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Abstract
Using individuals’ genetic data researchers can generate Polygenic Scores (PS) that are able to predict risk for diseases, 
variability in different behaviors as well as anthropomorphic measures. This is achieved by leveraging models learned from 
previously published large Genome-Wide Association Studies (GWASs) associating locations in the genome with a phenotype 
of interest. Previous GWASs have predominantly been performed in European ancestry individuals. This is of concern as PS 
generated in samples with a different ancestry to the original training GWAS have been shown to have lower performance 
and limited portability, and many efforts are now underway to collect genetic databases on individuals of diverse ancestries. 
In this study, we compare multiple methods of generating PS, including pruning and thresholding and Bayesian continuous 
shrinkage models, to determine which of them is best able to overcome these limitations. To do this we use the ABCD Study, 
a longitudinal cohort with deep phenotyping on individuals of diverse ancestry. We generate PS for anthropometric and 
psychiatric phenotypes using previously published GWAS summary statistics and examine their performance in three sub-
samples of ABCD: African ancestry individuals (n = 811), European ancestry Individuals (n = 6703), and admixed ancestry 
individuals (n = 3664). We find that the single ancestry continuous shrinkage method, PRScs (CS), and the multi ancestry 
meta method, PRScsx Meta (CSx Meta), show the best performance across ancestries and phenotypes.
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Introduction

The study of human genetics has established that the vast 
majority of complex traits that are genetically influenced are 
polygenic—with many small effects being distributed across 
the genome (Visscher et al. 2021). Polygenic Scores (PSs) 
are a class of prediction methods that can aggregate these 
polygenic effects for a given phenotype (e.g. height, BMI, 
psychiatric risk) to explain a substantial amount of varia-
tion in phenotypes using genetic data (Sugrue and Desikan 
2019). While not useful as stand-alone diagnostic measures, 
previous research has shown that, when incorporated with 
other traditional risk measurements, PS can improve predic-
tive model accuracy for common diseases like cancers (Jia 
et al. 2020; Kachuri et al. 2020), Coronary Artery Disease 
(Inouye et al. 2018; Klarin and Natarajan 2022), and Type 2 
Diabetes (Ashenhurst et al. 2022; Ge et al. 2022).

A major challenge facing the application of PS is their 
diminished performance when being trained and deployed 
in different ancestry groups. Thus far the majority of 
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well-powered Genome-Wide Association Studies (GWASs) 
have been conducted on individuals of European ancestry 
(Bitarello and Mathieson 2020; Lewis and Green 2021; Mar-
tin et al. 2019; Peterson et al. 2019), limiting their utility 
in non-European ancestry groups. The over-representation 
of European ancestry individuals in genetic studies has led 
many to fear this may exacerbate health disparities (Martin 
et al. 2019). It is thought this drop in performance when 
deploying PS between ancestry groups is related to differ-
ences in linkage-disequilibrium (LD) and allele frequencies 
(Wang et al. 2020), which will likely be addressed by con-
ducting GWAS in more diverse samples. While there have 
been efforts to improve the number of non-European GWAS 
samples by groups like the Hispanic/Latino Anthropometry 
(HISLA) Consortium (Fernández-Rhodes et al. 2022), the 
Population Architecture Using Genetics and Epidemiology 
(PAGE) Study (Matise et al. 2011), and the African Ancestry 
Anthropometry Genetics Consortium (AAAGC) (Ng et al. 
2017) among others, European ancestry samples are usu-
ally the largest for a given phenotype and cross-ancestry PS 
methods are limited.

There exist multiple different methods for computing PS 
(Choi and O’Reilly 2019; Ge et al. 2019, 2022; Ruan et al. 
2022) which each attempt to address two issues of GWAS: 
(1) distinguishing impactful and non-impactful variants 
and (2) LD correlations across the genome. The classic PS 
method, Pruning and Thresholding (P + T), addresses these 
issues by (a) grouping genomic variants according to LD 
correlations (pruning), then (b) restricting remaining vari-
ants to those meeting a p-value threshold (thresholding) 
(Choi et al. 2020; Choi and O’Reilly 2019; Marees et al. 
2018). An alternative PS approach tackles these issues 
by using shrinkage techniques which have been shown to 
achieve superior performance (Ge et al. 2019; Privé et al. 
2020). Finally, PS methods exist which are specifically 
designed to be deployed across multiple ancestries (Ge et al. 
2022; Ruan et al. 2022). Benchmarking these methods in 
independent datasets of ancestral diverse individuals is of 
importance in evaluating their relative performance.

The Adolescent Brain Cognitive Development (ABCD) 
Study® is a longitudinal study with deep phenotyping of 
over 11,000 children from 9 to 11 years old, with wide 
sociodemographic and genetic diversity across the United 
States. This study provides an ideal opportunity to profile 
the performance of these recently developed PS methods 
in an ancestrally diverse cohort. In the present study, we 
deploy four PS methods: PRSice2, PRScs, PRScsx, and 
PRScsx Meta. For this analysis, we use PRSice2 as our 
P + T method (Choi and O’Reilly 2019). PRScs (Ge et al. 
2019) has emerged as a particularly effective shrinkage PS 
method, and PRScsx and PRScsx Meta leverage information 
from multiple ancestries to improve PS generation trans-
ancestrally (Ge et al. 2022; Ruan et al. 2022). We use each of 

these four methods to generate PS for four phenotypes in the 
ABCD sample: height, body mass index (BMI), schizophre-
nia risk, and depression risk. For each of these phenotypes, 
we utilize previous GWAS in five ancestral groups where 
possible: European (EUR), East Asian (EAS), South Asian 
(SAS), Hispanic (HIS), and African (AFR). The PSs from 
these methods are then evaluated, against relevant pheno-
types, separately in European, African, and Mixed ancestry 
individuals in the ABCD cohort. We hope that the results 
from this analysis will help guide future work aiming to 
utilize PS in populations of diverse ancestries.

Methods

ABCD sample

Our sample consisted of 11,178 children from the 4.0 of the 
Adolescent Brain Cognitive Development (ABCD) study 
(https://​doi.​org/​10.​15154/​15230​41) with qualified genetic 
data. The ABCD cohort was recruited to ensure the sample 
was as close to nationally representative as possible, and 
therefore exhibits large sociodemographic diversity (Gara-
van et al. 2018). There is an embedded twin cohort and many 
siblings.

ABCD phenotypes

Dependent variables in this analysis come from the baseline 
visit from ABCD release 4.0. Two anthropomorphic traits 
were used in our analysis: height, calculated as the mean of 
3 measurements, and body mass index (BMI), calculated 
as weight/height2. Two behavioral metrics were used in 
our analysis: KSADS Total Symptoms as reported by the 
participant’s caregiver and CBCL Total Problems based on 
an extensive battery of questionnaires and interviews. The 
Kiddie schedule for affective disorders and schizophrenia 
(KSADS) measure represents the combined outcome of a 
self-administered version of the K-SADS-5 assessment filled 
out by the caregiver of the child enrolled in the ABCD study. 
The KSADS assessment is a diagnostic tool commonly used 
to identify symptoms, behaviors, and impairments poten-
tially related to psychiatric disorders, and our variable rep-
resents a normalized total of all responses to a participants 
K-SADS-5 assessment and is used in this analysis as a single 
metric of the level of presence or absence of psychiatric 
disorders (Kaufman et al. 1997). The KSADS variable used 
in our analysis was normalized using a rank-based inverse 
normal transformation. The K-SADS-5 assessment has been 
shown to be valid, reliable, and replicable for children of 
diverse cultural and national backgrounds (de la Peña et al. 
2018; Dun et al. 2022; Kaufman et al. 1997; Kim et al. 2004; 
Nishiyama et al. 2020; Shahrivar et al. 2010).

https://doi.org/10.15154/1523041
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The child behavioral checklist (CBCL) is a caregiver-
reported assessment of their child on eight syndrome scales: 
anxious/depressed, withdrawn/depressed, somatic com-
plaints, social problems, thought problems, attention prob-
lems, rule-breaking behavior, and aggressive behavior which 
are then combined into a single score for this analysis repre-
senting the normalized total number of behavioral problems 
reported in the CBCL assessment. The resulting combined 
score was normalized using a rank-based inverse normal 
transformation. The CBCL Total Symptoms score repre-
sents a single metric of a participants emotional functioning 
and well-being as evidenced through behavior (Achenbach 
and Rescorla 2004). The CBCL is a portion of the Achen-
bach System of Empirically Based Assessment (ASEBA) 
designed to be used on school-aged children between the 
ages of 6 and 18 (Achenbach and Rescorla 2004) and it has 
been found to be valid and reliable for children of diverse 
cultural and national backgrounds (Albores-Gallo et al. 
2007; Dutra et al. 2004; Hartini et al. 2015; Leung et al. 
2006).

Summary statistics data access

Our analyses were limited by the public availability of large 
and diverse GWAS of mental phenotypes. Furthermore, our 
trans-ancestry method required that our summary statistics 
be easily separable into distinct continental ancestries which 
prevented us from using some large trans-ancestry meta-
analyses. The phenotypes height and BMI were selected to 
show the efficacy of these methods across some of the most 
well-powered anthropomorphic phenotypes. Depression was 
chosen because of its prevalence among adolescence (Good-
win et al. 2022) and because of its availability as summary 
statistics in multiple ancestry groups. Schizophrenia was 
chosen despite its low prevalence in an adolescent popula-
tion sample because of its availability of summary statistics 
in non-European ancestries and because previous studies 
have found differential experiential and mental phenotypic 
manifestations in adolescents with high genetic load for 
schizophrenia before clinical manifestation of the disorder 
(Jones et al. 2016; Woolway et al. 2022). Data were col-
lected from publicly available GWAS summary statistics 
found through GWAS Catalog (https://​www.​ebi.​ac.​uk/​gwas/​

Table 1   Size and demographic information of the ancestry subsamples used in this analysis

Additional graphics showing the distributions of our phenotypes of interest can be found in Supplementary Figs. 2–5

Ancestry group African ancestry (AFR) European ancestry (EUR) Admixed ancestry (MIX) All samples

Total N 811 6703 3664 11,178

Mean (SD)

Age in years 9.9 (0.59) 9.9 (0.63) 9.9 (0.63) 9.9 (0.92)
Height in inches 56.19 (3.62) 55.16 (3.19) 55.28 (3.39) 55.27 (3.30)
BMI 20.73 (5.16) 17.99 (3.41) 19.93 (4.84) 18.82 (4.21)
CBCL total problems 20.02 (21.21) 17.81 (17.14) 18.89 (18.75) 18.33 (18.01)
KSADS total problems 23.32 (30.25) 18.37 (24.03) 19.14 (26.69) 18.98 (25.45)
Sex %
 Female 51.30% 47.30% 47.90% 47.80%

Parental education
 < HS diploma 10.10% 0.60% 10.60% 4.60%
 HS diploma/GED 24.10% 3.70% 16.50% 9.40%
 Some college 39.20% 19.80% 36% 26.50%
 Bachelor’s degree 12.50% 30.90% 18.70% 25.60%
 Post graduate degree 14% 44.90% 18.20% 33.90%

Household income
 Less than $50,000 70.30% 13.70% 51.80% 29.40%
 Between $50,000 and $100,000 20.10% 30.70% 26.10% 28.60%
 Greater than $100,000 9.60% 55.60% 22.00% 42.00%

Race and ethnicity (self-report)
 Asian 0% 0.10% 2.50% 0.90%
 Black 97.50% 0.10% 28.40% 16.30%
 Hispanic 0.60% 7.40% 47.40% 20%
 White 0.10% 94.50% 27.00% 65.50%

https://www.ebi.ac.uk/gwas/home


295Behavior Genetics (2023) 53:292–309	

1 3

home) and Google scholar. Additional information regard-
ing existing and available GWAS summary statistics was 
also gathered from the GWAS catalog (https://​www.​ebi.​ac.​
uk/​gwas/​home). A full list of data sets used can be found in 
Supplementary Table 1. All summary statistics were aligned 
to genome build GRCh38.

Genetic data

Genetic data was collected using blood or saliva samples 
from participants of the ABCD study (Uban et al. 2018). 
656,247 genomic markers were measured using the Smoke-
screen array (Baurley et al. 2016). Genetic principal compo-
nents were calculated from these genetic data using PC-Air 
(Conomos et al. 2015) with default settings. We calculated 
participants’ continental genetic ancestry as calculated 
using SNPweights (Chen et  al. 2013) and precompiled 
external genomic reference panels from the 1000 Genomes 
Project (Auton et al. 2015), and Indigenous reference pan-
els (Reich et al. 2012). Participants were categorized into 
groups depending on if they had an inferred genetic ancestry 

at least 80% consistent with a continental reference panel 
(African continental ancestry, East Asian continental ances-
try, European continental ancestry, or indigenous North and 
South American ancestry) or admixed meaning that their 
genetic ancestry did not meet the 80% threshold for any of 
the ancestries due to a genetic admixture of two or more of 
the aforementioned continental ancestral components. We 
chose to use inferred genetic ancestry as opposed to other 
methods as this enabled us to not only define individuals of 
continental ancestries but also to define an admixed ances-
try group (i.e., those that did not meet criteria for a single 
continental ancestry). Genetic PCA plots of our sample (see 
Supplementary Fig. 1) show that inferred ancestries labels 
individuals as would be expected. Due to the relatively small 
portion of the participants of genomic indigenous ancestry 
(n = 53) and participants of continental East Asian ancestry 
(n = 158) were left out of our total testing sample. Our total 
testing sample consisted of an African ancestry group (AFR, 
n = 811), a European ancestry group (EUR, n = 6703), and 
an admixed ancestry group (MIX, n = 3664).

Fig. 1   Genetic ancestry proportion for individuals of each ancestry 
subpopulation in ABCD categorized into African, East Asian, Euro-
pean, and Indigenous North and South American ancestry portions. 

A–C represent European, African, and Admixed ancestry populations 
respectively. D shows the mean genetic ancestry components of the 
admixed population

https://www.ebi.ac.uk/gwas/home
https://www.ebi.ac.uk/gwas/home
https://www.ebi.ac.uk/gwas/home
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To increase the overlap of genetic variants in ABCD 
with summary statistics from previous GWAS we imputed 
markers measured from the Smokescreen array using the 
TOPMED imputation server (Taliun et al. 2021). These 
imputed variants were fractional dosages that were converted 
to an integer number of alleles using a best guess threshold 
of 0.9. This resulted in 280,850,795 imputed variants aligned 
to genome build GRCh38. After imputation target genetic 
data was restricted to only autosomal variants with a minor 
allele frequency of 1% (0.01) or greater leaving just under 
11 million Single Nucleotide Polymorphisms (SNPs) in the 
target data.

Polygenic score methods

As some methods required hyperparameter tuning we gener-
ated 100 50/50 cross-validation splits within each ancestry 
group. We ensured that family members were not split across 
training and testing folds (with families being defined using 
the ‘rel_family_id’ variable). This provided training folds, 
for hyperparameter tuning, and testing folds for the evalua-
tion of PS performance.

We provide a brief description of each PS method used 
in this analysis:

1.	 P + T: PRSice2

a.	 PRSice2 is an LD-informed pruning and P-value 
thresholding method meaning that it groups and 
thins SNPs according to LD and P-value and then 
limits these SNPs to only those that exceed a given 
P-Threshold (Choi and O’Reilly 2019). For our 
analysis, we used default parameters with a range 
of P-value thresholds (0, 0.001, 0.01, 0.05, 0.1, 
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 0.9 and 1) where we 
applied the threshold maximizing R2 in the training 
fold to the test fold. Reported R2 values were calcu-
lated in the testing fold.

2.	 CS: PRScs

a.	 PRScs is a Bayesian calculation method that uses 
GWAS summary statistics and LD reference infor-
mation as well as a continuous shrinkage prior to 
infer posterior SNP effect sizes which is found to 
be both reliable and computationally efficient in 
varying genetic architectures (Ge et al. 2019). For 
our analysis, we used base parameters except with 
regards to MCMC and burnin where we used a 
slightly higher threshold of 10,000 MCMC itera-
tions and 5000 burnin. These values were chosen 
as they have been shown to help increase stability 
of posterior effects between runs without being too 

computationally intensive (Schultz et al. 2022). LD 
references were based on data from 1000 Genomes 
Phase 3 to match respective summary statistics 
(AFR, AMR, EAS, EUR, or SAS). PLINK 2.0 was 
used to generate Polygenic Risk scores from PRScs 
posterior effect sizes (Purcell et al. 2007).

3.	 CSx: PRScsx

a.	 PRScsx is a Bayesian polygenic modeling method 
that integrates GWAS and LD information from 
multiple ancestrally diverse populations to improve 
the estimation of posterior SNP effects (Ruan et al. 
2022). For our analysis, we used recommended 
parameters (apart from MCMC iterations and 
burnin) and the appropriate provided LD references 
from 1000 Genomes Phase 3 for a given summary 
statistic (AFR, AMR, EAS, EUR, or SAS). PLINK 
2.0 was used to generate ancestry-specific PSs from 
PRScsx posterior effect sizes (Purcell et al. 2007). 
We used 10,000 MCMC iterations and 5000 burnin 
to increase stability (Schultz et al. 2022) and to be 
constant with other methods. Ancestry-specific 
PSs were combined using a linear combination of 
ancestry-specific PSs as advised by the authors of 
the method. Weights were learned in training folds 
using linear regression to predict the phenotype of 
interest as:

where w represents the relative weight. R2 values 
were reported in the validation fold after applying 
weights learned in training folds.

4.	 CSx Meta: PRScsx Meta

a.	 PRScsx Meta uses the same Bayesian polygenic 
model as PRScsx, but instead of needing hyperpa-
rameter tuning, it uses an inverse-variance-weighted 
meta-analysis to produce a single set of posterior 
effects (Ge et al. 2022). For our analysis, we used 
recommended parameters (apart from MCMC itera-
tions and burnin) and the appropriate provided LD 
references from 1000 Genomes Phase 3 for a given 
summary statistic (AFR, AMR, EAS, EUR, or SAS). 
We used 10,000 MCMC iterations and 5000 burnin 
to increase stability (Schultz et al. 2022) and to be 
constant with other continuous shrinkage methods. 
PLINK 2.0 was used to generate Polygenic Risk 
scores from PRScsx posterior effect sizes (Purcell 
et al. 2007).

PRS = wAncestry1PRSAncestry1 + wAncestry2

PRSAncestry2 …+ wAncestryNPRSAncestryN,
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Statistical analysis

To assess the association between each PS method and 
the relevant dependent variable Generalized Additive 
Mixed Models (GAMMS) were fitted using the gamm4 
package in R (Wood and Scheipl 2022) in each test fold. 
Each model predicted a different mental or anthropomor-
phic feature, depending on the PS of interest. Each model 
was corrected for participants’ age in months, sex, ABCD 
study site, and the top ten generic principal components 
calculated using PC-AIR (Conomos et al. 2015)as fixed 
effects and a participants’ family id as a random effect. 
Nagelkerke R2 (Nagelkerke 1991) values were calcu-
lated between reduced (covariates only) and full (covari-
ates + PS) models. Supplementary Tables were generated 
using the t-tests functions and False Discovery Rate (FDR) 
correction from the R package ‘stats’ (R Core Team 2022).

Genome‑wide complex trait analysis (GCTA)

For some traits we unexpectedly found higher perfor-
mance in non-European ancestry cohorts. In attempt to 
understand this further we conducted GCTA (Yang et al. 
2011) each ancestry subsample separately to estimate snp-
heritability ( h2

snp
) for each analyzed measure in ABCD to 

quantify the genetic variability contributing to each trait—
independent of previous GWAS summary statistics or any 
specific polygenic score method. For this we constructed 
a GRM (genetic relatedness matrix) using ‘gcta –make-
grm’ for each ancestry individually. We then filtered this 
GRM to unrelated individuals using a threshold of --grm-
cutoff = 0.025 as recommended. This resulted in 5133, 683 
and 414 individuals in European, African and Admixed 
ancestry cohorts, respectively. We then performed GCTA 
on this pruned GRM, using covariates described above to 
obtain point estimates of h2

snp
. With the small sample sizes 

for this analysis we observe large error bars and so use 

point estimates as an indication of differences and interpret 
with caution.

Results

The results in this analysis utilize the full baseline visit data 
from ABCD data release 4.0, an ancestrally diverse longi-
tudinal cohort of children from 21 different data acquisition 
sites around the United States (https://​doi.​org/​10.​15154/​
15230​41). We restricted our analysis to the three largest 
ancestral groups of the ABCD sample: African (AFR), 
European (EUR), and Admixed (MIX). Membership within 
each ancestry group was defined as an individual having 
greater than 80% inferred continental ancestry for the given 
group. We inferred participants’ continental genetic ances-
try as calculated using SNPweights (Chen et al. 2013) and 
precompiled external genomic reference panels from the 
1000 Genomes Project (Auton et al. 2015), and Indigenous 
reference panels (Reich et al. 2012). Genetic ancestry esti-
mates for each group are shown in Fig. 1. Assignment into 
each of these three ancestral groups covers 98% of the full 
ABCD baseline sample. Sample sizes and demographic 
information of these groups are presented in Table 1.

Height polygenic score

Figure 2 shows the predictive performance of different 
PS models in predicting height. The single ancestry con-
tinuous shrinkage method based on European ancestry 
LD and summary statistics from a large European GWAS 
(Yengo et al. 2022), CS EUR, outperformed other meth-
ods in the European and African ancestry groups with 
a mean variance explained of 14.5% and 13.2% respec-
tively. In the admixed ancestry group the best perform-
ing method was the trans-ancestry, continuous shrinkage, 
meta-analysis method, CSx Meta, which accounted for a 
mean variance explained of 10.9%. CS EUR was roughly 
comparable to CSx Meta (RCS EUR

2/RCSx Meta
2 = EUR:1.05, 

AFR:1.03, MIX:0.96) and was an improvement on CSx 
(RCS EUR

2/RCSx
2 = EUR:1.11, AFR:3.42, MIX:1.11) and 

the best performing P + T Method, P + T EUR (RCS EUR
2/

RP+T EUR
2 = EUR:1.21, AFR:1.59, MIX:1.65).

Although CSx achieved worse but comparable perfor-
mance in EUR and MIX groups, it showed particularly 
low performance in the AFR group (see Fig. 2). This 
may be explained by the wide variability in weightings of 
ancestry-specific PS across training folds used to calcu-
late CSx for the AFR group: compare panel A with panels 
B and C in Supplementary Fig. 6. P + T (using PRSice2) 
showed the lowest performance across all ancestry groups 
except the African ancestry sample where PRScsx showed 

Fig. 2   Variance explained of PS methods in predicting height across 
100 folds of 50/50 cross-validation. A–C Represent performance 
in AFR, EUR, and MIX ancestry populations respectively. Meth-
ods marked ‘CSx Meta’ and ‘CSx’ represent the meta-analysis and 
hyperparameter-weighted trans-ancestry outputs from the continuous 
shrinkage method PRScsx. Methods marked ‘CS’ represent the single 
ancestry outputs of the continuous shrinkage method PRScs (both LD 
reference and summary statistics from a single ancestry). Methods 
marked ‘P + T’ represent the single ancestry outputs from the linear 
pruning and thresholding method PRSice2. The three letter abbre-
viations included in some methods represents the sample ancestries 
as follows: European ancestry (EUR), African ancestry (AFR), East 
Asian ancestry (EAS), North or South American ancestry (AMR), 
and South Asian ancestry (SAS). Additional information about the 
summary statistics can be found in Supplementary Tables 1 and addi-
tional phenotype data can be found in Supplementary Fig. 2

◂

https://doi.org/10.15154/1523041
https://doi.org/10.15154/1523041
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the lowest performance. Numeric summaries of these 
results are available in Supplemental Tables 2–4.

BMI polygenic score

When comparing the performance of PS methods in pre-
dicting Body Mass Index (BMI), we found that the trans-
ancestry, continuous shrinkage, meta-analysis method, 
CSx Meta, performed best in all ancestries. CSx Meta 
accounted for a men variance explained of 11.7% in the 
European ancestry sample, 11.9% in the African ances-
try sample, and 9.9% in the admixed ancestry sample. 
Numeric summaries of these results are available in Sup-
plemental Tables 5–7.

Once again, we observed particularly low performance 
of the CSx method in the AFR and observed wide vari-
ability in ancestry specific PS weights in training for this 
method (Supplementary Fig. 7). Once again, the P + T 
methods (PRSice2) exhibited the lowest performance 
across ancestry groups, except in the AFR group where 
the CSx method had the lowest performance (Fig. 3).

Depression polygenic score

In predicting CBCL total problems from depression 
GWAS, we found the CS EAS method trained on an East 
Asian GWAS (Giannakopoulou et al. 2021) achieved the 
highest performance in the African ancestry sample, the 
CS EUR methods trained on a European GWAS (Howard 
et al. 2019) achieved the highest performance in the Euro-
pean ancestry sample, and CSx Meta performed best in the 
admixed ancestry sample—see Fig. 4. The mean variance 
explained by CS EAS was 10.1% in the African ancestry 
sample, 1.1% in the European ancestry sample, and 2.0% in 
the admixed ancestry sample. The mean variance explained 
for the CS EUR method was: 9.8% in the African ancestry 
sample, 1.7% in the European ancestry sample, and 2.2% in 
the admixed sample. The mean variance explained by CSx 
Meta was 10.0% in the African ancestry sample, 1.6% in the 
European ancestry sample, and 2.2% in admixed ancestry 
sample. Numeric summaries of these results are available 
in supplemental Tables 8–10.

In predicting KSADs total problems from depression 
GWAS, we found the CS EAS method trained on an East 
Asian GWAS (Giannakopoulou et al. 2021) achieved the 
highest performance in the African ancestry sample, the CS 
EUR methods trained on a European GWAS (Howard et al. 
2019) achieved the highest performance in the European 
ancestry sample, the CSx Meta method achieved the highest 
performance in the admixed ancestry sample—see Fig. 4. 
Mean variance explained for the CS EAS method was 10.7% 
in the African ancestry sample, 1.1% in the European ances-
try sample, and 2.1% in the admixed ancestry sample. Mean 

variance explained for the CS EUR method was 10.1% in 
the African ancestry sample, 1.5% in the European ancestry 
sample, and 2.3% in the admixed ancestry sample. Mean 
variance explained for the CSx Meta method was 10.2% in 
the African ancestry sample, 1.4% in the European ancestry 
sample, and 2.3% in the admixed ancestry sample.

We observe low performance of the CSx method in pre-
dicting both CBCL total problems and KSADS total prob-
lems across all ancestry groups, this once again may be due 
to unstable weightings of ancestry-specific PS that make up 
the CSx method across cross-validation folds (Supplemen-
tary Figs. 8–9 Numeric summaries of these results are avail-
able in supplemental Tables 11–13 (Fig. 5).

Schizophrenia polygenic score

In predicting CBCL total problems from schizophrenia 
GWAS, we find that the CS EAS method trained on the 
large East Asian GWAS (Trubetskoy et al. 2022) performed 
best in the African and admixed ancestry samples and the 
CS EUR method trained on the large European GWAS 
(Trubetskoy et al. 2022) performed best in the European 
ancestry sample. Mean variance explained for the CS EAS 
method was 9.5% in the African ancestry sample, 1.0% in 
the European ancestry sample, and 1.9% in the admixed 
ancestry sample. Mean variance explained for the CS 
EUR method was 9.2% in the African ancestry sample, 
1.0% in the European ancestry sample, and 1.8% in the 
admixed ancestry sample. There is not a significant differ-
ence between the results from CS EAS, CS EUR, and CSx 
Meta which all accounted for a mean variance of approxi-
mately 1.0% (pCS EAS−CS EUR = 0.39, pCS EAS−CSx Meta = 0.88, 
pCS EUR−CSx Meta = 0.08). A graphic summary of these results 
can be found in Fig 6. Numeric summaries of these results 
are available in Supplemental Tables 14–16.

In predicting KSADS total problems from schizophre-
nia GWAS, we find that the CS EAS method trained on the 
large East Asian GWAS (Trubetskoy et al. 2022) performed 
best in the African ancestry sample, the CSx Meta method 
performed best in the European ancestry sample, and the CS 
EUR method trained on the large European GWAS (Trubet-
skoy et al. 2022) performed best in the admixed ancestry 
sample. Mean variance explained for the CS EAS method 
was 9.5% in the African ancestry sample, 1.0% in the Euro-
pean ancestry sample, and 1.9% in the admixed ancestry 
sample. Mean variance explained for the CSx Meta method 
was 9.0% in the African ancestry sample, 1.0% in the Euro-
pean ancestry sample, and 1.8% in the admixed ancestry 
sample. Mean variance explained for the CS EUR method 
was 9.3% in the African ancestry sample, 1.0% in the Euro-
pean ancestry sample, and 1.9% in the admixed ancestry 
sample. It is worth noting that the results of CS EAS and 
CS EUR are not significantly different in the MIX group 



300	 Behavior Genetics (2023) 53:292–309

1 3

(p = 0.87). A graphic summary of these results can be found 
in Fig. 7. Numeric summaries of these results are available 
in Supplemental Tables 17–19.As with depression PSs, 

schizophrenia PSs predicting CBCL total problems and 
KSADS total problems, we observe particularly poor per-
formance of the CSx method; this may be due to unstable 

Fig. 3   Variance explained of PS methods in predicting BMI across 
100 folds of 50/50 cross-validation. Panels A, B, and C represent per-
formance in AFR, EUR, and MIX ancestry populations respectively. 
Methods marked ‘CSx Meta’ and ‘CSx’ represent the meta-analysis 
and hyperparameter-weighted trans-ancestry outputs from the contin-
uous shrinkage method PRScsx. Methods marked ‘CS’ represent the 
single ancestry outputs of the continuous shrinkage method PRScs 
(both LD reference and summary statistics from a single ancestry). 

Methods marked ‘P + T’ represent the single ancestry outputs from 
the linear pruning and thresholding method PRSice2. The three let-
ter abbreviations included in some methods represents the sample 
ancestries as follows: European ancestry (EUR), African ancestry 
(AFR), East Asian ancestry (EAS), North or South American ances-
try (AMR), and South Asian ancestry (SAS). Additional information 
about the summary statistics can be found in Supplementary Tables 1 
and additional phenotype data can be found in Supplementary Fig. 3
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Fig. 4   Variance explained of PS 
methods applied to depression 
in predicting CBCL total prob-
lems scores across 100 folds 
of 50/50 cross-validation. A–C 
represent performance in AFR, 
EUR, and MIX ancestry popu-
lations respectively. Methods 
marked ‘CSx Meta’ and ‘CSx’ 
represent the meta-analysis 
and hyperparameter-weighted 
trans-ancestry outputs from the 
continuous shrinkage method, 
PRScsx. Methods marked ‘CS’ 
represent the single ancestry 
outputs of the continuous 
shrinkage method PRScs (both 
LD reference and summary sta-
tistics from a single ancestry). 
Methods marked ‘P + T’ repre-
sent the single ancestry outputs 
from the linear pruning and 
thresholding method PRSice2. 
The three letter abbreviations 
included in some methods 
represents the sample ancestries 
as follows: European ancestry 
(EUR) and East Asian ancestry 
(EAS). Additional information 
about the summary statistics 
can be found in Supplemen-
tary Tables 1 and additional 
phenotype data can be found in 
Supplementary Fig. 4
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Fig. 5   Variance explained of PS 
methods applied to depression 
in predicting KSADs total prob-
lems scores across 100 folds 
of 50/50 cross-validation. A–C 
represent performance in AFR, 
EUR, and MIX ancestry popu-
lations respectively. Methods 
marked ‘CSx Meta’ and ‘CSx’ 
represent the meta-analysis 
and hyperparameter-weighted 
trans-ancestry outputs from the 
continuous shrinkage method 
PRScsx. Methods marked ‘CS’ 
represent the single ancestry 
outputs of the continuous 
shrinkage method PRScs (both 
LD reference and summary sta-
tistics from a single ancestry). 
Methods marked ‘P + T’ repre-
sent the single ancestry outputs 
from the linear pruning and 
thresholding method PRSice2. 
The three letter abbreviations 
included in some methods 
represents the sample ancestries 
as follows: European ancestry 
(EUR) and East Asian ancestry 
(EAS). Additional information 
about the summary statistics 
can be found in Supplemen-
tary Tables 1 and additional 
phenotype data can be found in 
Supplementary Fig. 5
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weightings of ancestry-specific PS that make up the CSx 
method across cross-validation folds (Supplementary 
Figs. 9–10).

GCTA analysis

For psychological traits the polygenic prediction in the Afri-
can ancestry group showed surprisingly high performance. 
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To further explore these results we performed Genome-wide 
Complex Trait Analyses (GCTAs) to see if there were sig-
nificant differences in SNP heritability ( h2

snp
) estimates for 

our mental health traits between our different samples (Yang 
et al. 2011).

We observed higher point estimates for h2
snp

 the African 
ancestry cohort vs. European and admixed ancestry cohorts 
for CBCL Total Problems (AFR: h2

snp
 = 0.34, SE = 0.88; 

EUR: h2
snp

 = 0.19, SE = 0.08; MIX: h2
snp

 = 0.06, SE = 0.82) 
and for KSADS Total Problems (AFR: h2

snp
  =  1.00, 

SE = 0.93; EUR: h2
snp

 = 0.00, SE = 0.08; MIX: h2
snp

 = 0.00, 
SE = 0.09). This is consistent with greater genetic variability 
in this trait for African ancestry individuals – which may 
explain our unexpected result of higher polygenic prediction 
in this sample. However, with small sample sizes we observe 
wide error bars and so we advise caution in overinterpreting 
this result. Full results of GCTA Analysis can be found in 
Supplementary Tables 20–25.

Discussion

In ABCD, we find PRScsx Meta (CSx Meta) and PRScs 
(CS), especially those run on large European ancestry sam-
ple, provide improved polygenic prediction over pruning 
and thresholding methods. Also, the addition of multiple 
non-European ancestry reference panels and summary sta-
tistics seemed to provide greater predictive utility to mod-
els in African and Admixed populations than to European 
Populations.

Our results showed that PS for height and BMI explained 
between 9.8 and 14.5% of variance across all ancestry 
groups. For anthropometric traits, the methods used in this 
analysis perform best in the European ancestry sample. 
Differences in performance are likely due to differences in 
GWAS sample sizes for different ancestries (Karunamuni 

et al. 2020; Wu et al. 2022). Additionally, for the admixed 
cohort proportion of European ancestry may be a factor; 
previous research has shown that in ancestrally diverse 
populations the predictive validity of PS increases linearly 
with the individual’s proportion of European genetic ances-
try (Bitarello and Mathieson 2020). Unexpectedly, despite 
PRScsx being a trans-ancestry method it didn’t show as 
strong of performance in this sample compared to a previous 
study (Ruan et al. 2022). This relatively poor performance 
could be due to a lack of homogeneity in the United States 
(Adhikari et al. 2017) or the high degree of genetic diversity 
within continental ancestry groups (Adhikari et al. 2016; 
Campbell and Tishkoff 2008). Indeed, the weighting of the 
different ancestral components making up PRScsx appeared 
unstable in our analysis, particularly for psychiatric PS, (see 
Supplementary Figs. 6–11) which may be driven by these 
factors and likely explains this method’s low performance in 
our sample. Additionally, the two best-performing methods 
(PRScs and PRScsx-Meta) do not require hyperparameter 
tuning which negates the requirement for cross-validation 
in the target population making them much easier to deploy. 
In mental health traits we found uncharacteristically high 
performance in our African ancestry sample. GCTA analy-
sis showed there were differences in heritability between 
our samples that could potentially account for the improved 
performance; however, the wide-error bars of the results 
prevent us from drawing any definitive conclusions. Addi-
tional research is needed to understand the potential factors 
that underlie this result. There was also surprising predictive 
power of the CS methods based on GWAS in East Asian 
Populations (Giannakopoulou et al. 2021; Trubetskoy et al. 
2022) on our mental health phenotypes, despite their smaller 
discovery sample sizes. While the true difference between 
the results analysis is small and sometimes even not signifi-
cant, we propose a potential explanation. First there may be 
differences in environmental factors or confounding diag-
nostic practices for schizophrenia or depression in differ-
ent regions in which the discovery GWAS were conducted. 
Previous research has highlighted geographic differences in 
diagnostic criteria of psychiatric conditions (Mitchell et al. 
2011; Saito et al. 2022). Because we are associating poly-
genic scores with measures of behavior and symptomology 
instead of formal diagnoses, it is possible that diagnostic 
criteria for schizophrenia and depression used in East Asia 
happens to be more related to variability in CBCL total prob-
lems and KSADS total problems than criteria for these same 
disorders in Europe. Such effects may explain differences 
in genetic correlations between eastern and western coun-
tries observed for psychiatric disorders (Saito et al. 2022; 
THE BRAINSTORM CONSORTIUM et al. 2018). In any 
case, given the generally low performance of these mod-
els in the majority of our participants we again caution the 
reader from over interpreting our results. Additional, more 

Fig. 6   Variance explained of PS methods applied to schizophrenia 
in predicting CBCL total problems scores across 100 folds of 50/50 
cross-validation. A–C represent performance in AFR, EUR, and 
MIX ancestry populations respectively. Methods marked ‘CSx Meta’ 
and ‘CSx’ represent the meta-analysis and hyperparameter-weighted 
trans-ancestry outputs from the continuous shrinkage method 
PRScsx. Methods marked ‘CS’ represent the single ancestry outputs 
of the continuous shrinkage method PRScs (both LD reference and 
summary statistics from a single ancestry). Methods marked ‘P + T’ 
represent the single ancestry outputs from the linear pruning and 
thresholding method PRSice2. The three letter abbreviations included 
in some methods represents the sample ancestries as follows: Euro-
pean ancestry (EUR), African ancestry (AFR), East Asian ancestry 
(EAS), and North or South American ancestry (AMR). Additional 
information about the summary statistics can be found in Supplemen-
tary Tables 1 and additional phenotype data can be found in Supple-
mentary Fig. 4

◂
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targeted research is needed to fully understand the associa-
tion between genetics and any behavioral or psychiatric 
outcome.

There is potential that PS performance on anthropomet-
rics traits in our analysis may be low due to the age of our 
sample. Previous research has shown that genetic factors 
exert a particularly strong influence on body height between 
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the ages of 14 and 18 (Silventoinen et al. 2008) and that 
PRSs of BMI increase in efficacy as an individual’s age 
passes adolescence into adulthood (Sanz-de-Galdeano et al. 
2020). Additionally, age may play a role in the efficacy of 
our polygenic models based on GWAS of schizophrenia as, 
in most cases, schizophrenia is diagnosed in late adolescence 
and early adulthood (Walker et al. 2004), and premorbid 
declines in cognition are normally assessed during the onset 
of puberty between the ages of 13 and 16 years (Fuller et al. 
2002). Because symptoms related to schizophrenia may not 
have begun to fully manifest in our population it is possi-
ble that our estimates of the genetic variance explained are 
underestimates of associations at later time points.

This paper also represents an important step in the use 
of PSs in admixed individuals. There has been research 
into particular GWAS methods in admixed populations that 
have had some success in improving PSs (Bitarello and 
Mathieson 2020; Hou et al. 2022) these analyses often only 
look at two-way admixture between African ancestry and 
European ancestry. Our analysis of our admixed population 
shows encouraging performance in our admixed popula-
tion agnostic of the degree of admixture and the component 
ancestry pieces.

While the precise causal mechanisms that underlie these 
interactions are yet poorly understood, and many traits, espe-
cially cognitive and psychiatric traits, are strongly influenced 
by environmental factors, this article shows the current 
potential that Bayesian continuous shrinkage PS methods 
display higher prediction of complex traits across ancestries. 
If PSs are to achieve clinical validity it is important that they 
show equitable performance across diverse populations and 
within populations of individuals that do not fit categorically 
into continental ancestries (Lewis and Green 2021). More 
work must continue to be done to improve the power and 
validity of diverse GWAS summary statistics, as well as to 
develop genomic datasets in individuals of diverse ancestry.

Limitations

It must be acknowledged that PSs only account for genetic 
influences. Any sort of modeling based on PS should 
account for other known non-genetic causal factors. For 
many traits, genetic factors only account for a portion of 
the variance in trait outcomes. It is especially important to 
acknowledge that, for essentially all cognitive and psychi-
atric traits, environmental factors and gene-environment 
interactions will be major components in outcomes. ABCD 
has very rich phenotyping, but this analysis was limited by 
the public availability of GWAS summary statistics in non-
European populations, as the majority of large public GWAS 
studies have been performed on European populations (Mar-
tin et al. 2019). Moreover, while ABCD is a diverse cohort, 
the majority of participants are of European ancestry.
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