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Abstract
Externalizing behaviors encompass manifestations of risk-taking, self-regulation, aggression, sensation-/reward-seeking, and 
impulsivity. Externalizing research often includes substance use (SUB), substance use disorder (SUD), and other (non-SUB/
SUD) “behavioral disinhibition” (BD) traits. Genome-wide and twin research have pointed to overlapping genetic architecture 
within and across SUB, SUD, and BD. We created single-factor measurement models—each describing SUB, SUD, or BD 
traits—based on mutually exclusive sets of European ancestry genome-wide association study (GWAS) statistics exploring 
externalizing variables. We then assessed the partitioning of genetic covariance among the three facets using correlated 
factors models and Cholesky decomposition. Even when the residuals for indicators relating to the same substance were 
correlated across the SUB and SUD factors, the two factors yielded a large correlation  (rg = 0.803). BD correlated strongly 
with the SUD  (rg = 0.774) and SUB  (rg = 0.778) factors. In our initial decompositions, 33% of total BD variance remained 
after partialing out SUD and SUB. The majority of covariance between BD and SUB and between BD and SUD was shared 
across all factors, and, within these models, only a small fraction of the total variation in BD operated via an independent 
pathway with SUD or SUB outside of the other factor. When only nicotine/tobacco, cannabis, and alcohol were included 
for the SUB/SUD factors, their correlation increased to  rg = 0.861; in corresponding decompositions, BD-specific variance 
decreased to 27%. Further research can better elucidate the properties of BD-specific variation by exploring its genetic/
molecular correlates.
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Introduction

Background

Behavioral researchers have traditionally placed phenotypes 
that relate to risk-taking, lack of self-regulation, aggression, 
and/or impulsivity on the “externalizing” psychopathology 
spectrum. Related behaviors that exemplify sensation- or 
reward-seeking without meeting diagnostic psychopathology 
criteria have likewise been grouped under the externalizing 
framework (Karlsson Linnér et al. 2021). Studies that probe 
externalizing often consider substance use disorders (SUDs), 
which are characterized by obsessive/compulsive sub-
stance use-seeking and -intake patterns, negative emotional 
responses to cessation of the substance (Koob and Volkow 
2016), and other related symptoms (Krueger et al. 2005; 
Kendler and Myers 2014). However, substance consumption 
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behaviors not associated with these life-complicating fac-
tors (i.e., substance initiation and intake quantity/frequency; 
hereafter, SUB), have also been considered in externaliz-
ing research (Karlsson Linnér et al. 2021). Externalizing 
behavior additionally encompasses a combination of several 
pathological and non-pathological traits—i.e., risk tolerance, 
number of sexual partners, age at first sex (Karlsson Linnér 
et al. 2021), antisocial personality disorder, and conduct dis-
order (Krueger et al. 2005; Kendler and Myers 2014)—that 
do not directly measure substance use or substance use dis-
orders, sometimes referred to as “behavioral disinhibition” 
(BD) (Poore et al. 2023).

Genome-wide association studies (GWAS) and twin studies 
have shown traits and latent constructs related to SUB, SUD, 
and BD to be genetically correlated, suggesting that these 
constructs have overlapping genetic architectures (Kendler and 
Myers 2014; Karlsson Linnér et al. 2021; Poore et al. 2023). 
There is evidence for “general” genetic liability underlying SUD 
and for additional genetic liability specific to certain individual 
SUDs (Hatoum et al. 2022). Though SUDs examined in large 
GWAS are, unsurprisingly, usually genetically correlated with 
use measures for the corresponding substance, the degree of 
genetic overlap varies across substances. For example, while the 
point estimate of the genetic correlation between the Fagerström 
Test for Nicotine Dependence (FTND) and number of cigarettes 
smoked per day is around unity  (rg = 0.97, s.e. = 0.12) (Hatoum 
et al. 2022), the correlation between cannabis use and cannabis 
use disorder is lower, at  rg = 0.50 (s.e. = 0.05) (Johnson et al. 
2020). Meanwhile, the literature on genome-wide correlations 
between drinking quantity/frequency and problem drinking 
behavior(s) paints a more complex picture, having yielded 
point estimates that vary enormously depending on the alcohol 
behavior metrics, cohorts, sample size, statistical methodology, 
genetic ancestry group, and degree of trait heterogeneity being 
examined (Sanchez-Roige et al. 2019b; Mallard et al. 2022; 
White and Bierut 2023; Kember et  al. 2023). In addition 
to twin and family studies that have explored the genetics of 
externalizing based on phenotypic resemblance among relatives, 
a 2021 multivariate analysis estimated a general genomic 
externalizing factor using summary association data from seven 
high-powered GWAS (Karlsson Linnér et al. 2021), a design 
that evaluates the relationship between measured genotypes and 
a phenotype of interest. Of these seven GWAS, one examined 
alcohol use disorder, two examined non-pathological substance 
use traits (cannabis initiation and smoking initiation), and 
four examined traits that could be classified as forms of BD 
(age at first sex, number of sexual partners, attention-deficit/
hyperactivity disorder, and risk tolerance); a more recent 
externalizing factor(s) publication included additional SUD 
constructs (Poore et al. 2023). The 2021 study identified 579 
independent genomic loci associated with general externalizing. 
Factor-level analysis of general genomic SUD liability (Hatoum 
et al. 2023) yielded a substantially narrower set of associated 

genome-wide significant loci than did the seven-indicator 
externalizing factor (though the externalizing factor was likely 
better-powered).

Because externalizing encompasses a multidimensional 
umbrella of behaviors, a sophisticated understanding of its 
genetic architecture may require a closer examination of its 
substructures. Further research is required to determine the 
extent to which genomic variation associated with facets of 
externalizing overlaps and the extent to which it operates 
through independent pathways. The current paper will address 
this topic by filling two gaps in the literature. First, there is 
strong theoretical and empirical motivation behind exploring 
a delineation between subthreshold and above-threshold 
manifestations of pathologically-implicated constructs. One 
recent genetic analysis found evidence that utilizing separate 
factors for internalizing psychopathology and internalizing-
related traits improved model fit (Gustavson et  al. 2024). 
There has also been some investigation into the propensity of 
genetic loci to predict differences between pathological use, 
non-pathological use, and/or abstinence for some specific/
single substances (Sanchez-Roige et al. 2019b; Polimanti et al. 
2020; Mallard et al. 2022; Kember et al. 2023). However, few 
publications in the genome-wide space have explored how 
common liability underlying normative use/non-use across 
substances may differ from common liability underlying 
pathological substance use across substances. Second, little 
is known about potential genome-wide pathways relating to 
externalizing domains like risk-taking, excitement-seeking, 
attention, and reward processing outside the purview of drug 
use.

Broad analysis plan

We will use genome-wide association data and Genomic 
Structural Equation Modeling software (Grotzinger et al. 2019) 
to 1) estimate genetic correlations between externalizing traits, 
2) construct a genomically-informed latent factor underlying 
SUB, 3) measure the covariance between SUB and validated 
BD and SUD factors, and 4) decompose the shared and unshared 
genetic variance across the three factors via hierarchical 
trivariate Cholesky models; here, we will particularly focus on 
how SUD and SUB may differentially relate to BD. The findings 
from these analyses will shed light on whether phenotypic 
subcategories of externalizing behavior constitute separable 
genomic entities.
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Material and methods

Description of genomic structural equation 
modeling

In accordance with our preregistered plan (https:// osf. io/ 
fjy5h), we used the software Genomic Structural Equation 
Modeling (Genomic SEM) (Grotzinger et al. 2019) to model the 
genomic factor-level structure of general and domain-specific 
externalizing. Genomic SEM leverages LD Score regression 
(LDSC) (Bulik-Sullivan et al. 2015b), lavaan (Rosseel et al. 
2023), and GWAS summary statistics to fit confirmatory models 
based on genetic (rather than phenotypic) correlations.

In the first stage of Genomic SEM, LDSC creates an 
empirical genetic covariance matrix (the S matrix) and an 
associated sampling covariance matrix (the VS matrix). 
The unstandardized S matrix contains single nucleotide 
polymorphism (SNP) heritabilities—the proportion of 
phenotypic variance that can be statistically explained by 
SNPs—of each phenotype on the diagonals and genetic 
covariances between each phenotype on the off-diagonals. 
Meanwhile, the VS matrix is a sampling covariance matrix 
used to account for study sample overlap among the source 
GWAS summary statistics. In the second stage, Genomic 
SEM fits a user-specified structural equation model, 
estimating factor loadings and correlation parameters that 
minimize discrepancy between the model-implied genetic 
covariance matrix and the empirical covariance matrix.

Measures

We began by defining three lower-order general factors (the 
measurement models): Behavioral Disinhibition (BD), (non-
pathological) substance use (SUB), and Substance Use Disorder 
(SUD)—each representing a dimension of externalizing 
and each comprising mutually exclusive groups of reflective 
indicators—with the intention of investigating how SUB and 
SUD may relate to BD differently. Per our pre-registration, we 
only included GWAS for traits with sample sizes of at least 
10,000 and SNP heritability (h2

SNP) Z-statistics > 4 (Bulik-
Sullivan et al. 2015a). For traits that were meta-analyzed but 
whose meta-analyzed association statistics were not available, 
we ran inverse-variance weighted meta-analysis ourselves in 
METAL (Willer et al. 2010). All samples were comprised of 
individuals of European ancestry, as different genetic ancestry 
groups may have different patterns of linkage disequilibrium and 
allele frequencies (Peterson et al. 2019) and analyses looking at 
non-European ancestry groups are under-powered for some of 
the indicators of interest. Table 1 displays a summary of the four 
GWAS used for the BD factor, the four GWAS used for the SUD 

factor, and the seven pre-registered GWAS initially explored for 
the SUB factor.

BD factor

The lower-order BD factor utilized the four (non-substance-
associated) BD indicators established in Poore et al. (2023):

• Attention-deficit/hyperactivity disorder (ADHD) 
(Effective N = 141,035; h

2
SNP

s.e.(h2SNP)
 = 21.12), as defined 

by the International Classification of Diseases (ICD)-10 
(with some samples taken from an inpatient or outpatient 
psychiatric setting), or prescription for an ADHD medi-
cation, depending on the cohort; ADHD for the Psychi-
atric Genomics Consortium was diagnosed using multi-
ple different measures (case/control) (Demontis et al. 
2023).

• Number of lifetime sexual partners (NSEX) 
(N = 370,711; h

2
SNP

s.e.(h2SNP)
= 28.77) (Karlsson Linnér et al. 

2019).
• Age at first sexual intercourse (FSEX) (reverse-coded) 

(N = 397,338; h
2
SNP

s.e.(h2SNP)
 = 31.96) (Mills et al. 2021).

• General risk tolerance (RISK) (Effective N = 268,876; 
h
2
SNP

s.e.(h2SNP)
 = 22.17), which was based on several items 

that varied depending on the cohort and that were similar 
to the question: “Would you describe yourself as some-
one who takes risks?” (Karlsson Linnér et al. 2019).

SUD factor

The lower-order SUD factor described the indicators in 
Hatoum et al. (2022) and Hatoum et al. (2023) (with the 
exception of cigarettes per day, which we instead explored 
as a potential SUB Factor indicator):

• Problem tobacco use (PTU) (N = 15,988; h
2
SNP

s.e.(h2SNP)
 = 

4.22), based on the Fagerström Test for Nicotine Depend-
ence (FTND) in ever-smokers. Unlike in the Hatoum 
et al. study, we only used the FTND—which is used to 
determine degree of nicotine dependence (mild, moder-
ate, or severe)—as a measure of PTU and did not inte-
grate cigarettes per day into the indicator. We also had a 
smaller sample size for the FTND GWAS because of data 
sharing restrictions (Hancock et al. 2018).

• Problem alcohol use (PAU) (Effective N = 300,790; 
h
2
SNP

s.e.(h2SNP)
 = 18.47), defined by alcohol dependence in 

the fourth edition of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-IV) or alcohol use 
disorder, as determined by the Alcohol Use Disorders 

https://osf.io/fjy5h
https://osf.io/fjy5h


389Behavior Genetics (2024) 54:386–397 

Identification Test problem items (AUDIT-P), a con-
tinuous metric, or by the ICD-9 or -10, depending on 
the cohort (Zhou et al. 2020b).

• Cannabis use disorder (CUD) (Effective N = 47,953; 
h
2
SNP

s.e.(h2SNP)
 = 10.71), defined by cannabis abuse or 

dependence according to the DSM-III or DSM-IV, 
cannabis abuse or dependence according to the ICD-
10, or cannabis use disorder according to the DSM-5, 
depending on the cohort (case vs. exposed or 
unexposed control) (Johnson et al. 2020).

• Opioid use disorder (OUD) (Effective N = 32,703; 
h
2
SNP

s.e.(h2SNP)
 = 6.14), defined by at least one inpatient or 

two outpatient ICD-9 or ICD-10 codes, or by opioid 
dependence, as defined by the DSM-IV, depending on 
the cohort (case vs. exposed control) (Zhou et  al. 
2020a).

SUB factor

We initially explored a total of seven pre-registered 
non-pathological substance use measures (presented in 
Table 1), three of which were not ultimately included (see 
the Supplementary Note and the Lower-order BD, SUD, 
and SUB factors Section). Thus, the lower-order SUB 
factor was based around four indicators:

• Lifetime cannabis initiation (CI) (Effective 
N = 144,699; h

2
SNP

s.e.(h2SNP)
 = 15.96), which was based on 

several items that varied depending on the cohort. For 
example: “Have you ever in your life used the 
following: Marijuana?”; “Have you taken CANNABIS 
(marijuana, grass, hash, ganja, blow, draw, skunk, 
weed, spliff, dope), even if it was a long time ago?” 
(Pasman et al. 2018).

Table 1  Summary data and data sources for the four behavioral disinhibition traits, four substance use disorder traits, and seven pre-registered 
substance use traits initially considered for the substance use factor

N = raw sample size used
Note that, in some cases, sample sizes in publicly available data are lower than total sample size reported in the corresponding publication(s) or 
in the table because of data sharing restrictions on some cohorts
Neff = effective sample size (for dichotomous traits), as provided in the summary statistics or calculated with respect to prevalence and sample 
size across cohorts
h2

SNP = the proportion of trait variation in the sample(s) accounted for by variation in single nucleotide polymorphisms (SNPs)
See the BD factor, SUD factor, and SUB factor Sections for further descriptions of phenotypes
ADHD Attention-deficit hyperactivity disorder, NSEX number of lifetime sexual partners, FSEX  age at first sexual intercourse (reverse-coded), 
RISK  general risk tolerance, PTU problem tobacco use, PAU  problem alcohol use, CUD cannabis use disorder, OUD  opioid use disorder, 
CI  cannabis initiation, SI  smoking initiation, DPW  drinks per week, DRUG   drug experimentation (the number of different classes of drugs an 
individual has used out of eleven), CPD  cigarettes per day, DS drinking status (drinker vs. non-drinker), FREQ  drinking frequency

Trait N Neff h2
SNP/s.e.(h2

SNP) Summary statistics source

ADHD 225,534 141,035.20 21.12 https:// figsh are. com/ artic les/ datas et/ adhd2 022/ 22564 390
NSEX 370,711 N/A 28.77 https:// thess gac. com/ papers/ 2/5
FSEX 397,338 N/A 31.96 http:// ftp. ebi. ac. uk/ pub/ datab ases/ gwas/ summa ry_ stati stics/ GCST9 00000 01- GCST9 

00010 00/ GCST9 00000 47/
RISK 466,571 268,876 22.17 https:// thess gac. com/ papers/ 2/1
PTU 15,988 N/A 4.22 https:// ftp- ncbi- nlm- nih- gov. color ado. idm. oclc. org/ dbgap/ studi es/ phs00 1532/ analy ses/
PAU 435,563 300,789.60 18.47 https:// figsh are. com/ artic les/ datas et/ sud20 19- alcuse/ 14672 193

https:// figsh are. com/ artic les/ datas et/ sud20 18- alc/ 14672 187
https:// www. ncbi. nlm. nih. gov/ proje cts/ gap/ cgi- bin/ study. cgi? study_ id= phs00 1672. v1. p1

CUD 357,806 47,952.51 10.71 https:// figsh are. com/ artic les/ datas et/ sud20 20- cud/ 14842 692
OUD 82,707 32,703.49 6.14 https:// figsh are. com/ artic les/ datas et/ sud20 20- op/ 14672 211
CI 184,765 144,698.95 15.96 Available Upon Request
SI  ~ 1,300,000 1,363,137.10 29.93 https:// conse rvancy. umn. edu/ handle/ 11299/ 241912
DPW  ~ 1,070,917 N/A 21.32 https:// conse rvancy. umn. edu/ handle/ 11299/ 241912
DRUG 22,572 N/A 4.69 N/A
CPD  ~ 360,808 N/A 20.16 https:// conse rvancy. umn. edu/ handle/ 11299/ 241912
DS 398,853 376,693.97 21.22 N/A
FREQ 462,016 N/A 19.98 Available upon request

https://figshare.com/articles/dataset/adhd2022/22564390
https://thessgac.com/papers/2/5
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90000001-GCST90001000/GCST90000047/
http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90000001-GCST90001000/GCST90000047/
https://thessgac.com/papers/2/1
https://ftp-ncbi-nlm-nih-gov.colorado.idm.oclc.org/dbgap/studies/phs001532/analyses/
https://figshare.com/articles/dataset/sud2019-alcuse/14672193
https://figshare.com/articles/dataset/sud2018-alc/14672187
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v1.p1
https://figshare.com/articles/dataset/sud2020-cud/14842692
https://figshare.com/articles/dataset/sud2020-op/14672211
https://conservancy.umn.edu/handle/11299/241912
https://conservancy.umn.edu/handle/11299/241912
https://conservancy.umn.edu/handle/11299/241912
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• Smoking initiation (SI) (Effective N = 1,363,137; 
h
2
SNP

s.e.(h2SNP)
 = 29.93), as defined by having ever or never 

been a regular smoker, or having ever smoked 100 or 
more cigarettes in one’s lifetime, depending on the cohort 
(Liu et al. 2019; Saunders et al. 2022).

• Drinks per week (DPW) (N≈1,070,917; h
2
SNP

s.e.(h2SNP)
 = 

21.32) (Liu et al. 2019; Saunders et al. 2022).
• Drug experimentation (DRUG) (N = 22,572; h

2
SNP

s.e.(h2SNP)
 

= 4.69), the number of different classes of drugs an indi-
vidual has used out of eleven (Sanchez-Roige et  al. 
2019a).

Preparation of summary statistics for Genomic SEM

We formatted downloaded summary data from relevant 
GWAS using Genomic SEM’s munge() function. We filtered 
summary statistics for SNPs available in the reference data-
set, HapMap3, and further restricted to SNPs with a mini-
mum minor allele frequency (MAF) of 0.01 and a minimum 
imputation quality (INFO) score of 0.90 (except for opioid 
use disorder, for which we used a minimum INFO threshold 
of 0.70) (Hatoum et al. 2022, 2023; Poore et al. 2023). Addi-
tionally, for each dichotomous trait, we used cohort-specific 

prevalence rates to calculate the sum of effective sample 
sizes (N); effective N corresponds to the N for a GWAS with 
equal power to that of the cohort’s raw sample size in a 1:1 
case:control cohort design and is calculated as 4vk(1 − vk)nk, 
where v is equivalent to cohort-specific prevalence and n is 
equivalent to the cohort’s raw sample size (Grotzinger et al. 
2023). Thus, effective N corrects for ascertainment in studies 
that disproportionately sample for cases. Using the ldsc() 
function, we then calculated pairwise genetic covariances 
for all traits using the 1000 Genomes Phase 3 European 
ancestry linkage disequilibrium (LD) scores as a reference 
(The 1000 Genomes Project Consortium 2015 2022, 2023). 
Figure 1 shows the unstandardized genetic covariances (in 
the lower triangle) and genetic correlations (in the upper 
triangle) among the twelve traits we included in our main 
models, along with SNP-based heritabilities on the diago-
nal. An expanded genetic covariance/correlation matrix that 
additionally includes the pre-registered SUB indicators that 
were excluded from the final models is shown in Supple-
mentary Fig. 1.

Factor analysis

Next, we used Genomic SEM to specify the three external-
izing factors (SUD, SUB, and BD) as lower-order factors 

Fig. 1  The genetic covariance/
correlation matrix depicting 
unstandardized genetic covari-
ances (in the lower left triangle) 
and genetic correlations (in the 
upper right triangle) for the 
twelve externalizing traits used 
in the main models. Diagonals 
show the SNP (single nucleo-
tide polymorphism)-based 
heritabilities. CI  Cannabis 
initiation, SI  smoking initiation, 
DRUG   drug experimentation 
(the number of different classes 
of drugs an individual has used 
out of eleven), DPW  drinks per 
week, FSEX  age at first sexual 
intercourse (reverse-coded), 
ADHD  attention-deficit hyper-
activity disorder, NSEX  number 
of lifetime sexual partners, 
RISK  general risk tolerance, 
OUD  opioid use disorder, 
CUD  cannabis use disorder, 
PAU  problem alcohol use, 
PTU  problem tobacco use
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in the ensuing structural models. In order to extract influ-
ences of within-substance intercorrelations, we correlated 
the residuals of PTU and SI, CUD and CI, and PAU and 
DPW across the SUD and SUB factors. We constructed a 
correlated factors model including all three factors. Then, we 
integrated the lower-order factors into a hierarchical trivari-
ate Cholesky decomposition framework. The orthogonal 
higher-order latent factors in the Cholesky decomposition 
completely broke down the genetic variance and covariance 
among the three lower-order latent factors into shared and 
independent sources of variance (Demange et al. 2021). The 
leftmost higher-order factor captured all genetic variance of 
the leftmost lower-order factor as well as its shared variance 
with the other lower-order factors. The middle higher-order 
factor captured all of the leftover genetic variance for the 
middle lower-order factor and its shared variance with the 
rightmost lower-order factor. Finally, the rightmost higher-
order factor captured the genetic variance unique (in the 
model) to the rightmost lower-order factor. Model 1 had the 
following order of lower-order factors, from left-to-right: 
SUD, SUB, BD; and Model 2 had the order: SUB, SUD, BD. 
Thus, both models had BD in the final lower-order factor 
position. We utilized the usermodel() function in Genomic 
SEM to run both models using diagonally weighted least 
squares (DWLS) estimation. We scaled the higher-order fac-
tors using unit variance identification.

Model notation

In the model descriptions, the letters in the factors’ subscripts 
denote the model number, where a corresponds to Model 
1 and b corresponds to Model 2 in the two models that 
followed the pre-registered plan (additionally, c corresponds 
to Modified Model 1 and d to Modified Model 2 in the post-
hoc models; see below). Meanwhile, the numerals in the 
factors’ subscripts denote the level of the factor, where 1 
denotes higher-order and 0 denotes lower-order.

Description of fit metrics

Though not the primary metric of interest for the 
decompositions, we assessed model fit for the measurement 
models, the main correlated factor models, and the 
main Cholesky decompositions using three indices: the 
comparative fit index (CFI), the Akaike Information 
Criterion (AIC), and the Standardized Root Mean Square 
Residual (SRMR). In Genomic SEM, the CFI measures the 
improvement in fit of the specified model compared to a 
model that estimates heritability of phenotypes but assumes 
no genetic covariances between them. The AIC is a relative 
fit index that balances fit with parsimony, incorporating �2 
and the number of free parameters in the model. The SRMR, 
an index of approximate model fit, is the standardized root 

mean square difference between the model-implied and 
observed correlation matrices. CFI values, which can range 
from 0–1, are considered acceptable at 0.90 or greater and 
good if at least 0.95. Models with an SRMR under 0.10 
suggest acceptable fit, while an SRMR under 0.05 indicates 
good fit. Similarly, lower AIC’s indicate better fit.

Results

Lower‑order BD, SUD, and SUB factors

As expected, the measurement models for the BD and 
SUD latent constructs had good model fit (CFI = 0.949, 
SRMR = 0.065, AIC = 181.793; CFI = 1.000, SRMR = 0.013, 
AIC = 16.277, respectively; Supplementary Tables S1, S2). 
We tested a series of models for our SUB factor (described 
further in the Supplementary Note; the associated param-
eters for these models are displayed in Supplementary 
Tables S3–S7). Our final four-indicator SUB measurement 
model (see Supplementary Table S7 and SUB Factor Sec-
tion) satisfied our pre-registered criteria and achieved good 
model fit (CFI = 0.994, SRMR = 0.063, AIC = 26.145). Sup-
plementary Fig. 2A–C how the measurement models for the 
BD, SUD, and SUB factors separately with their standard-
ized loadings. The SUD and SUB factors each yielded one 
standardized loading (for OUD and DRUG, respectively) 
that was slightly greater than 1.00. However, these load-
ings dropped below 1.00 when the three latent factors were 
allowed to correlate with one another (Fig. 2) and when they 
were integrated into the Cholesky models (Supplementary 
Fig. 3A and B).

Correlated factors

Before performing Cholesky decomposition, we fit a corre-
lated factors model, which showed substantial genetic cor-
relations between the SUD factor, the BD factor, and the 
SUB factor (Fig. 2). The correlated factors model showed 
decent fit (CFI = 0.921, SRMR = 0.106, AIC = 1638.065). 
All indicators were associated with significant moderate-to-
high loadings, ranging from a standardized loading of 0.367 
(s.e. = 0.022) for DPW to a standardized loading of 0.961 
(s.e. = 0.039) for CUD. The SUB factor correlated with 
SUD at  rg = 0.803 (s.e. = 0.027) and with BD at  rg = 0.778 
(s.e. = 0.016), and the latter two correlated at  rg = 0.774 
(s.e. = 0.027). Of the residual correlations, only the correla-
tion between DPW’s and PAU’s error terms was significant 
(at  rg = 0.666, p = 1.066e-34). Thus, cross-factor associations 
for the same substance were unlikely to have been a primary 
driver of the inter-factor correlations. Rather, the variance 
captured in the latent SUD and SUB factors likely reflected 
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common genomic variation across substance classes. The 
full parameter output for the three correlated factors model 
is in Supplementary Table S8.

Though our paper’s goals centered around a trivari-
ate structure, we also compared the fit of the three cor-
related factors model to that of a single, twelve-indica-
tor common factor solution and to that of a two-factor 
model with a correlated BD factor and a SUB/SUD fac-
tor that combined indicators from the SUB and SUD fac-
tors, where both the common factor and two-factor mod-
els retained the same residual correlations used for the 
original correlated factors model. Both the common fac-
tor and two factor models fit significantly worse than the 
three factor model ( Δ𝜒2(3) = 782.467, p < 0.001 and 
Δ𝜒2(2) = 217.306, p < 0.001 , respectively). Still, it is 

important to note that the chi-squared statistic is highly 
sensitive to small differences in Genomic SEM due to the 
well-powered nature of the GWAS used as input (Grotzinger 
et al. 2019). The full parameter output for the common fac-
tor model (CFI = 0.881, SRMR = 0.121, AIC = 2414.532) 
is in Supplementary Table S9, and the full parameter out-
put for the two factor model (CFI = 0.910, SRMR = 0.115, 
AIC = 1851.371) is in Supplementary Table S10.

Cholesky decomposition

Models 1 and 2, the main Cholesky decompositions, are 
depicted in Supplementary Fig. 3A and B, respectively, 
along with loadings standardized with respect to the full 
model, including endogenous latent factors. Model 1 

Fig. 2  A standardized correlated factors depiction of the three lower-
order externalizing common factors depicted in the measurement 
models. In order to ensure that within-substance, cross-factor inter-
correlations were not the primary drivers of the relationship between 
the factors, we correlated the residuals of PTU and SI, CUD and 
CI, and PAU and DPW across SUD and SUB.  SUBG0 is the lower-
order Substance Use factor,  SUDG0 is the lower-order Substance Use 
Disorder factor, and  BDG0 is the lower-order Behavioral Disinhibi-
tion factor. Each factor describes four indicators, the latter of which 
are defined by the summary results from genome-wide association 
studies for the trait in question. The g subscripts denote genomic 
variance. In addition to  SUBG0,  SUDG0, and  BDG0, the single trait 

indicators are represented as latent factors to demonstrate that their 
genomic properties are not directly observed. CI  Cannabis initia-
tion, SI  smoking initiation, DRUG   drug experimentation (the number 
of different classes of drugs an individual has used out of eleven), 
DPW  drinks per week, FSEX  age at first sexual intercourse (reverse-
coded), ADHD  attention-deficit hyperactivity disorder, NSEX  number 
of lifetime sexual partners, RISK  general risk tolerance, OUD  opioid 
use disorder, CUD  cannabis use disorder, PAU  problem alcohol use, 
PTU  problem tobacco use. *p < .05. Standard errors are in parenthe-
ses, and dotted paths denote non-significance
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sought to capture the proportion of BD variance explained 
by a higher-order construction of SUD, as well as genetic 
covariance specific to lower-order SUB and lower-order 
BD independent of lower-order SUD. In Model 1, the first-
position higher-order factor  (SUDG1a) captured all of the 
variance in the (left-most) lower-order SUD factor  (SUDG0a) 
and also captured covariance between  SUDG0a and the other 
lower-order factors in the model  (SUBG0a and  BDG0a) as well 
as covariance between the latter two that was shared with 
 SUDG0a variance.  SUBResG1a accounted for the remaining 
 SUBG0a factor variation and, by virtue of its partialing out 
covariance shared with SUD, also captured the independent 
influence of (non-pathological) substance-related indicators 
on  BDG0a in the model. Finally,  BDResG1a captured the 
BD-specific variation remaining after both pathological 
and non-pathological substance use were accounted for. In 
Model 2, the higher-order substance use factor  (SUBG1b) 
was the left-most factor such that  SUBG1b captured all 
of the variation in the corresponding lower-order factor 
 (SUBG0b), while residual higher-order substance use disorder 
 (SUDResG1b) was in the middle position.

Partitioning of variance

The full parameter output for Models 1 and 2 (CFI = 0.921, 
SRMR = 0.106, AIC = 1638.066 for both models) are 
in Supplementary Tables S11 and S12, respectively. In 
Model 1, 64% of  SUBG0a and 60% of  BDG0a were shared 
with the higher-order  SUDG1a factor. Genetic variance 
associated with substance use but not substance use 
disorder  (SUBResG1a) explained only 7% of the total genetic 
variance in  BDG0a. Approximately 33% of  BDG0a was not 
explained by either  SUDG1a or  SUBResG1a and was therefore 
BD-specific. Additionally, 20% of the genetic covariance 
between  SUBG0a and  BDG0a was independent of  SUDG1a. 
In Model 2,  SUBG1b explained 64% of  SUDG0b and 61% 
of  BDG0b, while  SUDResG1b accounted for 6% of  BDG0b 
variance. As in Model 1, 33% of  BDG0b was BD-specific. 
Finally, 19% of the genetic covariance between  SUDG0b and 
 BDG0b in Model 2 was independent of  SUBG1b.

Post‑hoc models

Because the polysubstance use indicator (DRUG) in our 
SUB factor did not have a corresponding polysubstance 
indicator in the SUD factor and because the OUD indi-
cator for SUD did not have a corresponding recreational 
opioid use indicator for SUB, we also tested a post-hoc 
iteration of our correlated factors and two initial Cholesky 
models that dropped the DRUG and OUD indicators. It is 
also important to note that, because of their relatively low 
sample sizes and high loadings, it is possible that these 

indicators—particularly DRUG, with a standardized loading 
of 0.935 (and a large standard error (0.066) in the original 
correlated factors model)—disproportionately influenced 
their respective factors.

In a correlated factors model, there was a somewhat 
higher correlation between the modified SUD and modified 
SUB factors  (rg = 0.861, s.e. = 0.033). The point estimate 
of the correlation between BD and the modified SUD 
factor,  rg = 0.849 (s.e. = 0.035), was higher than that of 
the correlation between BD and the modified SUB factor 
 (rg = 0.773, s.e. = 0.017) (see Supplementary Fig. 4 and 
Supplementary Table S13). As a result, Model 1 and Model 
2 with the Modified SUB and SUD factors, when compared 
to the original models, yielded somewhat less BD-specific 
variance (27% of total BD; see Supplementary Figs. 5A and 
5B and Supplementary Tables S14 and S15 for depictions 
and full parameter outputs pertaining to Modified Models 
1 and 2). Additionally, Modified Model 1 produced a non-
significant cross-loading (p = 0.383) of  BDG0c on  MOD_
SUBResG1c. Thus, in this model, effectively all of the 
covariance between  MOD_SUBG0c and  BDG0c was shared 
with  MOD_SUDG0c. The correlation between SUB and 
modified SUD was 0.880 (s.e. = 0.033) and the correlation 
between SUD and modified SUB was 0.788 (se = 0.028). 
Thus, modifying SUB alone produced a factor structure that 
was closer to that observed in the original correlated factors 
model and modifying SUD alone produced a structure that 
more closely resembled the fully modified correlated factors 
model.

When we dropped the residual correlations from the 
original correlated factors model, the correlation between 
SUB and SUD increased somewhat (from 0.803 up to 
0.852) (Supplementary Fig. 6, Supplementary Table S16). 
Correlations with BD remained essentially unchanged 
(from 0.778 to 0.780 for SUB; from 0.774 to 0.770 for 
SUD). Meanwhile, dropping the residual correlations in 
the modified model increased the point estimate of the 
correlation between (modified) SUB and (modified) SUD 
(from 0.861 up to 0.932), while BD’s correlations with 
(modified) SUB and (modified) SUD did not change notably 
(from 0.773 to 0.780 and from 0.849 to 0.844, respectively) 
(Supplementary Fig.  7, Supplementary Table  S17). 
Supplementary Figs.  8A and 8B and Supplementary 
Tables S18 and S19 correspond to results for Cholesky 
Decompositions utilizing the original factors from Models 1 
and 2 with the residual correlations dropped. Supplementary 
Figs.  9A and 9B and Supplementary Tables S20-S21 
correspond to results for Cholesky Decompositions utilizing 
the modified factors with the residual correlations dropped.
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Discussion

Summary

We used Genomic SEM to partition the genome-wide 
components of externalizing behaviors into a four-indicator 
behavioral disinhibition (BD) factor, a four-indicator 
substance use disorder (SUD) factor, and a four-indicator 
(non-pathological) substance use (SUB) factor. The three 
factors showed high intercorrelations, even when the 
residuals for indicators relating to the same substance 
were correlated across the SUB and SUD factors. Of the 
covariances specified between the error terms, only the 
residual correlation between problem alcohol use (PAU) 
and drinks per week (DPW) was significant.

Using hierarchical trivariate Cholesky decomposition, 
we analyzed the residual genomic variance components that 
remained for externalizing above and beyond 1) SUD, 2) 
SUB, and 3) both SUD and SUB. The majority of the genetic 
variation in BD intersected with the joint variation shared 
across the other two domains, which reinforces findings 
from past research examining genomic links between 
externalizing constructs (Karlsson Linnér et al. 2021; Poore 
et al. 2023). The covariance between BD and each substance 
factor independent of the other was considerably smaller 
than covariance shared among all three factors.

The modified SUB and modified SUD factors, which 
included only the three most commonly-used recreational 
substance categories—nicotine/tobacco, alcohol, and 
cannabis—had a larger genetic correlation point estimate 
than did the original substance factors that included 
polysubstance use and opioid use disorder. Compared to 
the original model, the correlation between (modified) SUD 
and BD changed more drastically than did the correlation 
between (modified) SUB and BD. Additionally, dropping 
only OUD resulted in the point estimates of the correlation 
between SUB and SUD changing more drastically than 
dropping only DRUG. This implies that OUD more 
heavily drove the nature of the factor structure than DRUG. 
Dropping the residual correlations across SUB and SUD 
and across modified SUB and modified SUD increased the 
correlations between both the first and the second pair of 
factors only slightly. This was due to the fact that cross-
substance correlations were often commensurate with—and 
in some cases higher than—within-substance correlations.

Finally, across all models, between approximately a 
quarter and approximately a third of BD-associated genetic 
variance was independent of both SUB and SUD.

Relevance to past research and future directions

Depending on the factor definition for SUB and SUD, 
the point estimates of their genetic correlation ranged 
from 0.803 to 0.932. In light of the large genomic overlap 
between the two, combining genomic information associated 
with pathological and non-pathological substance use 
phenotypes has the potential to boost power for substance-
related research questions. For example, it is possible that 
combining such pathological and non-pathologic genetic 
information is a more powerful approach to predicting 
substance use disorder liability. However, it is important to 
note that the degree of overlapping genetic signal across 
univariate GWAS does not always directly translate to 
magnitude of overlapping genetic signal for latent factors. 
For example, Mallard et al. (2022) demonstrated that, when 
compared to standard GWAS meta-analysis, applying 
a multivariate framework to GWAS of AUDIT items 
changed alcohol consumption’s genetic associations with 
problem use, psychiatric disorders, health outcomes, and 
socioeconomic outcomes substantially. In a similar vein, 
the genetic correlations between our latent SUB and SUD 
constructs were higher than what might be expected based 
on the bivariate genetic correlations between the SUD and 
SUB indicators, with only one of these pairwise correlations 
 (rgCUD,DRUG  = 0.81) surpassing the lowest genetic correlation 
calculated between SUD and SUB  (rg = 0.803) across all of 
the correlated factors models.

Additionally, interrogating the non-overlapping genetic 
characteristics of these two factors—as well as that 
of their constituent traits—could provide illuminating 
insights into their shared and independent associations 
with psychopathological, psychological, disinhibitory, 
personality, and medical outcomes. For example, genomic 
SUB variance not implicated in SUD may be less likely 
to include genomic loci that are associated with negative 
side-effects upon cessation of substances. Somewhat less 
intuitively: even though substance use is a prerequisite for 
substance use disorder, the approach used in the present 
study and in similar designs allows for the dissociation of 
genetic prediction of pathological substance use outcomes 
from that of non-pathological substance use outcomes. 
Evidence has suggested that substance use disorders tend 
to be more positively genetically associated with certain 
psychopathological traits when compared to externalizing 
(Poore et al. 2023) and substance consumption (Sanchez-
Roige et al. 2019b; Gelernter and Polimanti 2021; Mallard 
et al. 2022). Though it is currently unclear to what extent the 
sampling procedures for SUD GWAS—which draw many 
cases from psychiatric populations–may be contributing 
to this finding (Poore et al. 2023), loci implicated in SUD 
but not SUB could point to a critical subset of pleiotropic 
effects implicated in psychopathologies. Further exploration 
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of this independent signal may provide valuable context 
for attempts to identify treatments and evaluate sources 
of psychiatric or medical comorbidity. Additionally, it 
will be important to examine non-biological phenotypes 
such as socioeconomic status and clinician bias in further 
elucidating which substance users are most likely to be 
diagnosed with a substance use disorder.

Research has shown that SUD and externalizing are 
highly genetically correlated at the common latent factor 
level and that putatively causal SNPs of their constituent 
summary statistics are largely overlapping (Poore et al. 
2023). The models we tested additionally revealed that 
there may be important specific covariance between BD 
and SUB/SUD not shared between all three factors. Though 
this independent covariance only accounted for one fifth of 
the total genetic covariance between the residual higher-
order factors at most, it was nonetheless non-negligible in 
both of the main Cholesky models. Though this covariance 
only explained a small proportion of total BD variance 
in our models, the relationship between this residual 
genetic overlap and prediction of outcomes outside of an 
externalizing framework is worthy of further study.

Evidence in the literature (Brick et al. 2023; Poore et al. 
2023) suggests there is a genome-wide/polygenic signal 
associated with externalizing and BD independent of 
substance use and substance use disorder, further indicating 
that there could be significant genomic correlates specific to 
the current study’s construction of BD. While we evaluated 
BD using a combination of psychiatric and non-psychiatric 
traits—age at first sex (FSEX, reverse-coded), general 
risk tolerance (RISK), number of lifetime sexual partners 
(NSEX), and attention-deficit/hyperactivity disorder 
(ADHD)—all four traits relate to reward-seeking (i.e., sexual 
behaviors) and/or impulsivity (i.e., certain hyperactive 
characteristics in ADHD). While these mechanisms are 
relevant to substance use and substance use disorder as well, 
additional domains such as attentional processes (i.e., in 
ADHD) and subjective opinions of one’s own disinhibitory 
tendencies (i.e., for self-reported risk tolerance), as well as 
related domains not explicitly captured in this study (i.e., 
certain facets of antisocial behavior) are more specifically 
characteristic of BD. Given the substantial proportion of 
BD-specific residual variance we calculated, additional 
investigation into this construct’s genomic architecture could 
uncover an alternative molecular context for understanding 
risk-taking, reward-seeking, and sensation-seeking over and 
above its direct common pathways with substance use and/
or substance use disorder.

Finally, future research on the genetics of externalizing 
could consider alternative orderings and measures of the 
subfacets we examined in this study. While prior evidence 
suggests that there may not be a robust genomic factor 
capturing PAU, OUD, PTU, and CUD that is orthogonal 

to externalizing (Poore et  al. 2023), other avenues of 
investigation may be able to better isolate genomic signal 
relating to substance use disorder and/or substance use from 
that relating to behavioral disinhibition.

Limitations

It is important to note that there are limitations to consider 
in the interpretation of our findings. Firstly, the samples 
on which we based our analyses were not representative 
of the general human population. All of our samples came 
from individuals of European ancestry, and many of the 
GWAS summary measures were obtained from participants 
in the UK Biobank, which is an older-skewing British 
sample, while Opioid Use Disorder and Problem Alcohol 
Use utilized the Million Veterans Program sample, which 
is comprised entirely of U.S. veterans, is only 9% female, 
and skews towards older participants (U.S. Department 
of Veterans Affairs 2024). Some cohorts also utilized a 
combination of childhood and adult data (i.e., in the ADHD 
GWAS) (Demontis et al. 2023).

While our study provided important context for 
understanding the genetic architecture of externalizing at the 
genome-wide common SNP level, a more complete picture 
of substance use, substance use disorders, and reward-
seeking behaviors, as well as of the relationships between 
these constructs, will require evaluation of environmental 
effects and non-genomic biological phenomena—which 
GWAS do not directly measure—as well as potential effects 
of gene-environment interactions. Factors such as racial/
ethnic disparities in access to analgesic drugs (Samuel 
et al. 2019) and consequences of trauma on externalizing 
and substance use behaviors would add vital context to a 
broader understanding of the phenomena considered in the 
current study. In addition, we did not include specific single 
nucleotide polymorphism (SNP) effects in our model, and 
so we did not directly identify specific genes or biological 
pathways associated with the constructs we measured.

Because our models’ latent factors were based on a small 
number of indicators, the GWAS we included in our models 
were unlikely to have exhaustively captured the genetic 
components associated with the focal constructs. Because 
very large sample sizes are required for powerful genome-
wide analysis of complex traits, smaller sample sizes—in 
addition to less precise heritability estimates—for traits such 
as opioid use disorder (OUD), polysubstance use (DRUG), 
and problem tobacco use (PTU) may have disproportionately 
influenced results. Larger sample sizes and GWAS of 
more variable substance use outcomes (i.e., recreational 
opioid use, polysubstance addiction) will be instructive to 
portraying a clearer picture of the genetic architecture(s) of 
substance phenotypes.
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Conclusion

Substance use disorder (SUD), substance use (SUB), 
and behavioral disinhibition (BD) represent three related 
constructs that have been subjects of common interest in 
psychological and genetic research. The current study 
leveraged factor analysis to build latent genomic factors 
relating to these three constructs. Using hierarchical 
Cholesky decomposition in Genomic SEM, this study also 
attempted to isolate the extent to which genetic variability 
underlying BD exists beyond shared variance with SUD and 
SUB and examined the nature of the genetic covariation 
between all three constructs.

BD was highly correlated with SUD and SUB, while 
SUD and SUB showed some evidence of being even more 
correlated with one another. More than half of the variation 
in BD could be explained by a broad higher-order factor 
absorbing variation across all three constructs, while, 
depending on the model, between none and a small fraction 
of the variation in BD operated via an independent pathway 
with SUD or SUB outside of this broad effect. Moreover, 
a significant minority of residual BD variability remained 
after partialing out covariance with both SUD and SUB, 
indicating that there is sizable genomic BD variation that 
does not overlap with substance use or substance use 
disorder. Future research could demonstrate the utility of 
boosting power through combining data across pathological 
and non-pathological substance use indicators though could 
also shed interesting light on the differences in genetic and 
molecular correlates of SUD vs. SUB, including outside of 
direct implications for behavioral disinhibition/externalizing. 
Extending these lines of inquiry is likely to yield important 
insights into genetic mechanisms linked to reward response, 
drug metabolization, risk-taking, and psychopathology.

Supplementary Information The online version contains 
supplementary material available at https:// doi. org/ 10. 1007/ 
s10519- 024- 10188-9.
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