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Abstract The term cellular senescence was intro-

duced more than five decades ago to describe the state

of growth arrest observed in aging cells. Since this

initial discovery, the phenotypes associated with

cellular senescence have expanded beyond growth

arrest to include alterations in cellular metabolism,

secreted cytokines, epigenetic regulation and protein

expression. Recently, senescence has been shown to

play an important role in vivo not only in relation to

aging, but also during embryonic development. Thus,

cellular senescence serves different purposes and

comprises a wide range of distinct phenotypes across

multiple cell types. Whether all cell types, including

post-mitotic neurons, are capable of entering into a

senescent state remains unclear. In this review we

examine recent data that suggest that cellular senes-

cence plays a role in brain aging and, notably, may not

be limited to glia but also neurons. We suggest that

there is a high level of similarity between some of the

pathological changes that occur in the brain in

Alzheimer’s and Parkinson’s diseases and those

phenotypes observed in cellular senescence, leading

us to propose that neurons and glia can exhibit

hallmarks of senescence previously documented in

peripheral tissues.
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Abbreviations

Ab amyloid b-peptide

AD Alzheimer’s disease

ALS Amyotrophic lateral sclerosis

ATM Ataxia telangiectasia mutated

ATR Ataxia telangiectasia and Rad3-related

b-gal B-galactosidase

CGNs Cerebellar granule neurons

CNS Central nervous system

CS Cellular senescence

CSF Cerebrospinal fluid

DDR DNA damage response

Ecrg4 Esophageal cancer-related gene 4

FTD Frontotemporal dementia

HD Huntington’s disease

LTP Long-term potentiation

MiRNA Microrna

NSCs Neural stem cells

OIS Oncogene-induced senescence

OPCs Oligodendrocyte precursor cells

PD Parkinson’s disease

ROS Reactive oxygen species

RS Replicative senescence

F. C. C. Tan � E. R. Hutchison (&) � E. Eitan (&) �
M. P. Mattson

Laboratory of Neurosciences, National Institute

on Aging Intramural Research Program, Baltimore,

MD 21224, USA

e-mail: hutchisone@mail.nih.gov

E. Eitan

e-mail: erez.eitan@nih.gov

123

Biogerontology (2014) 15:643–660

DOI 10.1007/s10522-014-9532-1



SA b-gal Senescence-associated b-gal

SAHF Senescence-associated heterochromatic

foci

SASP Senescence-associated secretory

phenotype

SIPS Stress induced replicative senescence

SIR Senescence-associated inflammatory

response

TGFb Transforming growth factor b

Introduction

Senescence, or ‘‘to grow old’’ in Latin, can be

observed both systemically and on the level of

individual cells. Overall, it can be viewed as a state

that is associated with aging, exhibiting a decline in

normal function and increased vulnerability to stress-

ors. The concept of cellular senescence (CS) was first

introduced more than five decades ago (Hayflick and

Moorhead 1961) based on the finding that cells in

culture could only undergo a limited number of

divisions (the Hayflick limit). It is generally believed

to be an alternate cell fate in the absence of apoptosis

(programmed cell death) (Bree et al. 2002). Recently,

however, it has become clear that senescence is not

solely restricted to the loss of replicative ability, but in

fact involves changes in cellular metabolism, epige-

netic regulation and gene expression. The prototypical

molecular changes that occur during senescence,

which include altered morphology, expression of

pro-inflammatory cytokines, growth factors and pro-

teases, have collectively been termed the senescence-

associated secretory phenotype (SASP) by the Camp-

isi Lab (Coppe et al. 2010a). At present, these

phenotypic changes along with increased expression

of the cell cycle regulating protein p16(INK4a) and b-

galactosidase (b-gal) activity are the predominate

markers used to identify senescence cells (Carnero

2013; Salama et al. 2014).

The relationship between CS and organismal aging

has only just begun to be explored. Markers of

senescence have been found to increase progressively

with age in most organisms, including mouse and

human tissues (see (van Deursen 2014) for a review).

However, correlation does not necessarily indicate

causality. A recent study examined this question

directly utilizing transgenic mice in which senescent

cells (defined as those expressing p16(INK4a))

undergo apoptosis (Baker et al. 2011). Crossing these

mice with a progeroid mouse model (BubR1H/H)

reduced age-related phenotypes including sarcopenia,

cataracts and loss of adipose tissue (Baker et al. 2011).

Also SASP has been suggested to contribute to several

age-related diseases including obesity, diabetes, can-

cer and cardiovascular dysfunction (See (Tchkonia

et al. 2013) for a review). These experiments suggest

that CS plays a role in age-related conditions in

multiple tissues.

The idea that cellular senescence is only an

aging-related phenomenon was recently called into

question by the discovery of developmental senes-

cence. This research has demonstrated that during

embryonic development cells enter a senescent state,

as evidenced by b-gal activity, and exhibit SASP

(Munoz-Espin et al. 2013; Storer et al. 2013). This

distinctly non-aging and non-insult induced occur-

rence of SASP suggests that SASP and senescence

cannot be viewed merely as proliferation arrest and

a ‘‘side effect’’ of aging, but is in itself a selective

and purposeful mechanism, i.e. a means of clearing

unnecessary cells and modulating the tissue

microenvironment.

The observation that senescence is not restricted to

aging but occurs during normal development and

across multiple tissue types raises many questions. Is

aging-associated senescence simply a developmental

process gone awry? Do all cells senesce through the

same mechanisms and subsequently exhibit a similar

senescent phenotype? Growth arrest is traditionally

viewed as one of the major hallmarks of senescence.

How does senescence in this regard apply to post-

mitotic cell populations such as fully differentiated

neurons, osteocytes, skeletal and cardiac muscle cells?

Are there, and if so to what extent, shared phenotypic

traits between aging dividing cells (traditionally

described as ‘‘senescent cells’’) and aging post-mitotic

cells (traditionally not believed to undergo

senescence)?

As interesting studies are emerging on the role of

senescence in different age-related pathological con-

ditions, it seems that a particularly understudied field

is that of senescence in age-related diseases of the

central nervous system (CNS). In addition to age-

related cognitive decline, age is the primary risk

factor for many neurodegenerative diseases including
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Alzheimer’s disease (AD), Parkinson’s disease (PD)

and frontotemporal dementia (FTD). These diseases

are all characterized by dysfunction and death of

neurons and glial reactions that create an inflammatory

milieu in the affected brain regions. In light of the

many recent findings on metabolic and epigenetic

alterations in relation to senescence, we will explore

different phenotypes and hallmarks of CS, and exam-

ine whether similar hallmarks are seen in neurons and

glia associated with age-related neurodegenerative

disease as well as normal aging.

Hallmarks of cellular senescence

Pathways to cellular senescence

The inducers of a senescent phenotype are typically

categorized into three groups (Fig. 1): replicative

senescence (RS), stress-induced premature senescence

(SIPS) and oncogene-induced senescence (OIS) (Ku-

ilman et al. 2010). In brief, RS—the original idea of

senescence proposed by Hayflick and Moorhead

(Hayflick and Moorhead 1961)—canonically occurs

in response to telomere shortening. This triggers the

DNA damage response (DDR) causing activation of

the Ataxia-Telangiectasia Mutated (ATM) and Ataxia

Telangiectasia and Rad3-related (ATR) pathways that

induce cell cycle arrest by activating the cell cycle-

regulating protein kinases CDK2 and CDK1, respec-

tively (Di Micco et al. 2008).

In contrast, SIPS occurs independently of telomere

length—hence the name premature—and its induction

is seen in response to long-term exposure to sub-

cytotoxic doses of a number of stressors including

oxidative stress (Chen et al. 1995), UVB radiation

(Medrano et al. 1995), artificial and inadequate culture

conditions ((Ramirez et al. 2001; Sherr and DePinho

2000) for a review; also see Fig. 1). OIS can be

considered a special type of SIPS, in which senescence

arises due to activation of oncogenes such as K-ras, B-

raf, PTEN and NF1 (Larsson 2011). Common to all

types of senescence is the up-regulation of one or

several of the tumor suppressor genes including

p19ARF, p53, p21, p16(INK4a) and the mitogen-

activated protein kinase p38MAPK. In particular,

p53 and the p16(INK4a)-Rb signaling pathways play a

central role in the achievement of growth arrest

regardless of inducer, whereas p19ARF is strongly

associated with OIS (Larsson 2011; van Deursen

2014). OIS is commonly viewed as a feedback

mechanism to suppress oncogenesis, although onco-

genic mutations in some cases appear to co-opt a

senescence-associated inflammatory response (SIR), a

component of SASP to further enhance tumor pro-

gression (Pribluda et al. 2013).

Cellular Senescence 

RS SIPS
OIS

Oxidative 
stress

DNA 
damage

Misfolded 
protein

Oncogene 
expression

Telomere 
shortening

Calcium 
dysregulation

Artificial 
culture 

conditions

DDR
ATM/ATR

Chk2/Chk1, p53, p21
CDK2, CDK1

p38MAPK, p53, p21,
p16INK4, Rb, E2F

K-ras -raf,  B , PTEN, NF1
p19ARF, p53, p21
p16INK4, Rb, E2F

Relevant to neurons Not relevant to neurons

Fig. 1 Pathways to cellular senescence. This figure summa-

rizes the different stressors (top layer) and molecular mecha-

nisms (top middle layer) involved in mediating each type of

senescence (bottom middle layer) collectively termed ‘‘cellular

senescence’’ (bottom layer). RS replicative senescence, SIPS

stress induced premature senescence, OIS oncogene-induced

senescence. Yellow color indicates a type of stressor that is

relevant to neurons. Green color indicates a type of stressor only

relevant to other cell types. (Color figure online)
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Gene expression and epigenetic mechanisms

Altered morphology is one of the major hallmarks of

CS across disparate cell types, with cells becoming

enlarged and demonstrating an increased cytoplasm to

nucleus ratio (Hayflick and Moorhead 1961; Majore

et al. 2009). mRNA and miRNA expression profiles of

different human tissues during aging reveal the

existence of a common pattern of defined transcrip-

tional and epigenetic changes as well as tissue-specific

age-related alterations (ElSharawy et al. 2012; Li et al.

2009; Maes et al. 2009; Ren et al. 2012; Santarosa

et al. 2009; Serna et al. 2012).

Gene expression profiles suggest that senescence is

a tightly regulated process, with consistent alterations

in heterochromatin in CS across tissues. Senescence-

associated heterochromatic foci (SAHF) are dense

puncta of DNA observed in vitro following replicative

and stress-induced senescence. They are associated

with increased methylation of Lys9 on histone H3

(Bannister et al. 2001). Although SAHF are a

frequently observed feature of CS and often used as

a marker of CS, a recent report found dissociation

between SAHF occurrence and other CS-phenotypes

in multiple primary cells and cell lines (Kosar et al.

2011). Despite this report, it is still unclear how the

presence or absence of SAHF and the underlying

alterations in methylation modulate features of the

global transcriptional profile of CS including growth

arrest (reviewed by Adams (Adams 2007; Zhang et al.

2007)) and SASP. Further research is necessary to

discern if global transcriptional phenotypes of CS

occur regardless of alterations in heterochromatin or if

these phenotypes can be dissociated between different

inducers of CS and/or different cell types.

Alterations in H2K4me3 and H3K27me3 methyl-

ation are one mechanism through which CS-related

changes in the transcriptome can occur (Shah et al.

2013). Altered miRNA expression and disruption of

miRNA biogenesis through deletion of the enzyme

Dicer, (expression of which declines with age,) can

also shift cells into a senescent state (Mori et al. 2012).

miRNAs such as miR-29 have been discovered to be

master regulators of CS (Hu et al. 2014) and it is

possible that individual CS phenotypes such as SASP

may also be regulated by specific miRNAs. In C.

elegans and Drosophila perturbed miRNA expression

can alter lifespan, modulate lipofuscin accumulation

in tissues, accelerate a transcriptional profile

associated with aging and reduce age-related neuro-

degeneration (Boehm and Slack 2005; Liu et al. 2012).

Mounting evidence suggests that miRNAs also play an

important role in mammalian CS, aging and neurode-

generative diseases (Abe and Bonini 2013). However,

a single miRNA regulating these processes similarly

to those in C. elegans and Drosophila has not yet been

discovered.

SASP is a collective term for the altered expression

of secreted cytokines observed in CS. SASP is

implicated in inflammation, tissue growth and remod-

eling. Prominent components of SASP include the

cytokines IL-6 and IL-8, MMP-1, MMP-3, fibronectin

and laminin B (see (Coppe et al. 2010a, b) for a

review). The general increase in inflammation asso-

ciated with aging has also been attributed to SASP,

although further experiments are necessary to provide

conclusive evidence of this relationship. The emerging

evidence suggests that there are specific gene expres-

sion and epigenetic mechanisms by which CS has a

major effect on the cell microenvironment and,

through SASP, CS may mediate organism-wide phe-

notypes such as systemic inflammation. Network

analysis of age related genes revealed multiple

connections to CS and systemic inflammation, further

supporting the role of CS in organismal aging (Tacutu

et al. 2010, 2011).

Senescence-associated metabolic alterations

The disruption of energy metabolism and degradation

of macromolecules (proteins and lipids) is frequently

observed in senescent cells. Although senescent cells

are metabolically active and synthesize macromole-

cules (Blagosklonny 2011; Blagosklonny and Hall

2009) there are abnormalities in organelle quality and

structure. In particular, the mitochondria of senescent

cells are abnormally elongated, likely due to increased

expression of mitochondrial fusion proteins such as

Fis1, DRP1 and OPA1 (Lee et al. 2007; Mai et al.

2010; Yoon et al. 2006). This altered mitochondrial

morphology has been proposed to confer protection

against oxidative stress (Mai et al. 2010), but it can

also result in proton leakage across the mitochondrial

inner membrane leading to enhanced compensatory

electron transport (Lee et al. 2007). Increased activity

of the mitochondrial pyruvate dehydrogenase, which

mediates conversion of pyruvate into acetyl-CoA, has

been observed in OIS constituting another potential
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mechanism for the higher reactive oxygen species

(ROS) levels and AMP/ATP ratio observed in CS

(Zwerschke et al. 2003). The onset of CS can be

delayed in low-glucose culture conditions, potentially

by reducing glucose-mediated protein and DNA

damage, although it is not clear whether glycolysis is

also altered in senescent cells (Zwerschke et al. 2003).

Overall, the reduced energy level and structural as

well as functional abnormalities of mitochondria may

lead to enhanced generation of DNA damage while

inhibiting energy-intensive repair.

The evidence for compromised cellular repair in CS

remains controversial. Although DNA damage is an

established inducer of CS, the occurrence of impaired

DNA repair pathways in CS have not been well

studied. Accumulation of unrepairable double strand

DNA breaks were reported in senescent cells while

their ability to repair radiation-induced damage was

unimpaired (Sedelnikova et al. 2004). Thus, CS may

be exhibiting a different type of DNA damage rather

than impaired DNA repair.

Interestingly, the classical CS marker b-galactosi-

dase (lacZ) staining (at pH 6) likely reflects altered

lysosomal mass—the lysosome being the main cell

organelle responsible for degradation of damaged

macromolecules (Lee et al. 2006). The lipofuscin and

a-fucosidase accumulation observed during CS fur-

thermore suggests an increase in lysosomal biomass

(Hohn et al. 2012; Singh and Piekorz 2013). However,

it is still controversial if the increase in lysosomal mass

indicates enhanced degradation activity or results

from impaired lysosomal function. Similarly, reports

exist on both enhanced and inhibited autophagy in CS

(Grune et al. 2005; Young et al. 2009). Ceramide

levels have been shown to increase during CS

(Venable et al. 1995), which is interesting since an

increase in ceramide concentration can induce a pro-

apoptotic autophagy response. Taken together, there

appears to be a relationship between autophagy and

CS which is understandable in light of the relationship

between autophagy and apoptosis.

Senescence in the CNS

As described above, hallmarks of CS encompass more

than just irreversible growth arrest (Fig. 2). However,

given the typical association of growth arrest with CS,

it is interesting to examine whether moderately

proliferative cells like astrocytes and oligodendrocyte

precursors or even post-mitotic cells like neurons are

also subject to CS. Direct experimental evidence for

neural cell senescence has been lacking until recently,

as some phenotypical markers of senescence have

been shown in neurons and astrocytes (Table 1).

A senescence-like phenotype has been observed in

Purkinje and cortical neurons in response to DNA

damage. The mechanism of induction was similar to

classical CS and involved a DDR response, and p21

and p38MAPK activation. Other senescence-associ-

ated phenotypes were also observed, including ele-

vated b-gal staining and a SASP-like secretion of pro-

inflammatory cytokines (Jurk et al. 2012). A recent

study found that cultured cerebellar granule neurons

Senescent 
phenotypes

Telomere erosion

Morphological 
changes

Lysosomal dysfunction

Alterations of cell 
cycle gene expression

Changes in chromatin 
structure

SASP

p53, p16 , p21 

Neurons Glia

Fig. 2 Evidence for

senescence in CNS cell

populations. Both aging

neurons (left) and glial cells

(right) show phenotypic

traits characteristic of

cellular senescence (middle)
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(CGNs) exhibit decreased base excision repair and

non-homologous end joining repair over a 5-week

time course in culture. This reduction in DDR was

correlated to an observed increase in beta-galactosi-

dase activity and intracellular calcium level (Bhanu

et al. 2010). These findings suggest that the DNA

damage that accumulates in aging neurons leads to

senescence, although this study did not demonstrate a

causal relationship between DDR impairment and

neuronal senescence. In addition to DDR-induced

senescence, aging neurons also exhibit CS phenotypes

after exposure to oxidative and metabolic stress (Jurk

et al. 2012). Increased beta-galactosidase activity was

observed in hippocampal neurons upon prolonged

culture of 20–30 days (Dong et al. 2011) and also in

the hippocampus of aging rats (Geng et al. 2010).

Dong et al. also report on mitochondrial dysfunction in

neurons that result in elevated ROS levels (Dong et al.

2011). While these observations suggest mitochon-

drial impairment plays a role in neuronal senescence,

this evidence is correlative and there is an inherent

selection bias as typically many neurons die in

prolonged culture conditions.

SIRT1, a deacetylase associated with longevity and

metabolic regulation, has been shown to attenuate CS

in several cell types including neurons. Aging neurons,

particularly those that participate in wakefulness

activity (hypothalamic orexinergic neurons, locus

ceruleus neurons, and mesopontine cholinergic and

dopaminergic neurons) have been found to have

accumulation of lipofuscin, another commonly used

hallmark of CS and indicator of senescence-associated

metabolic dysfunction. These aged neurons presented

with morphological alteration including reduced neu-

rotransmitter synthesis and dendritic complexity (Pan-

ossian et al. 2011). In two neuron-like cell lines (P12

and SH-SY5Y) exposure to the neurotoxin TCDD (2,

3, 7, 8-tetrachlorodibenzo-P-dioxin), which is known

to cause mitochondrial dysfunction and accumulation

of ROS, also induced a senescence-like phenotype

including b-gal staining, increased expression of p16

and p21, reduced p-Rb expression and c-H2AX foci.

TCDD-induced neuronal senescence was dependent

on oxidative stress and the senescent phenotype was

attenuated by the ROS scavenger N-acetylcysteine

(NAC) (Wan et al. 2014). In addition to stress-induced

senescence, there is also evidence for CS in neuro-

blastoma cells as a result of altered gene expression.

Knockdown of MECP2, a chromatin-modifying pro-

tein that mediates gene silencing increases b-gal

staining in a neuroblastoma cell line (Squillaro et al.

2012). In neurons, MECP2 mediates the expression of

immediate early gene expression, a set of genes

important for synaptic plasticity and memory forma-

tion (Deng et al. 2014). This suggests that an increase

in b-gal staining could be the result of individual gene

expression or a response to an aberrant transcriptional

network. While these data raise the possibility of a

direct connection between MECP2 status, synaptic

plasticity and CS, the experiments were performed in

neuroblastoma cells, which are proliferative and thus

fundamentally different from neurons.

While the concept of neuronal senescence is new, it

is well established that neuronal function declines with

Parkinson’s Disease:
• ↑ P16, P21
• ↑ autophagosomes
• Mut DJ-1, PINK1, 

Parkin-1 
mitochondrial 
fusion/fission 
proteins

• ↑ROS

Alzheimer’s Disease:
• ↑P16, ↑ P21, ↑ P38
• ↑ IL-6, TGP-β
• ↓PAK3
• ↑ Autophagosomes

due to lysosomal
dysfunction

• ↑ Ceramide
• ↑ROS
• ↓ Euchromatin

Normal Aging:
• ↓ Neuronal volume, 
aborization , spine and 
synapse density
• ↑ Il -6
• DNA damage
• ↑ ROS 
• ↓ Mitophagy, 
• ↑ mtDNAdamage

Fig. 3 Evidence for

senescence in

neurodegenerative disease.

Several hallmarks of cellular

senescence are found to be

increased in normal aging as

well as in neurodegenerative

disorders such as

Alzheimer’s and

Parkinson’s diseases
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advancing age. Disruption of normal calcium homeo-

stasis, with increased intracellular resting levels of

Ca2? and an impaired ability to remove excess Ca2? in

response to glutamate stimulation is one extensively

studied hallmark of aged neurons (Raza et al. 2007;

Verkhratsky et al. 1994). The impaired calcium

homeostasis may be the result of an age-related

reduction in glutathione, a major antioxidant protein

that was also found to contribute to the oxidative

stress-dependent CS (Belrose et al. 2012). Impaired

neuronal calcium homeostasis, neurotransmitter

release and cognitive impairment is also likely exac-

erbated by glial dysfunction, as these support cells of

the brain play a central role in maintaining homeosta-

sis crucial for neuronal function including regulation

of metabolites, neurotransmitter uptake and synaptic

pruning.

Glial cells include astrocytes, oligodendrocytes and

microglia. Microglia are macrophage-like myeloid

cells, which serve as the primary innate immune cells

of the CNS. As opposed to astrocytes and oligoden-

drocytes microglia are of non-neural tube origin

(Ginhoux et al. 2010). Aging microglia cells show

altered morphology distinct from the reactive microg-

lia (Conde and Streit 2006b). This dystrophic microg-

lia morphology is observed with an increasing

frequency in older individuals and in relation to

several neuropathologic conditions supporting the

notion that dystrophy is age-related and followed by

altered functionality of the cells (Conde and Streit

2006a; Streit 2006; Streit et al. 2004). Flanary et al.

reported that microglia grown in- vitro were subject to

replicative senescence as assessed by telomere short-

ening and decreased proliferation (Flanary and Streit

2004). Additional telomere and telomerase analysis

studies in vivo support this hypothesis (Flanary et al.

2007; Miller et al. 2007; Miller and Streit 2007).

Astrocytes and oligodendrocytes originate from

CNS stem cells and have an important role in

regulating and supporting neuronal function (Rowitch

and Kriegstein 2010). Neural stem cells (NSCs)

themselves where shown to undergo senescence in

response to extensive proliferation and stressors

in vitro (Ferron et al. 2004). Interestingly, amyloid

b-peptide (Ab) which accumulates in the brain in AD

and can be neurotoxic induced NSC senescence

possibly through oxidative stress and/or the formyl-

peptide receptor 2 (FPR2) (He et al. 2013). In vivo

NSC express several markers of CS with age including

telomere shortening, up-regulation of cell cycle genes

and ROS accumulation with age (Bose et al. 2010;

Ferron et al. 2009).

Differentiated NSC to astrocytes and oligodendro-

cytes can also undergo CS. Differences exist between

these two populations of glial cells with respect to

replicative senescence. While astrocytes have been

reported to senesce as a result of protracted prolifer-

ation (Bitto et al. 2010), oligodendrocyte precursor

cells (OPCs) were observed to be resistant to RS

in vitro (Tang et al. 2001). On the other hand, in OPCs

both stress and serum-starvation were shown to induce

CS mediated by the esophageal cancer-related gene 4

(Ecrg4). In addition, recombinant Ecrg4 was sufficient

to induce CS in vitro, and the level of Ecrg4 was

reported to increase with age in mice (Kujuro et al.

2010).

More studies have been performed on senescence in

relation to astrocytes and suggest that astrocytes are

subject to stress-induced CS in vitro, with clear

similarities to the phenotype observed in senescent

fibroblasts: SAHF, p53, p21, p16, SA b-gal activity

and secretion of pro-inflammatory cytokines similar to

SASP (Bhat et al. 2012; Bitto et al. 2010; Evans et al.

2003) (Fig. 2). Due to the prominent role of astrocytes

in CNS homeostasis, CS of astrocytes will likely have

implications for impaired maintenance of the BBB,

regulation of CNS vasculature, neurotransmitter

uptake and many other critical CNS functions that

are known to decline with age (Sofroniew and Vinters

2010). Taken together, it appears that both neurons

and glia are subject to stress-induced CS as a function

of either accumulated DNA damage or oxidative

stress, both of which increase during CNS aging and in

neurodegenerative disease.

The concept of neuronal CS in response to accu-

mulating stress is emerging (Fig. 1). Moreover, it

seems that several phenotypes of aging neuronal cells

are similar to those observed in proliferative cells

(Fig. 2). It has also been suggested that neuronal

senescence could result from stress due to proteopa-

thies such as aggregates of Ab or misfolded proteins

such as a-synuclein (Golde and Miller 2009). Hence,

further research is needed to clarify the matter and

determine whether neuronal and glial senescence

could be a result of distinct molecular mechanisms

and if neuronal CS presents with a unique phenotype

that may contribute to age-related decline and

neurodegeneration.
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Do hallmarks of cellular senescence occur

in neurodegenerative disease?

Senescent cells are characterized by morphological

abnormalities, altered gene and protein expression,

changes in global methylation patterns and SAHF

(Carnero 2013; Salama et al. 2014; van Deursen

2014), but do similar abnormalities occur in neurode-

generative disease? Evidence for telomere shortening,

an established marker of cellular senescence, in the

CNS of aged individuals and AD and PD patients is

inconclusive (Eitan et al. 2014), which indicates that

RS is unlikely to play an important role in the etiology

of these diseases.

Interestingly, similar to senescent cells, increased

expression of p16 and p21 were observed in the CNS

during aging and in neurons of AD patient tissue (Luth

et al. 2000; McShea et al. 1997) (Table 1). However,

other cell cycle proteins like cyclin B, cyclin D and

PCNA that are not necessarily related to CS are also

elevated in neurons of patients with mild cognitive

impairment and AD (Yang et al. 2003). It is therefore

unknown if these alteration lead to CS or apoptosis

and, in that regard, it is interesting that Ab disrupts

signaling by PAK3, a kinase downstream of p21 that

mediates neuronal apoptosis and DNA synthesis

(McPhie et al. 2003). Inhibition of PAK3 signaling

results in disrupted dendritic morphology both in

primary hippocampal neurons and in vivo in APPswe

mice (Zhao et al. 2006). Curiously, in contrast to

senescent fibroblasts neurons in AD may exhibit

elevated levels of p16 and p21, and an increase in

DNA synthesis. This has contributed to the idea that

post-mitotic neurons aberrantly enter the cell cycle

due to DNA damage, which results in an endpoint of

programmed cell death (Kruman 2004; Kruman et al.

2004). Reduced DNA synthesis in senescent fibro-

blasts can be restored by blocking both p53 (Gire and

Wynford-Thomas 1998) and p21 (Ma et al. 1999). It is

possible that this divergence in DNA synthesis

phenotype in AD neurons expressing classical senes-

cence markers could be due to the unique post-mitotic

environment of neurons, but more thorough in vitro

and in vivo work will be required to answer this

question.

Another feature of both age-related neurological

disease and senescence is the expression of p38MAPK

and chronic inflammatory signaling. Expression of the

p38MAPK in fibroblasts was sufficient to induce

SASP by up-regulating NF-jB at the transcriptional

level (Freund et al. 2011). This induction of SASP may

be independent of DDR and other senescence-induc-

ing mechanisms because inhibition of p38MAPK is

sufficient to mitigate the response (Freund et al. 2011).

Activity of p38MAPK is increased in neurons of AD

patients with neurofibrillary tangles and precedes Ab
plaques in mouse models of AD (Pei et al. 2001;

Savage et al. 2002; Sun et al. 2003). Soluble APPa has

also been found to activate microglia in a p38-

dependent manner (Bodles and Barger 2005) and

histopathological studies have suggested a role for

dystrophic microglia in tau pathology (Streit et al.

2009), further supporting the notion of senescent cells

being implicated in AD pathogenesis. Interestingly,

p38MAPK hyper-phosphorylation or its inhibition

blocks Ab-induced inhibition of LTP (Li et al. 2003;

Wang et al. 2004). It is important to note, however,

that p38MAPK also plays a central role in immune

activation (Cuenda and Rousseau 2007) that is unre-

lated to CS and it is therefore difficult to conclude how

much of its observed activity in the CNS is due to CS.

Cytokines such as IL-6 that are characteristic of

SASP are found elevated in AD and PD patient tissue

and CSF (Bauer et al. 1991b; Blum-Degen et al. 1995;

Huell et al. 1995; Wood et al. 1993). Similarly,

elevation of IL-6 in the CNS is also observed in normal

aging and as a response to chronic psychological

stress, as seen for example in AD caregivers (Kiecolt-

Glaser et al. 2003). Interestingly, expression of IL-6 in

transgenic mice is sufficient to induce neurodegener-

ation (Campbell et al. 1993). At present it is not clear if

the cytokines are produced due to CS or other aspects

of disease etiology.

Interestingly, elevated levels of transforming

growth factor b (TGFb) mRNA have been observed

in AD patient brain tissue (Luterman et al. 2000).

TGFb released by astrocytes increases neuronal

expression of the complement protein c1q (Bialas

and Stevens 2013), which can mediate synapse

elimination (Stevens et al. 2007) and is known to

increase with age in the CNS (Stephan et al. 2013).

Hence, AD-related TGFb signaling could be a central

mechanism mediating synapse loss. TGFb signaling

has also been shown to induce senescence in vitro

(Acosta et al. 2013; Cipriano et al. 2011; Senturk et al.

2010). Furthermore, transgenic mice with elevated

astrocyte TGFb signaling show accelerated Ab plaque

deposition (Mattson et al. 1997; Wyss-Coray et al.
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1997), while in an AD mouse model in which TGFb
signaling was blocked, there was a reduction in Ab
pathology (Town et al. 2008). Taken together, these

data suggest a direct role for TGFb and other SASP-

related cytokines in both synaptic loss and

neurodegeneration.

In AD patient tissue compared to age-matched

control subjects a global decrease in euchromatin was

observed (Crapper et al. 1979), and another study

employed electron microscopy to provide evidence of

structural alterations in the nuclear envelope (Metuzals

et al. 1988). A more recent study found that tau induces

aberrant gene expression through ROS-mediated chro-

matin relaxation in both human AD patient tissue and

in tau transgenic Drosophila and mice (Frost et al.

2014). Methylation patterns in AD patient brain tissue

have been examined (see (Mattson 2003) for a review)

but have focused mostly on methylation status of

specific pathology-related genes rather than global

methylation patterns. One study found a global

decrease in methylation in entorhinal cortex tissue

from AD patients, and a decrease in the methylation

maintenance factors MBD2 and DNMT1 (Mastroeni

et al. 2010). How this global decrease in methylation

relates to the recent observation of senescence-induced

methylation ‘‘mesas’’ (H3K4me3 and H3K27me3, e.g.

methylation enriched regions) and ‘‘canyons’’

(H3K27me3, e.g. methylation-depleted regions) is

unclear, and more rigorous global methylation studies

need to be performed in tissue from relevant brain

regions of patients with AD or other neurodegenerative

disorders. It will also be important to establish changes

that occur in brain cells during normal aging.

Lysosomal dysfunction in senescent cells results in

two of the most utilized markers of senescence,

namely, the accumulation of senescence-associated

beta-galactosidase (SA b-gal) and lipofuscin (Carnero

2013). As noted above, increased b-gal activity was

observed in rat hippocampus during aging (Geng et al.

2010). Interestingly, most of the 40 different lyso-

somal storage diseases frequently result in neurode-

generation (see (Settembre et al. 2008) for a review).

Moreover, accumulation of autophagosomes has been

observed in several neurodegenerative diseases

including AD, PD, Huntington’s disease and amyo-

trophic lateral sclerosis (ALS) (Nixon 2013; Wong

and Cuervo 2010). In AD the accumulation of

autophagosomes appears to result from lysosomal

dysfunction and rather than an increase in autophagy

initiation (Lee et al. 2010). Ceramide has also been

shown to increase in senescent cells as well as aging

brain and brains of AD and ALS patients (Cutler and

Mattson 2001; Cutler et al. 2002; Haughey et al.

2010). More work is needed to elucidate the connec-

tion between ceramide, autophagy, apoptosis and CS

in brain cells.

Similar to the alterations observed in senescence,

cellular energy metabolism is perturbed in AD and PD

which manifests as altered mitochondrial function and

increased ROS production ((Demetrius and Driver

2013) see (Mattson et al. 1999) for a review). Evidence

from in vitro cybrid experiments in which native

mitochondria are replaced with AD and PD patient

mitochondria demonstrated enlarged mitochondria,

altered calcium homeostasis and reduced mitochon-

drial membrane potential as measured by JC-1 when

compared to cells populated with mitochondria from

age-matched controls (Sheehan et al. 1997a, b;

Trimmer et al. 2000). A more recent study examining

levels of mitochondrial fission and fusion proteins

found a reduction of mitochondrial fission proteins

(Drp1, Opa1, Mfn1, Mfn2) and an increase in the

fusion protein Fis1 (Wang et al. 2009). In PD

diminished mitochondrial function and increased

ROS clearly plays a role in pathology as familial PD

mutations such as DJ-1, PINK1 and Parkin1 directly

impact mitochondrial health and function, and envi-

ronmentally-induced PD is typically due to toxins that

act on mitochondria such as MPTP (see (Scarffe et al.

2014) for a review). It is possible that the altered

mitochondrial function and morphology found in AD

tissue and models could be a consequence of Ab
proteopathy (Mattson and Goodman 1995; Wang et al.

2009) or mutations in genes such as presenilin-1 (AD,

(Keller et al. 1998)) or DJ-1 (PD, (Wang et al. 2012))

rather than a consequence of neuronal or glial

senescence. While the etiology still needs further

investigation, it is clear that brain cells in both AD and

PD share similar mitochondrial phenotypes to periph-

eral senescent cells including altered mitochondrial

morphology and enhanced ROS production (Fig. 3).

Conclusions

Hitherto, limited evidence exists on whether post-

mitotic neurons can enter into a senescent state. The

potential role of neuronal and glial senescence in
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neurodegenerative disease is similarly underexplored.

However, evidence is beginning to emerge. In both

AD and PD there is evidence for several CS hallmarks

including: aberrant expression of cell cycle proteins

(Luth et al. 2000), nuclear abnormalities (Metuzals

et al. 1988), lysosomal and autophagic dysfunction

(Nixon 2013), impaired mitochondrial function that

leads to enhanced ROS generation (Mattson et al.

1999), and production of pro-inflammatory cytokines

such as IL-6 (Wood et al. 1993). While it is still

possible that this collection of senescent-like pheno-

types found in CNS cell populations of aging, AD and

PD brains could all be due to unique aspects of disease

etiology, it is suggestive that CS does indeed take

place in the CNS during normal aging as well as in

age-related disease. Currently, it is not clear whether

the observed senescent-like phenotypes occur in

NSCs, glial cells, neurons, or all of these cell types.

It seems likely that CS in the CNS is predominantly of

the SISP type as even glia cells are not highly

proliferative compared to peripheral cells that undergo

RS. The potential stress origin of CNS CS may also

explain the increase in hallmarks observed during

neurodegenerative disease. The recent discovery, that

senescence is not solely an age-related process but in

addition a developmental mechanism for clearance of

unnecessary cells and recruiting an immune response

re-frames the process of CS (Munoz-Espin et al. 2013;

Storer et al. 2013). In this regard it may be viewed as a

signal for recruiting blood-borne immune cells ((Sch-

wartz and Shechter 2010) for a review), which can

exert either beneficial or devastating effects during

neurodegenerative diseases. In addition, CNS senes-

cence could be a downstream feature activated as a

result of proteopathy-inducing genetic factors or

environmental insults that occur with aging and not

necessarily a causal force in neurodegeneration.

Finally, the possibility that CS in brain aging and

neurodegenerative disorders represents an adaptive

response should be investigated.

In summary, CS is characterized by more than just

cell cycle arrest serving as a tumor suppressor

mechanism. Emerging evidence indicates that CS

take place in the aging brain, and probably even in

post-mitotic neurons. Current evidence indicates that

at least several of the neuronal senescent phenotypes

are similar to those observed in proliferative cells,

while others, like calcium homeostasis may be neuron-

specific. The contribution of CS to brain aging and

age-related neurodegenerative disease is still not clear.

Further investigation of senescence markers in the

aging brain and in tissue samples from patients

suffering from neurodegenerative diseases can eluci-

date the type of CS cells of the CNS undergo and the

underlying mechanisms, and may help assess the

contribution of senescence to disease etiology.

Future directions

Our review of the literature has revealed that only

indirect evidence exists to suggest the possibility of

CS in post-mitotic cells such as neurons. We feel that

experiments addressing four critical questions will

shed light on the contribution of CS to CNS aging and

neurodegenerative disease:

Does inhibiting cellular senescence in the brain in

either neuronal or glial populations attenuate age-

related cognitive decline and progression of

neurodegeneration?

Conversely, does artificially inducing senescence in

either neuronal or glial populations produce enhanced

cognitive decline and accelerated neurodegeneration?

Are the common phenotypes observed in both

classical CS and neurodegenerative disease represen-

tative of a common mechanism of senescence or

simply indicators of cellular stress and dysfunction?

What is the occurrence of neuronal senescence

in vivo under normal cognitive aging and in neuro-

logical disease?

Recent developments have now enabled research-

ers to answer these critical questions. Progress in

single cell analysis techniques now enables research-

ers to examine neuronal populations expressing SAb-

gal using techniques like single-cell PCR to determine

similarities between neuronal senescence and senes-

cence in mitotic populations. A more thorough

understanding of the mechanisms involved in CNS

senescence will be critical to understanding the

contribution of CS to age-related neurodegenerative

disease. Such work will contribute to understanding of

age-related cognitive decline and could help in the

development of novel therapeutic interventions in age-

related neurodegenerative disease.
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