concluding remarks

Very different approaches (biochemical, ultrastruc-

tural, lifespan analysis) applied to three different
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cohorts of mice have independently indicated that lard

as a fat source often maximizes the effects of 40 %CR

on mice, in accordance with the Membrane Theory of

Aging (see Table 1). A limitation of our studies, and of

all studies using complex dietary lipid sources, is that

various dietary lipids differ in multiple fatty acids.

Thus, studies using diets with purified fatty acids will

be likely required to identify the specific fatty acids

which influence lifespan in CR mice. The fact that the

CR-Lard diet significantly increased MUFA levels in

liver and muscle phospholipids and the recent demon-

stration that CR produces a redistribution in the type of

unsaturation with a significant increase of MUFA in

liver (Jové et al. 2014), make it very likely that MUFA

increases may be a causal factor in the observed effects

of CR-lard diet. Additional studies will also be needed

to determine if the increased lifespan in 40 %CRmice

consuming the lard diet would also be observed at

other levels of energy intake. Although the focus of

our studies was on dietary lipid composition, it is

possible that composition of protein, carbohydrates, or

other dietary components may also influence lifespan.

Studies comparing various diets under identical con-

ditions in animals maintained on specific levels of

energy intake are needed to truly determine the extent

to which various diets influence lifespan in animals

maintained on CR.
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López-Domı́nguez JA, Khraiwesh H, González-Reyes JA,
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López-Domı́nguez JA, Ramsey JJ, Tran D, Imai DM, Koehne A,

Laing ST, Griffey SM, Kim K, Taylor SL, Hagopian K,
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