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Abstract
The present study tested models of polygenic by environment interaction between early childhood family instability and 
polygenic risk for aggression predicting developmental trajectories of aggression from middle childhood to adolescence. 
With a longitudinal sample of 515 racially and ethnically diverse children from low-income families, primary caregivers 
reported on multiple components of family instability annually from child ages 2–5 years. A conservative polygenic risk score 
(p = 0.05) was generated based on a prior meta-genome wide association study. Trajectories of aggression were identified 
using a curve of factors model based on a composite of primary caregiver, alternate caregiver, and teacher reports at five 
ages from 7.5 to 14 years. The family instability by polygenic interaction predicted growth in children’s aggression such that 
children with lower levels of family instability and lower polygenic risk exhibited a steeper decline in aggression from 7.5 
to 14. Findings support the need to model gene-environment interplay to elucidate the role of genetics in the development 
of aggressive behaviors.
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Introduction

A central challenge to survival and development for any 
organism is preparing for and adapting to unpredictable 
environments. From an evolutionary perspective, genetic 
polymorphisms exist to maximize adaptability across vary-
ing environmental contexts (Ellis and Del Giudice 2019). 
Genotypic variability allows humans to maximize biologi-
cal fitness by making phenotypic adjustments to meet the 
demands of both optimal and suboptimal environments 
(West-Eberhard 2003). Harsh, stressful, or unpredictable 

environments may reinforce a phenotype that is maladap-
tive in optimal environments, but serve an adaptive func-
tion in highly stressful environments. Environmental stress 
occurring at early developmental stages when organisms are 
highly plastic may be especially impactful (Ellis and Del 
Giudice 2014).

One environmental stressor in modern society that many 
children face is family instability, referred to as instability 
throughout the manuscript, which can be defined broadly 
as events contributing to the disruption of the day-to-day 
structure and routines of a child’s life (Ackerman et al. 
1999). Instability may encompass residential mobility, fam-
ily structure instability, parental incarcerations, household 
chaos, and other destabilizing events (Ackerman et al. 1999; 
Forman and Davies 2003). Building from an evolutionary-
developmental perspective, this study examines associations 
between early childhood instability and developmental tra-
jectories of aggressive behaviors from middle childhood to 
adolescence conditional on genetic predisposition to behave 
aggressively, as measured by a polygenic risk score (PRS) 
generated from a meta-Genome Wide Association Study 
(GWAS) (Pappa et al. 2016).
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Instability and Aggressive Behavior Development

Theoretically, exposure to instability may lead to aggres-
sion by reinforcing a pattern of behaviors that increases 
short-term biological fitness in response to environmental 
stress and uncertainty (Belsky et al. 2012). The adaptive 
calibration model (Del Giudice et al. 2011) suggests that 
physiological responses to stress (and resulting behavioral 
sequalae) function as adaptive responses to highly unpre-
dictable or dangerous environments. Accordingly, high 
early childhood stress may reinforce hypervigilance or an 
unemotional responsivity pattern (Ellis and Del Giudice 
2019). Highly hypervigilant children may be prone to reac-
tive aggression (Bubier and Drabick 2009) and children with 
an unemotional pattern may exhibit low empathy and high 
reactive and proactive aggression (Fanti et al. 2009). While 
hypervigilance or unemotionality may be maladaptive in 
many settings, such as school (Campbell and Stauffenberg 
2008), such traits may be adaptive in the context of high 
instability. For example, in highly unpredictable environ-
ments, hypervigilance may be adaptive in alerting a child to 
changes in the environment. Similarly, any benefits of proac-
tive aggression (e.g., hitting another child to take their toy) 
may not be coupled with the negative social reinforcements 
that would dissuade such behaviors (e.g., rejection by the 
victim) if a child’s social environments are highly transient.

Externalizing problems, defined as a broad aggregation 
of aggressive, oppositional, and defiant behaviors (Achen-
bach and Rescorla 2001), are a widely replicated develop-
mental outcome associated with instability (Milan et al. 
2006; Fowler et al. 2014; Womack et al. 2019), empiri-
cally supporting theoretical links between instability and 
children’s emerging aggressive behavior. In particular, 
early childhood has been identified as a developmentally 
sensitive period for relations with instability (Cavanagh 
and Huston 2008; Womack et al. 2019; Zilanawala et al. 
2019). For example, experiencing multiple family struc-
ture transitions before age 3 predicted a pattern of elevated 
externalizing behaviors from ages 5 to 11, accounting for 
family structure transitions between 5 and 11 (Zilanawala 
et al. 2019). Using data from the current sample, Womack 
et al. (2019) found residential mobility and family struc-
ture instability in the first five years of life to predict exter-
nalizing behaviors at age 10.5, accounting for residential 
and family structure transitions between 5 and 10.5 as well 
as externalizing behaviors at age 5.

Models for Gene by Environment Interaction

While high instability has been associated with external-
izing problems (Fowler et al. 2014; Milan et al. 2006; 

Womack et al. 2019), not all children who experience 
instability develop externalizing problems, and some 
children who experience low instability display high lev-
els of externalizing behaviors. Behavior genetics research 
has provided evidence of genetic influence on children’s 
externalizing problems, especially aggressive behav-
ior (Gelhorn et al. 2006; Rhee and Waldman 2002), and 
interactions with the environment (e.g., maltreatment) 
to influence phenotypic development (Musci et al. 2019; 
Salvatore et al. 2015). Several proposed models provide 
a framework for understanding why children could expe-
rience the same level of instability and exhibit different 
levels of externalizing behaviors.

The diathesis-stress model posits that an individual’s 
diathesis, such as a genetic predisposition for psychopathol-
ogy, interacts with environmental stressors to lead to psycho-
pathology (Monroe and Simons 1991). Two recent studies 
demonstrated evidence of a PRS by environment interaction 
predicting externalizing problems (Bares et al. 2020; Ruisch 
et al. 2020). For example, in a sample of African American 
adolescents living in urban poverty, Bares et al. (2020) found 
that among lifetime alcohol users, the association between 
polygenic risk for alcohol use and adolescent-reported con-
duct problems was stronger among children who reported 
greater family and neighborhood stressors (e.g., residential 
mobility, family structure instability, exposure to violence). 
In the present study, a diathesis-stress model would be sup-
ported if children exposed to high levels of instability and 
high PRS showed increasing trajectories of aggression rela-
tive to peers with high levels of only instability or only poly-
genic risk (see Fig. 1a).

Several recent twin studies have provided evidence coun-
ter to the diathesis-stress model, suggesting that the herit-
ability of externalizing behaviors declines as environmental 
stress increases (Burt and Klump 2014; Button et al. 2005; 
Middeldorp et al. 2014; Tuvblad et al. 2006). For exam-
ple, in a sample of 500 6–10 year old twin pairs, Burt and 
Klump (2014) found the proportion of variance in conduct 
problems attributable to additive genetics to decline as par-
ent–child conflict increased. Similarly, in a large sample of 
Dutch twins, genetics accounted for an additional 20% of 
the variance in age 7 externalizing behaviors for children in 
high SES homes compared to low SES homes (Middeldorp 
et al. 2014). Such findings are consistent with the vulnera-
ble-stable model (Luthar et al. 2000), which proposes that 
individuals genetically predisposed to aggression would 
display high levels of aggressive behaviors at all levels of 
instability, while individuals less genetically predisposed to 
aggression would display high levels of aggressive behaviors 
only at greater levels of instability (see Fig. 1b).

Other gene by environment interaction models, such as 
the differential susceptibility (Belsky and Pluess 2009) or 
vantage sensitivity (Pluess and Belsky 2013) models focus 
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on genetic variation in sensitivity to the environment and 
require assessment of highly supportive and highly stressful 
environments to test them.

Previous GWASs of Aggressive Behaviors

Until recently, the largest GWAS of aggressive behavior 
in childhood and adolescence was a meta-GWAS of par-
ent-reported aggression across nine cohorts of Northern 
European ancestry between the ages of 3 and 15 years, ana-
lyzed together (N = 18,988) and in separate early childhood 
(N = 15,668; age range of 3–7 years) and middle childhood to 
adolescent (N = 16,311; age range of 8–15 years) subsamples 
(Pappa et al. 2016). Pappa et al. (2016) report significant sin-
gle nucleotide polymorphism (SNP)-based heritability rang-
ing from 10 to 54% across cohort and suggestive evidence of 
genetic associations, particularly on chromosome 2, but no 
significant SNPs at the genome-wide level. More recently, a 
new and larger meta-GWAS published as a bioRxiv preprint 
(Ip et al. 2021) examined child and adolescent aggression 
across 29 cohorts of Northern European ancestry between 

the ages of 1.5 and 18 years (N = 87,485), and similarly 
found no SNPs that met the genome-wide significance cri-
terion and much lower SNP heritability (3.31%). However, 
11 of 16 PRSs formed based on these findings were associ-
ated with mother-report of age 7 aggressive behavior within 
an independent sample, although the variance explained was 
small (0.036–0.44%). Importantly, although both Ip et al. 
(2021) and Pappa et al. (2016) identified significant regions 
in gene-based analyses, neither the significant regions nor 
the top SNP-level associations overlapped across the two 
studies. However, in addition to their somewhat narrower 
age range, Pappa et al. (2016) predicted a more narrowly-
defined phenotype (parent-report of aggressive behavior), 
whereas Ip et al. (2021) included parent-, self-, and teacher-
reports in their analyses.

On the whole, findings from GWAS in both child-to-
adolescent and adult samples indicate that the effects of 
individual SNPs on aggressive phenotypes are small and 
heterogeneous across reporter and age, with few associa-
tions at genome-wide significance to date and none repli-
cated (Ip et al. 2021; Odintsova et al. 2019). However, PRSs 

Fig. 1  Plots of example gene 
by environment interactions 
between family instability and 
polygenic risk for aggression
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aggregating across multiple small associations from GWAS 
that fail to reach genome-wide significance may neverthe-
less capture meaningful variance in complex psychological 
phenotypes (Murray et al. 2020). For instance, based on a 
GWAS of nearly 1.5 million adults of European ancestry, 
Karlsson Linnér et al. (2020) created a polygenic score for 
broadly-defined externalizing behaviors (including ADHD, 
substance use, risky sexual behavior, and risky behavior), 
and found this score to be associated with symptom counts 
of conduct disorder, oppositional defiant disorder, and sub-
stance use, but not aggressive behaviors. Similarly, Tiel-
beek et al. (2017) created a polygenic score for antisocial 
behaviors based on a GWAS of 16,400 children and adults 
of European ancestry, which was associated with mother-
reported conduct problems in female, but not male children. 
As such, despite prediction of relevant phenotypes in inde-
pendent samples, these studies still find inconsistencies that 
exist across individual characteristics and traits.

Generally, improved prediction within GWAS and using 
PRSs has been achieved by increasing the sample size of dis-
covery datasets, allowing researchers to capture the effects 
of SNPs across the genome with increasing power and preci-
sion (e.g., Lee et al. 2018, for educational attainment). How-
ever, one trade-off is that collapsing across phenotypically 
and genetically heterogeneous traits may result in failure to 
detect genetic influences specific to more narrowly-defined 
phenotypes For aggression, twin studies show strong stabil-
ity of genetic influences across age, but also some evidence 
of age-specificity, with novel genetic influences emerging 
in middle childhood and middle and late adolescence (Van 
Beijsterveldt et al. 2003; Veroude et al. 2016; Vierikko 
et al. 2006). As such, we elected to base our analyses on 
the middle childhood-to-adolescent subsample of the dis-
covery GWAS by Pappa et al. (2016), which corresponded 
most closely to our sample in age range and measurement of 
aggressive behavior, rather than larger GWASs that included 
adult participants or traits such as substance use and risky 
sexual behavior (e.g., Karlsson Linnér et al. 2020; Tielbeek 
et al. 2017).

Current Study

At present, there is a dearth of literature examining interac-
tions between children’s genetic architecture and environ-
mental features in early childhood using a contemporary 
polygenic risk approach. Previous studies have observed 
interactions between environmental stressors and genetics 
predicting externalizing behaviors in general and aggres-
sion in particular at a single age (Bares et al. 2020; Burt and 
Klump 2014). However, genes and the environment may also 
interact to predict the direction and rate of change in aggres-
sion across development, but we are aware of no gene by 
environment studies examining development of aggressive 

behavior across childhood. The present study tests a poly-
genic by environment interaction between early childhood 
instability and polygenic risk for aggression in middle 
childhood predicting trajectories of aggression from mid-
dle childhood to adolescence. We hypothesize an instability 
by PRS interaction predicting both the level and growth of 
aggression, with no specific hypotheses about the shape of 
the interaction given the dearth of literature in this area.

Methods

Participants

Participants were 731 families recruited as a part of the Early 
Steps Multisite Study, a randomized controlled trial of the 
Family Check-Up parenting intervention (see Dishion et al. 
2008). Families were recruited from Women, Infant, and 
Children Nutritional Supplement (WIC) programs around 
the metropolitan areas of Pittsburgh, PA, Eugene, OR, and 
Charlottesville, VA. To be eligible for the study, families 
needed to have a child between the ages of 2 years 0 months 
and 2 years 11 months, and meet two out of the three follow-
ing criteria: child behavior problems 1 SD above the mean, 
family problems (e.g., maternal depression), and sociodemo-
graphic risk (e.g., low educational attainment). Of the 731 
families recruited, 272 (37%) were recruited in Pittsburgh, 
271 (37%) in Eugene, and 188 (26%) in Charlottesville. 
Across sites, target children (49% female) belonged to the 
following racial groups: 27.9% African American, 50.1% 
European American, 13.0% biracial, and 8.9% other races 
(e.g., American Indian). Thirteen percent of participants 
identified as Hispanic. Following the baseline assessment at 
age 2, half of the families were randomly assigned to receive 
the Family Check-Up parenting intervention.

Procedures

Data were collected during in-home assessments at child 
ages 2, 3, 4, 5, 7.5, 8.5, 9.5, 10.5, and 14 with primary 
caregivers, target children, and, when available, alternate 
caregivers (e.g., father, grandparent). The present study 
utilized survey data collected from primary and alternate 
caregivers during the in-home assessments. Following 
each in-home assessment between 7.5 and 14 years, a 
packet of questionnaires was sent to target child’s primary 
teacher. All participants were financially compensated fol-
lowing each assessment. Custodial parent’s written con-
sent was obtained prior to administration of any measures 
at each assessment. A Certificate of Confidentiality was 
obtained from the National Institute of Health to offer 
protection of participants’ confidentiality and encourage 
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honest reporting. Institutional review board approval was 
obtained for all screening and assessment procedures.

Retention

Analyses were limited to the 515 children (86.7% of the 
initial sample) for whom there are genetic data collected 
at age 14. Attrition analyses revealed no statistically sig-
nificant differences for instability, baseline primary car-
egiver education, baseline family income, baseline child 
externalizing behaviors, intervention status, child gender, 
or child race between the 515 children included in the 
present study and the 216 children for whom there were 
no genetic data. Additionally, among children who par-
ticipated at age 14, there were no significant difference 
in any of the aforementioned variables between children 
who provided a sample for genotyping and children who 
participated in the age 14 assessment but did not provide 
genetic data.

Measures

Instability

An instability composite score was calculated for assess-
ments at child ages 2, 3, 4, 5, guided by items from the 
Family Instability Questionnaire (Ackerman et al. 1999). 
Specifically, instability was measured at each wave by the 
presence or absence (coded 1, or 0, respectively) of insta-
bility across eight domains over the previous year: resi-
dential moves, transitions in a child’s primary caregiver, 
primary caregiver cohabitating relationship transitions, 
primary caregiver-reported work stress (coded yes = 1, 
no = 0), death or serious illness of a close family member, 
household chaos, household overcrowding, and incarcera-
tions of adults living in the home.

Primary caregiver relationship transitions were coded 
separately for separations and new cohabitating relation-
ships. Household chaos was assessed using the Confu-
sion, Hubbub, and Order Scale (CHAOS), a 15-item scale 
completed by primary caregivers that assesses the level of 
disorganization, noise, and disorder in the home (Matheny 
et al. 1995). CHAOS scores that fell at or above one SD 
above the sample mean at each age were coded as a 1, and 
scores less than one SD above the mean were coded as a 0. 
Household overcrowding was assessed as a person to room 
ratio greater than 1, in line with Census Bureau guidelines 
for overcrowding (United States Census Bureau 2020). To 
capture instability across early childhood, scores from ages 
2 through 5 were averaged.

Aggressive Behaviors

Primary and alternate caregivers completed the Child 
Behavior Checklist (CBCL 6–18) and teachers completed 
the Teacher Report Form (TRF) at child ages 7.5, 8.5, 9.5, 
10.5, and 14. The CBCL 6–18 and TRF yield an 18-item (17 
on the TRF) aggressive behavior factor that encompasses 
physical aggression (“Physically attacks people”) and verbal 
aggression (“Threatens people”) (Achenbach and Rescorla, 
2001). The frequency of child behaviors is assessed on a 
three-point Likert scale: 0 (not true), 1 (somewhat or some-
times true), and 2 (very true or often true). Cronbach alphas 
from age 7.5 to 14 ranged from 0.86 to 0.92 for primary 
caregivers, 0.84–0.91 for alternate caregivers, and 0.92–0.94 
for teachers, indicating acceptable internal reliability. Latent 
aggressive behavior factors based on primary caregiver, 
alternate caregiver, and teacher reports at each age were 
estimated within the curve of factors model with primary 
caregiver factor loadings set to 1.

Aggression PRSs

Genotyping was performed at Rutgers University Cell and 
DNA Repository (RUCDR) using the Affymetrix Biobank1 
Array. Genotyping was conducted in 2016 for 280 individu-
als (278 passed initial quality control thresholds; mean call 
rate = 99.3%, SD = 0.504%) and in 2017 for 239 individuals 
(237 passed; mean call rate = 29.98%, SD = 0.499%), with 
allele calls performed using the apt-genotype-axiom pro-
gram in the Affymetrix Power Tools v-1.16 software package 
(Thermofisher Scientific 2020). Data were imputed to the 
1000 Genomes Phase three reference panel using the Michi-
gan Imputation Server (Das et al. 2016), and we retained 
only SNPs above the imputation quality criterion of r2 = 0.80 
(the squared correlation between imputed allele dosages and 
masked genotypes; Das et al. 2016). Both before and after 
imputation, we screened out data according to the follow-
ing criteria: missing SNP or individual data ≥ 5% (43,239 
SNPs out of 550,214 in the non-imputed data; no SNPs in 
post-imputation data cleaning and no individuals), minor 
allele frequency ≤ 1% (181,136 SNPs pre-imputation; 65 
SNPs post-imputation), and deviations from Hardy Wein-
berg Equilibrium at p ≤  10–6 (4187 SNPs pre-imputation; 
7776 SNPs post-imputation). After quality control screen-
ing, data were available for 515 individuals on 4,048,277 
imputed SNPs. To account for population admixture, we 
conducted principal components analysis of all autosomal 
SNPs in Plink v1.9 after removing regions of long range 
linkage disequilibrium (LD) and pruning local LD using 
PLINK’s sliding window procedure (LD r2 = 0.20, window 
size = 200 SNPs, step size = 100 SNPs). The first 20 com-
ponents were extracted.
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The aggression PRS was formed based on summary sta-
tistics from the middle childhood sample in an aggression 
meta-GWAS (Pappa et al. 2016), selected for its similar-
ity to our own sample in age range and measurement of 
aggression. PRS were formed using the R program PRSice 
v2 (Euesden et al. 2015) and PLINK v1.9 (Purcell et al. 
2007). Beginning with the 1,506,214 SNPs present in both 
the GWAS findings and our imputed data, we first screened 
out a total of 221,705 strand-ambiguous SNPs (A/T and 
C/G), we accounted for LD using Plink’s clumping pro-
cedure (r2 = 0.3, 250 kb window), which forms clumps of 
related SNPs within the sliding window and retains the SNP 
with the lowest GWAS p value from each. Using the 165,969 
SNPs that remained after clumping, we formed PRS as the 
unit-weighted sum of risk alleles divided by total alleles 
falling below a series of GWAS p thresholds from 0.00001 
to 0.10. Although it is common for studies of PRS to test 
scores including SNPs at p thresholds up to 0.50 or 1.0, we 
wished to include only SNPs with relatively large effects, 
especially as alleles were unit-weighted. For analyses, we 
selected the score at a threshold of p = 0.05 representing the 
largest score at or below the traditional alpha level, which 
included a total of 14,834 SNPs. No tests were run using 
scores other than the PRS p = 0.05. Prior to analyses, we 
z-scored the Aggression PRS, then regressed it onto the first 
20 principal components and saved the residual to use as a 
predictor in the study models.

Covariates

Sociodemographic covariates assessed using a structured 
interview at the baseline age 2 assessment included family 
income, target child gender (coded 1 for male, 0 for female), 
target child race (coded 1 for nonwhite, 0 for White), and 
primary caregiver’s education. Family income was coded on 
a 13-point scale from $4999 or less (1) to $90,000 or more 
(13). Primary caregiver education was coded on a 9-point 
scale ranging from “No Formal Schooling” (1) to “Gradu-
ate Degree” (9). Additionally, intervention status and site 
location (with Oregon coded as the reference group) were 
accounted for as covariates in analyses.

Primary caregiver criminal behavior was also included 
as a study covariate to account for caregiver behaviors or 
attitudes that may contribute to family instability or the 
development of child aggressive behaviors. At the age 4 
assessment, primary caregivers completed a 17-item abbre-
viated version of the Elliott Self-Report of Delinquency 
scale (Elliott et al. 1985). To encompass current and past 
criminal behaviors, questions were adapted to ask how fre-
quently the primary caregiver engaged in criminal activities 
since they were 12. The Self-Report of Delinquency Scale 
assesses aggressive behaviors (e.g., attacked someone with 
a weapon, hit someone with the idea of hurting them) and 

other criminal behaviors (e.g., theft, destruction of prop-
erty). Cronbach alphas indicate that the adapted Self-Report 
of Delinquency scale demonstrated acceptable internal con-
sistency (α = 0.87).

Data Analysis

Descriptive statistics and intercorrelations were calculated 
using the base package in R (R Core Team 2020). Structural 
equation models were fit using the ‘lavaan’ package ver-
sion 0.6–8.1587 (Rosseel 2012). Parameters were estimated 
using maximum likelihood with robust standard errors and 
missing data were handled using full-information maximum 
likelihood estimation. A curve of factors model (McArdle 
1988) was fit to primary caregiver, alternate caregiver, and 
teacher reports of externalizing behaviors from ages 7.5 to 
14. Curve of factors models allow confirmation of factor 
invariance and measure change at the factor-level, which 
reduces measurement error (McArdle 1988). A quadratic 
growth model fit the growth of aggressive behaviors better 
than a linear growth model (X2

df = 4 = 28.88, p < 0.001).
To test the study hypotheses, the intercept, slope, and 

quadratic growth terms were regressed onto early childhood 
instability, aggression PRS, a product (interaction) term 
of instability and aggression PRS, and sociodemographic 
covariates. To account for potential interactive effects 
between covariates and genes or covariates and environ-
mental predictors (Keller 2014), covariate by aggression 
PRS and covariate by instability interaction effects on the 
growth parameters were estimated. Non-significant covari-
ate by aggression PRS and covariate by instability paths 
were dropped from the final model (see Supplementary 
Table 1 for model results with all interactions). Early child-
hood instability, the aggression PRS, and continuous study 
covariates were standardized before creating the product 
terms. Significant interactions were probed at the mean, one 
SD below the mean, and one SD above the mean using the 
‘probe2WayMC’ function in the ‘semTools’ package version 
0.5–3 (Jorgensen et al. 2020).

Results

Descriptive Statistics and Intercorrelations

Descriptive statistics for instability, aggression PRS, and 
reports of externalizing behaviors can be found in Table 1. 
The mean instability score from 2 to 5 years was 1.74 
(SD = 0.87), indicating that the average child experienced 
1.74 events each year. Only 5 children (1.0% of the study 
sample) had instability scores of 0, indicating that they did 
not experience any of the instability indicators between 
ages 2 and 5. Fifty children (9.7% of the study sample) had 
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instability scores of three or higher, indicating that they 
experienced three or more of the instability indicators each 
year between ages 2 and 5.

Descriptive statistics are presented separately for White 
and Black children in addition to the full sample. Black 
children experienced significantly higher levels of insta-
bility than White children (tdf=350.42 = 2.20, p = 0.028, 
Cohen’s d = 0.22). Teachers (but not primary or alternate 
caregivers) reported significantly higher levels of aggres-
sive behavior for Black children relative to White chil-
dren at ages 8.5–14. Effect sizes of these differences were 
medium (Cohen’s d’s = 0.47–0.53).

Instability was modestly, albeit significantly associated 
with primary caregiver, alternate caregiver, and teacher 
reports of aggressive behavior at every age with the 
exception of the teacher report at age 9.5 (r’s = 0.12-0.23, 
p < 0.05). Univariate correlations between the aggres-
sion PRS and aggressive behaviors were nonsignificant 
across reporters and ages. Correlations of aggressive 
behavior ratings within and between rater were gener-
ally positive and significant across time. Intercorrelations 
between study variables for the full sample are presented 
in Table 2. Intercorrelations for primary study variables 
calculated separately for White and Black children were 
similar in magnitude and direction to intercorrelations for 
the full sample (see Table 3).

Aggression PRS by Instability Interaction

The curve of factors model including main effects, the inter-
action term, and covariates had an acceptable fit to the data 
(X2

df=357 = 456.06, p < 0.001, RMSEA = 0.02, CFI = 0.97, 
TLI = 0.97). Full results are reported in Table 4. Plots of 
all interactions are depicted in Fig. 2. There was a signifi-
cant main effect of instability on the intercept of aggressive 
behaviors, but not a main effect of aggression PRS or inter-
action. For the slope of aggression, there was a significant 
negative effect of the interaction term. Probing the simple 
slopes indicated that children experiencing lower instabil-
ity (1 SD below the mean) demonstrated a shallower initial 
decline in aggression at higher aggression PRS (B = 0.35, 
SE = 0.216, p = 0.028). Simple slopes for moderate (at the 
mean) and high levels (1 SD above the mean) of instability 
were nonsignificant. Finally, there was a significant posi-
tive effect of the interaction term on the quadratic growth 
of aggression. Probing the simple slopes revealed that at 
low levels of instability (1 SD below the mean), children 
with higher aggression PRSs demonstrated steeper negative 
quadratic growth (B = − 0.05, SE = 0.02, p = 0.011). Simple 
slopes were nonsignificant for children at mean levels of 
instability or instability 1 SD above the mean.

To aid in interpretation of the curve of factors model, 
predicted trajectories of aggression were plotted for children 

Table 1  Descriptive statistics 
of independent and dependent 
variables

PC primary caregiver, AC alternate caregiver, PRS polygenic risk score
*Indicates a significant mean difference between White and Black youth

Construct Full sample (n = 515) White subsample 
(n = 247)

Black subsample 
(n = 161)

n Mean (SD) n Mean (SD) n Mean (SD)

Instability 515 1.74 (0.87) 247 1.68 (0.88)* 161 1.88 (0.85)*
Aggression PRS 515 0.02 (0.00) 247 0.02 (0.00) 161 0.00 (0.00)
PC aggressive behavior 7.5 453 9.29 (7.03) 225 9.33 (6.99) 132 9.89 (7.27)
PC aggressive behavior 8.5 448 8.06 (6.99) 213 8.10 (7.02) 133 7.33 (6.40)
PC aggressive behavior 9.5 475 7.74 (6.77) 226 7.62 (6.57) 147 8.53 (7.10)
PC aggressive behavior 10.5 463 7.59 (6.90) 223 7.67 (6.80) 143 8.35 (7.36)
PC aggressive behavior 14.5 495 7.56 (7.32) 244 7.30 (6.95) 154 7.77 (7.97)
AC aggressive behavior 7.5 345 7.44 (6.45) 181 7.69 (6.62) 92 7.33 (6.40)
AC aggressive behavior 8.5 338 7.13 (6.01) 172 7.15 (5.60) 88 7.49 (6.70)
AC aggressive behavior 9.5 361 6.76 (6.11) 185 6.72 (5.75) 104 6.53 (6.32)
AC aggressive behavior 10.5 337 5.94 (6.13) 170 6.21 (6.12) 101 5.78 (6.48)
AC aggressive behavior 14 345 6.49 (6.27) 181 6.45 (6.06) 99 6.10 (6.44)
Teacher aggressive behavior 7.5 257 5.46 (7.55) 135 5.05 (7.18) 54 7.37 (8.88)
Teacher aggressive behavior 8.5 316 5.37 (7.53) 160 4.39 (6.29)* 82 7.91 (9.40)*
Teacher aggressive behavior 9.5 314 5.32 (7.53) 156 4.28 (5.99)* 93 7.98 (9.25)*
Teacher aggressive behavior 10.5 301 5.37 (7.36) 144 4.23 (6.57)* 91 7.64 (8.12)*
Teacher aggressive behavior 14 457 4.70 (7.39) 226 3.46 (6.02)* 138 7.23 (8.81)*
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with aggression PRSs 1 SD below and above the mean expe-
riencing low, moderate, and high instability (Fig. 3). While 
the average predicted trajectory of aggression is declining 
from age 7.5 to 14 for children at low, medium, and high 
levels of instability and genetic risk, children experiencing 
low instability display a flatter trajectory of aggression when 
they were at high relative to low genetic risk. Put differently, 
among children experiencing low instability, children with a 
high aggression PRS did not display the decline in aggres-
sion across late-childhood observed in children with low 
aggression PRSs.

Study covariates were only significantly associated with 
the intercept of aggressive behaviors. Specifically, males 
exhibited a higher intercept relative to females, and nonwhite 
youth displayed a lower intercept. Significant instability by 
treatment status and instability by site location interactions 
were observed on the intercept (see Supplementary Figs. 1 
and 2, respectively). Simple slope analyses revealed that 
children in both the intervention and control groups, and 
children at each site location exhibited increasing levels of 
aggressive behaviors as instability increased. There was a 
significant main effect of the Pittsburgh site, indicating that 
children in Pittsburgh were rated as displaying higher levels 
of aggressive behaviors relative to children in Eugene.

Sensitivity Analyses

We conducted sensitivity analyses by fitting a multigroup 
curve of factors model to a subset of 247 White and 161 
Black children. The PRS by instability interactions failed 

to reach significance for Black or White children in predict-
ing the intercept (B = 0.76, 0.09; SE = 0.42, 0.69 for White 
and Black youth, respectively, p’s > 0.05), slope (B = − 0.32, 
− 0.07; SE = 0.17, 0.22 for White and Black youth, respec-
tively, p’s > 0.05), or quadratic (B = 0.04, 0.03; SE = 0.02, 
0.03 for White and Black youth, respectively, p’s > 0.05) 
coefficients. However, the directions of the associations 
were consistent with those in the full model. Constraining 
the associations between the interaction term and the inter-
cept, slope, and quadratic coefficients to be equal for Black 
and White children did not result in a significant reduction 
in model fit (X2

df = 3 = 1.84, p = 0.607), providing support 
for our approach of testing PRS by instability interactions 
across race.

Power Analysis

Monte Carlo simulations were conducted in Mplus version 
8.4 (Muthén and Muthén 2017) to determine the statistical 
power to reject the null hypothesis that there is no main 
effect of instability or aggression PRS or an interaction 
between the two in predicting the growth of aggressive 
behaviors. Post-hoc power analyses were conducted based 
on the full sample growth curve model, which included 
the main effects of instability, aggression PRS, and study 
covariates, the interaction between instability and aggres-
sion PRS, and significant covariate by aggression PRS and 
covariate by instability interactions. Power analyses were 
based on 1,000 simulated samples and a sample size of 
515. Power to detect the observed main effect of instability 

Table 4  Predictors of aggression development

For site location, Eugene, Oregon was coded as the reference group
Model fit: X2

df=200 = 324.99, X2/df = 1.62, RMSEA = 0.04, CFI = 0.96, TLI = 0.95
TC target child, PC primary caregiver

Predictor Intercept (age 7.5) Slope Quadratic

Beta (SE) p value Beta (SE) p value Beta (SE) p value

Early childhood family instability 1.26 (0.30)  < 0.001 − 0.02 (0.14) 0.899 − 0.01 (0.02) 0.765
Aggression PRS 0.26 (0.28) 0.352 0.09 (0.12) 0.503 − 0.01 (0.02) 0.470
Instability × PRS 0.50 (0.29) 0.081 − 0.26 (0.13) 0.035 0.04 (0.02) 0.011
Intervention status − 0.25 (0.56) 0.682 − 0.05 (0.24) 0.840 0.00 (0.03) 0.996
TC gender (males as reference group) − 1.59 (0.55) 0.004 − 0.11 (0.24) 0.657 0.02 (0.03) 0.479
TC race (white as reference group) − 1.31 (0.62) 0.035 0.34 (0.26) 0.191 − 0.03 (0.03) 0.445
Pittsburgh site 2.50 (0.71)  < 0.001 − 0.54 (0.29) 0.068 0.05 (0.04) 0.195
Virginia site − 0.18 (0.65) 0.786 − 0.25 (0.30) 0.408 0.05 (0.04) 0.198
Household income − 0.28 (0.28) 0.320 0.21 (0.13) 0.116 − 0.03 (0.02) 0.087
PC education (age 2) − 0.24 (0.27) 0.374 − 0.03 (0.11) 0.794 − 0.00 (0.01) 0.890
PC criminal behavior 0.37 (0.32) 0.254 0.09 (0.13) 0.484 − 0.01 (0.02) 0.754
Group × instability 1.27 (0.52) 0.015
Pittsburgh × instability 1.20 (0.60) 0.045
Virginia × instability 1.74 (0.57) 0.002
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on the intercept of aggressive behaviors was 0.998. Power 
to detect the observed effects of the instability by aggres-
sion PRS interaction on the slope and quadratic growth of 
aggressive behavior were 0.647 and 0.748, respectively, 
indicating that the present study was slightly underpow-
ered to detect the interactions.

Discussion

Results from the present study partially support the 
hypothesis of an early childhood instability by aggression 
PRS interaction predicting the developmental trajectory of 

Fig. 2  Family instability by 
aggression PRS interactions 
predicting the intercept, slope, 
and quadratic growth of aggres-
sion. *Indicates that the simple 
slope is significantly different 
than 0 at the p < 0.05 level
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aggression from age 7.5 to 14 years. Consistent with a vul-
nerable-stable framework (Luthar et al. 2000; see Fig. 1b), 
there was a significant main effect of instability on initial 
levels of aggressive behaviors such that youth in higher 
instability homes displayed higher levels of aggressive 
behaviors regardless of aggression PRS. However, at lower 
levels of instability, higher aggression PRSs predicted a 
slower rate of decline in aggression across late childhood. 
This resulted in a flatter trajectory of aggression across 
late childhood for children with higher aggression PRS 
scores that diverged from children with lower PRS scores 
experiencing low levels of instability, who demonstrated a 
steeper decrease in aggression across late childhood.

This interaction, in conjunction with the main effect of 
instability on the intercept, add genetically-informed evi-
dence to the existing literature (Milan et al. 2006; Wom-
ack et al. 2019) highlighting the salience of early childhood 
instability as an adverse environmental feature. High insta-
bility may reinforce a fast life history strategy, which empha-
sizes behaviors related to maximizing short-term biological 
fitness including impulsive and aggressive behaviors (Ellis 
and Del Giudice 2019). From a bioecological perspective 
(Bronfenbrenner and Ceci 1994), exposure to environmen-
tal stress (e.g., instability), may overwhelm an individual’s 
genetic predispositions and “socially push” an aggressive 
phenotype (Raine 2002).

In the context of low instability, children at high genetic 
risk for aggression displayed a trajectory characterized by 
greater aggressive behavior across late childhood relative 
to children with low genetic propensity for aggression. 

While aggression may serve an adaptive function in more 
unpredictable environments, polygenic risk for aggression 
may predispose children to phenotypes that are maladap-
tive in predictable environments with the resources to meet 
their needs. It should be noted that the effect size of the 
aggression PRS score was small (i.e., about 0.13 standard 
deviation difference between the age 10 aggression scores 
between children at 1 SD above and below the instability 
mean), which is consistent with other polygenic research 
(Salvatore et al. 2015).

In the present study, instability and child genetic pro-
pensity for aggression were operationalized as aggregate 
constructs of related environmental or genetic factors. The 
use of a PRS consisting of thousands of SNPs is limited in 
its ability to test interactions between single genetic poly-
morphisms and environmental features relative to candi-
date gene studies, which examine interactions between the 
environment and a single genetic polymorphism. However, 
candidate gene studies also have important weaknesses 
relative to PRS-based studies. For example, candidate gene 
studies are known to have an inflated Type 1 error rate and 
accordingly, are often substantially underpowered to detect 
very small gene by environment effects. Consequently, 
significant findings using candidate gene approaches are 
overrepresented in the published literature (Duncan and 
Keller 2011). The use of a conservative PRS leverages the 
additive power of aggregating across multiple SNPs, while 
retaining specificity by utilizing only SNPs observed to 
have a relatively large effect size in the GWAS.

Fig. 3  Predicted trajectories of aggression. Low instability refers to 
an instability score 1 SD below the mean, medium instability refers 
to an instability score at the mean, and high instability refers to an 

instability score 1 SD above the mean. Low genetic risk refers to hav-
ing a PRS 1 SD below the mean and high genetic risk refers to having 
a PRS 1 SD above the mean
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Similarly, operationalizing instability as a broad con-
struct limits the ability to examine genetic interactions with 
specific features of instability (e.g., residential mobility). 
However, instability in one domain often co-occurs with 
instability in another domain (Tasca et al. 2011; Womack 
et al. 2019), and children who experience multiple types of 
family transition tend to be at higher risk for externalizing 
behaviors compared to children who experience only one 
type of instability (Simmons et al. 1987; Tasca et al. 2011). 
Thus, examining interactions between polygenic risk and 
specific domains of instability may overlook potential addi-
tive effects of cross-domain instability (e.g., a separation 
accompanied by a move creating more stress than a separa-
tion without a move). Through the use of a conservative 
PRS and the instability index, the present study sought to 
balance increasing statistical power by using broader meas-
urements while maintaining measurement specificity over 
broader genetic (e.g., genome wide PRS) and environmental 
experiences (e.g., the adverse childhood experiences scale; 
Hardt and Rutter 2004).

Limitations and Directions for Future Research

Findings must be considered in the context of the sociode-
mographic risk and extremely high rates of instability of the 
present sample. For context, rates of residential mobility 
within a given year for this sample (ranging from 34.3 to 
58.7%) were 3.0–5.2 times higher than national averages 
(estimated to be 11.3% between 2019 and 2020; United 
States Census Bureau 2020). Likewise, the likelihood of a 
parental separation between two and five years of age in 
this sample (65.3%) was higher than that among unmarried 
cohabiting parents in the Fragile Families and Child Wellbe-
ing study between birth and five (51.0%), a sample recruited 
to be at high risk for caregiver separation (McClain 2011).

In addition, the study sample was recruited to be at risk to 
develop conduct problems (see Dishion et al. 2008). Thus, 
findings likely have limited generalizability to more afflu-
ent community populations. The direction of the observed 
PRS by instability interaction was consistent with a social 
push model, which suggests that genotypic influences on 
an individual’s development would be more commonly evi-
dent in the context of lower stress environments, whereas 
environmental influence would be expected to contribute 
greater variance in contexts of higher stress (Raine 2002). 
However, the ubiquitous sociodemographic risk of the 
study sample limited our ability to formally test a social 
push model, which typically requires a greater range of envi-
ronmental adversity than is available in this sample (Raine 
2002). Based on the homogenous sociodemographic risk of 
the study sample, the present results may reflect an under-
estimate of polygenic by environment interaction commen-
surate with a social push model as all children in the present 

study experienced some sociodemographic adversity in early 
childhood based on recruitment criteria, and even children 1 
SD below the instability mean experienced nearly one insta-
bility event each year. It is possible that in a sample with 
a greater proportion of families experiencing lower mean 
levels of instability and sociodemographic risk, aggression 
polygenic risk may have a greater influence on the develop-
ment of aggressive behaviors in more stable families.

Another limitation was that the aggression factor was 
based in part on primary caregiver-report, and the major-
ity of primary caregivers in this sample (94.7% biological 
parents) contributed half the child’s genes as well as the 
environment. Therefore, passive gene by environment cor-
relation and potential interactive effects between a child’s 
genotype and nonshared parental genotype may both have 
contributed to children’s environments (Kong et al. 2018). 
By measuring aggression longitudinally as a latent factor 
that also included alternative caregiver and teacher reports, 
we attempted to reduce the reliance on primary caregiver 
reports, while maximizing the sample size. Adoption stud-
ies provide an opportunity for future research to replicate 
findings in an environment provided by a non-biological 
caregiver.

The application of a PRS score generated from an entirely 
Northern European GWAS to a racially diverse sample rep-
resents a limitation of the present study and a limitation of 
the field more broadly. To date, the major GWASs of aggres-
sive behaviors and related phenotypes have been conducted 
exclusively on discovery samples of European ancestry (Ip 
et al. 2021; Pappa et al. 2016; Karlsson Linnér et al. 2020; 
Tielbeek et al. 2017). In a literature review of studies pri-
marily with physical health outcomes, Duncan et al. (2019) 
found evidence that PRSs generated from European ancestry 
discovery samples underperformed when applied to samples 
of African ancestry. However, a recent study by Brick et al. 
(2019) found that 59.3% of the additive genetic variance in 
alcohol use disorders is attributable to genome-wide SNPs 
shared across individuals of European and African ances-
try. Expanding GWASs to include individuals of African, 
Latinx, and Asian ancestries is critical to improving the pre-
dictive power of polygenic scores (Peterson et al. 2019). In 
the meantime, substantial overlap in the genetic structure 
of externalizing-related pathology between individuals of 
European and African ancestry (Brick et al. 2019) may per-
mit the application of PRSs to individuals of non-European 
ancestries.

The present study was underpowered to test the stabil-
ity of gene by environment interactions across racial or 
ethnic background, limiting our ability to conclude that 
the polygenic by environment interaction holds for both 
Black and White youth. However, the direction of the 
interaction coefficient for both Black and White youth in 
our sensitivity analysis is commensurate with the direction 
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of the interaction coefficient in the full sample. Moreover, 
zero-order correlations between aggression polygenic risk, 
instability, and all reports of aggressive behaviors were 
similar in direction and magnitude for White and Black 
children, providing evidence that genetic risk for aggres-
sion has a similar association with phenotypic aggression 
across reporters for White and Black children. In the pre-
sent study, Black children were rated by teachers (but not 
primary or alternate caregivers) as behaving more aggres-
sively, identifying teacher perceptions of Black and White 
students as a potential source of heterogeneity in ratings 
of aggressive behaviors.

Additionally, our sample did not permit us to examine 
the polygenic by environment interaction for other racial 
groups (e.g., Asian, Latinx). As this study is the first to 
examine a polygenic by early instability interaction, rep-
lication of the findings is warranted, particularly in larger 
samples with greater sociodemographic variability.

Conclusions

The present study identified an interaction between early 
childhood instability and polygenic risk for aggression 
predicting growth in aggressive behaviors from middle 
childhood to adolescence. At lower instability, children 
with a low aggression PRS evinced a steeper decline in 
aggressive behaviors than children at high polygenic risk 
for aggression. At high instability, children exhibited com-
parably high levels of aggression at both high and low 
genetic risk for aggression, perhaps with aggression being 
reinforced as an adaptive response to meet basic needs. 
In the context of low instability, children at an elevated 
genetic risk for aggressive behaviors may benefit from 
behavioral interventions targeted at reducing aggression.
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