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Abstract
Recently, methods have been introduced using polygenic scores (PGS) to estimate the effects of genetic nurture, the environ-
mentally-mediated effects of parental genotypes on the phenotype of their child above and beyond the effects of the alleles 
which are transmitted to the child. We introduce a simplified model for estimating genetic nurture effects and show, through 
simulation and analytical derivation, that our method provides unbiased estimates and offers an increase in power to detect 
genetic nurture of up to 1/3 greater than that of previous methods. Subsequently, we apply this method to data from the Avon 
Longitudinal Study of Parents and Children to estimate the effects of maternal genetic nurture on childhood body mass index 
(BMI) trajectories. Through mixed modeling, we observe a statistically significant age-dependent effect of maternal PGS on 
child BMI, such that the influence of maternal genetic nurture appears to increase throughout development.
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Introduction

Global trends in body weight are alarming, with rates of 
childhood obesity increasing and underweight rates remain-
ing high (Yanovski 2018), both of which are linked to severe 
negative health outcomes and even mortality when contin-
ued into adulthood (GBD 2015 Obesity Collaborators et al. 

2017; Strand et al. 2012). Thus, it is important to identify 
potential points for early intervention to prevent extremes of 
body mass index (BMI), a common proxy measure for adi-
posity often used in underweight and obesity classification.

Ultimately, any phenotypic similarity among family 
members can be attributed to two broad sources of direct 
effects: genetic transmission (“nature”) and cultural trans-
mission (“nurture”). The proportion of trait variance which 
can be explained by transmitted genetic factors is termed 
heritability and can be estimated through classical family-
based modeling of phenotypic correlations or by studies 
involving direct measurement of genotypes. These methods 
are also able to estimate the proportion of phenotypic vari-
ance attributable to cultural transmission (Cavalli-Sforza and 
Feldman 1973; Eaves 1976), the effects of one individual’s 
phenotype on another’s, for example through knowledge, 
behavioral modeling, or other lifestyle or environmentally 
mediated factors. An important extension of cultural trans-
mission is the special case of maternal effects (Wolf and 
Wade 2009), which include all effects of the maternally pro-
vided environment, including the prenatal environment, on 
the phenotype of her child. The remaining phenotypic vari-
ance not accounted for by these two broad sources, which 
accounts for any dissimilarity among relatives, is attributed 
to the contribution of non-shared genetic or environmental 
factors, or measurement error.

Handling Editor: Sarah Medland

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1051 9-020-10008 -w) contains 
supplementary material, which is available to authorized users.

 * Pak C. Sham 
 pcsham@hku.hk

1 Department of Psychiatry, Li Ka Shing Faculty of Medicine, 
University of Hong Kong, Hong Kong SAR, China

2 Centre for PanorOmic Sciences, University of Hong Kong, 
Hong Kong SAR, China

3 Department of Anatomy and Anthropology, Sackler Faculty 
of Medicine, Tel Aviv University, Tel Aviv, Israel

4 Department of Epidemiology and Preventive Medicine, 
Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 
Israel

5 State Key Laboratory for Cognitive and Brain Sciences, 
University of Hong Kong, Hong Kong SAR, China

http://orcid.org/0000-0002-6671-6816
http://crossmark.crossref.org/dialog/?doi=10.1007/s10519-020-10008-w&domain=pdf
https://doi.org/10.1007/s10519-020-10008-w


311Behavior Genetics (2020) 50:310–319 

1 3

Genetic and cultural sources of familial resemblance are 
confounded in studies of parents and their children, thus 
extended twin, family, and adoption models have histori-
cally been used to partition the variance explained in off-
spring traits due to genetic, environmental, and cultural 
transmission processes (Cavalli-Sforza and Feldman 1973; 
Nance and Corey 1976). The two most recent meta analy-
ses of twin studies have estimated the heritability of BMI 
in adults to be 0.73 and 0.75, although there is substantial 
variation across studies (Elks et al. 2012; Min et al. 2013) 
and recent genome-wide methods suggest these may be over-
estimates (Hemani et al. 2013; Yang et al. 2015). Conflict-
ing results prevent a definitive conclusion as to whether sex 
differences exist in the heritability of BMI. Results from 
meta analyses which include younger twins have shown that 
genetic and unique environmental effects tend to become 
stronger throughout development, while the effect of the 
shared environment tends to decrease until adolescence 
where it becomes near zero (Nan et al. 2012; Silventoinen 
et al. 2010). Across three studies using extended twin or 
family designs, the effects of cultural transmission have been 
estimated to account for between 0 and 2% of the variance in 
BMI (Maes et al. 1997; Tambs et al. 1991) or BMI fluctua-
tion (Bergin et al. 2012).

The interest in parental effects through cultural transmis-
sion has not been lost in the genome-wide era. Maternal 
genome wide complex trait analysis was developed to esti-
mate the variance in an offspring’s phenotype attributable to 
the effects of maternal genotype using genome-wide single 
nucleotide polymorphism (SNP) data (Eaves et al. 2014). 
Importantly, the authors also note that methods which fail to 
model the effects of cultural transmission when present may 
result in upwardly biased estimates of direct genetic effects. 
While some groups have sought to estimate parental effect 
sizes for individual genetic variants (Warrington et al. 2018, 
2019), others have leveraged progress in genome-wide asso-
ciation studies (GWAS) to obtain estimates of the causal 
effects of parental exposures on offspring outcomes using 
Mendelian randomization (MR; Evans et al. 2019; Zhang 
et al. 2015). Additional progress has been made in elucidat-
ing the power and bias characteristics of parental effect mod-
els, with important implications for approaches to data col-
lection and analysis (Lawlor et al. 2017; Moen et al. 2019; 
Tubbs et al. 2020).

Recently, two groups independently developed a method 
utilizing polygenic scores (PGS) for modeling the contribu-
tion of non-transmitted parental alleles on the phenotype 
of their child, which Kong and colleagues termed “genetic 
nurture” (Bates et al. 2018; Kong et al. 2018). This method 
involves creating a PGS for each offspring calculated from 
the alleles they inherited from their parents and another PGS 
derived from the remaining non-transmitted alleles. Both 
PGSs can be further partitioned into those of maternal and 

paternal origin. The two studies demonstrated a statistically 
significant effect of non-transmitted parental alleles on edu-
cational attainment (EA) with effect size estimates of 29.9% 
and 38% that of the transmitted PGS.

However, the genetic architecture of EA may differ sig-
nificantly from that of BMI, with EA heritability estimated 
through meta-analysis of twin studies to be 0.4, but with 
high heterogeneity between studies (Branigan et al. 2013). 
While Kong and colleagues examined the effect of EA PGS 
on other offspring phenotypes, including body mass index, 
we are not aware of another study which has examined the 
effects of genetic nurture on BMI. The Avon Longitudi-
nal Study of Parents and Children (ALSPAC) provides an 
ideal dataset for examining the effects of maternal cultural 
transmission on BMI. Not only does this resource provide 
genetic data on a large sample of mother–child pairs, but 
also repeated measures of BMI over childhood and adoles-
cence, allowing the contribution of these effects to be mod-
elled across development.

Under the familiar paradigm of the transmission dise-
quilibrium test (Spielman et al. 1993), it appears natural to 
partition genotype data from trios into transmitted and non-
transmitted components. However, this may be unnecessary 
or even unhelpful when we are interested in estimating the 
effects of cultural transmission. Thus, here we first propose 
another possible model for estimating maternal effects which 
does not separate transmitted and non-transmitted parental 
components to be calculated, and compare it analytically and 
through simulation with the models from Kong et al. (2018) 
and Bates et al. (2018). We then apply the best performing 
model to data from ALSPAC to estimate the effects of mater-
nal genetic nurture on BMI trajectory through development.

Subjects and Methods

Simulation Study and Analytic Derivation for Model 
Comparison

We performed a simple simulation study to compare the per-
formance of three potential regression models to predict off-
spring phenotype, with the goal of comparing the statistical 
power, variance explained, standard error, and bias of mater-
nal effects estimated using only the non-transmitted maternal 
genotype versus the complete maternal genotype. Figure 1 
shows a path diagram visualizing these three models.

M1 ∶ y ∼ hsGO + �pGP + �mGM ,

M2 ∶ y ∼ hsGO + �npGPNT + �nmGMNT ,

M3 ∶ y ∼ �tpGPT + �npGPNT + �tmGMT + �nmGMNT .
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M1 is our proposed model, which regresses the phenotype 
y on offspring PGS (GO) and paternal PGS (GP) and mater-
nal PGS (GM). M2 differs from M1 in that the two parental 
PGSs (GPNT and GMNT) are based on alleles not transmit-
ted to the offspring, and was employed in a mixed model 
framework by Bates et al. (2018). Lastly M3 differs from 
M2 by further partitioning the offspring PGS into compo-
nents transmitted from the two parents (GPT and GMT), and 
was used by Kong et al. (2018) to estimate parent-of origin 
effects of genetic nurture and by Bates et al. (2018) in a 
structural equation model.

The full simulation procedures and closed-form model 
comparison are detailed in the Supplementary Material. 
Briefly, we randomly sampled non-transmitted and transmit-
ted PGS for hypothetical mothers and fathers, subsequently 
using these to calculate the offspring phenotype and the fol-
lowing PGS: GO, GM, GP, GMT, GMNT, GPT ,and GPNT. In the 
supplement, we show the derivation of expected regression 
estimates, error variance, and non-centrality parameters of 
the beta estimates for each model.

Direct Genetic and Genetic Nurture Effects on BMI 
in ALSPAC

The complete ALSPAC study design and dataset have been 
described in detail elsewhere (Boyd et  al. 2013; Fraser 
et al. 2013) and a description of the study numbers provided 
by ALSPAC is included in the supplement. The study web-
site contains details of all the data that is available through 

a fully searchable data dictionary and variable search tool 
(http://www.brist ol.ac.uk/alspa c/resea rcher s/our-data/). 
Briefly, this longitudinal observational study recruited over 
14,000 pregnant women and their partners from the Bristol, 
UK area in the early 1990s. These families provided psy-
chological, physiological, and genetic data through ques-
tionnaires and clinical visits over the past 29 years. Ethical 
approval for the study was obtained from the ALSPAC Eth-
ics and Law Committee and the Local Research Ethics Com-
mittees. Consent for biological samples has been collected 
in accordance with the Human Tissue Act (2004). Informed 
consent for the use of data collected via questionnaires and 
clinics was obtained from participants following the recom-
mendations of the ALSPAC Ethics and Law Committee at 
the time. The present analysis utilized standard demographic 
variables, genotype data from mothers and children, BMI 
measurements from mothers at 2 clinical visits and BMI 
measures from children invited to clinical visits at ages 7, 
9, 10, 11, and 17.

Following standard genotyping quality control meas-
ures, maternal and child genotype data were harmonized 
by ALSPAC researchers (see Supplementary Material). We 
performed an additional principal component analysis using 
PLINK version 1.9 (Chang et al. 2015) (www.cog-genom 
ics.org/plink /1.9/) to control for population stratification, 
which identified four individuals who appeared as outliers 
on the first and second genetic principal components and 
were thus excluded from the sample. After these quality 
control measures, our analytic sample consisted of 3120 
genotyped mother–child pairs of European ancestry with 
at least 1 maternal and child clinical visit, representing a 
total of 14,022 child BMI observations. Maternal and child 
BMI distributions exhibited a heavy rightward skew towards 
higher BMI measurements. Thus, for use in our model selec-
tion procedure, we applied a logarithmic transformation to 
these variables with an added constant chosen to minimize 
the skew of the distributions.

Polygenic Score Construction

Lassosum (Mak et al. 2017), a machine-learning based pro-
gram, was used to calculate PGS for mothers and offspring 
in our sample from the most recent GWAS meta-analysis 
for BMI (Yengo et al. 2018). Lassosum employs penal-
ized regression on summary statistics while accounting for 
linkage disequilibrium, producing more accurate polygenic 
risk prediction than other popular techniques (Allegrini 
et al. 2019; Mak et al. 2017). For the tuning parameter opti-
mization step in Lassosum, the mean maternal BMI across 
two clinical visits and a randomly drawn child BMI meas-
urement from all available clinical visits were used as the 
phenotype for mothers and children, respectively, to maxi-
mize the number of available phenotypic observations.

Fig. 1  Path diagram of genetic nurture models.  YO denotes the phe-
notype of the child. GO, GM, and GP are the polygenic scores for phe-
notype Y for the offspring, mother, and father, respectively. GMNT, 
and GMT are the polygenic scores for the non-transmitted and trans-
mitted maternal alleles, whereas  GPNT, and GPT are those for the 
father. h, m, and p represent the effects of the offspring, maternal, and 
paternal polygenic scores on the offspring phenotype. is the random 
error variance in Y

http://www.bristol.ac.uk/alspac/researchers/our-data/
http://www.cog-genomics.org/plink/1.9/
http://www.cog-genomics.org/plink/1.9/
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Mixed Models

Mixed models are often used in longitudinal data analysis 
for their ability to estimate average fixed effects across indi-
viduals while simultaneously accounting for random effects 
within individuals arising from the covariance between 
repeated measurements across time. As our dataset also con-
tains a small number of sibling pairs, mixed models have the 
added benefit of being able to control for covariance between 
siblings. Therefore, we constructed a mixed model to esti-
mate the fixed effects of child age,  age2, sex,  PGSC,  PGSM, 
and all meaningful multiplicative interactions between these 
predictors on child BMI. In a follow-up analysis, a simi-
lar mixed model was constructed to estimate the effects of 
maternal BMI. For all models, variables were standardized 
to have a mean of zero and standard deviation of one, with 
age subsequently squared, as this increases the likelihood 
of mixed model convergence when using the lme4 package 
(Bates et al. 2015).

To determine the most appropriate random effects struc-
ture and whether to use the transformed BMI variables, we 
employed a model selection procedure (see Supplementary 
Material) to identify a best-fitting model which minimizes 
the AIC and best satisfies the underlying mixed model 
assumptions, while avoiding models which arrive at a sin-
gular fit or fail to converge. This procedure identified the 
best-fitting model as that which predicted log-transformed 
child BMI as a function of child age,  age2, and sex, along 
with  PGSC,  PGSM, and all possible pairwise multiplicative 
interactions apart from age *  age2. Random intercepts and 
slopes controlled for the effects of age and  age2 within each 
child and within sibling pairs. Models were fit by maximum 
likelihood using the lme4 package version 1.1.21 (Bates 
et al. 2015) for R version 3.5.3 (R Core Team 2019), while 
p-values were calculated using the lmerTest package ver-
sion 3.1.0 (Kuznetsova et al. 2017), and the r2glmm package 
(Jaeger et al. 2017) was used to calculate partial R2 for each 
predictor based on the method of Nakagawa and Schielzeth 
(2013).

Results

Simulation Results and Analytic Derivation

Figure 2 plots the squared partial correlation (i.e. the vari-
ance uniquely explained in y by a variable) of GM versus 
GMNT across 1000 simulations with varying magnitude of 
maternal effects, indicating that the full maternal PGS con-
sistently explains a greater proportion of variance in the phe-
notype of the child than a PGS of the non-transmitted mater-
nal alleles alone while statistically controlling for the effects 
of the transmitted alleles by inclusion of GO as a predictor 

in the regression. Supplementary Fig. S1 similarly plots the 
bias and standard error (SE) of GM versus GMNT, demon-
strating that while both are unbiased predictors of maternal 
genetic nurture effects, the SE of GM is smaller compared to 
GMNT. Figure 3 compares the statistical power of �m and �nm 
to estimate the genetic maternal effects and the combined 
power of all predictors, measured as model F-statistic, across 
the three regression equations for 1000 simulations of vary-
ing sample size and fixed maternal, paternal, and child PGS 
effects. Figure 3 demonstrates that �m of M1 had greater 
power to detect the maternal genetic effects than �nm of M2 
or M3. In terms of combined power of all independent vari-
ables, M1 and M2 had equal power to predict the offspring 
phenotype, which was greater than that of M3.

Comparison of the asymptotic properties of these three 
models demonstrates that M1 correctly estimates the direct 
effect of the child’s genotype and the effects of genetic nur-
ture. With M1, these effects can be interpreted straightaway, 
whereas the direct effect estimates from M2 and M3 are 
initially biased by parental effects, and must be “de-biased” 
before interpretation. At the same time, M1 affords the great-
est statistical power to detect genetic nurture effects as com-
pared to M2 and M3. The non-centrality parameter per off-
spring-parent trio is increased by 1�

2

1

3�2

2

 in model M1 compared 
to model M2, and by 1/3 when compared to model M3, 
where �2

1
 is the residual variance in y of model M1 and �2

2
 is 

that of model M2. In the supplement, we further show that 
given a complete mediation of genetic nurture effects 
through a maternal phenotype, a modified M1 is able to 
accurately partition these effects.

Mixed Model Results of BMI from ALSPAC

Table 1 provides descriptive statistics for the sample prior 
to variable standardization and log-transformation of child 
and mother BMI. Table 2 summarizes the results of our best-
fitting mixed model (Model A) predicting log-transformed 
child BMI as a function of child age,  age2, and sex, along 
with  PGSC,  PGSM, and all possible multiplicative interac-
tions except for age *  age2 while controlling for random 
variation within child BMI measurements across time 
and for correlation among siblings. Table 2 also shows 
the results from Model B, an extension of Model A which 
includes log-transformed maternal BMI and its interac-
tions with age,  age2, and sex as predictors. Model A sup-
ports the presence of a significant age-dependent effect 
of maternal genetic nurture on child BMI (Age *  PGSM; 
� = 0.014, SE = 0.005, p = 0.007) with an effect size 39% 
that of the similar interaction between age and child PGS 
(Age *  PGSC; � = 0.036, SE = 0.005, p = 6.20e − 13). With 
the inclusion of maternal BMI as a predictor in Model B, this 
Age *  PGSM interaction term becomes non-significant, but 
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the previously non-significant  Age2 *  PGSM term becomes 
statistically significant with a p-value of 0.033. Figure 4 vis-
ualizes the predicted effect of  PGSC and  PGSM on child BMI 
across age from Model A, showing that while the effects of 
maternal BMI risk variants only appear to be relevant in later 
stages of child development, the  PGSC tends to decrease 
in importance in determining the phenotype towards later 
stages of development.

Discussion

Our major objectives were to determine an optimal model 
for estimating the polygenic effects of maternal genetic 
variants on a child’s phenotype and subsequently apply a 
similarly constructed mixed model to longitudinal BMI 
measurements. The results of our analysis have impli-
cations for future research into genetic nurture effects 
estimation and for our understanding of the genetic and 
environmental contributors to BMI across development. 
Here, we discuss the benefits of our proposed model, 
results from mixed models applied to BMI in the context 

of previous findings from twin studies, potential limita-
tions of our approach, and the practical relevance of our 
results.

We have shown through simulation and derivation that 
while controlling for the direct effects of the transmitted 
alleles, a full maternal polygenic risk score has greater 
power, smaller SE, and explains a greater proportion of the 
variance in a child’s phenotype than a maternal polygenic 
score computed for the non-transmitted alleles alone. Pre-
vious methods (Bates et al. 2018; Kong et al. 2018) have 
focused on estimating the effects of genetic nurture arising 
from non-transmitted genetic variants. However, transmitted 
alleles may also contribute to a parental effect on the child’s 
phenotype above and beyond the direct effects of the child’s 
own genotype. In other words, the environmental effects of 
half of the parental genotype do not disappear after forma-
tion of the zygote. We have shown that our proposed model 
is able to give unbiased estimates of the direct effects of 
transmitted variants and the genetic nurture effects of both 
transmitted and non-transmitted parental genetic variants 
without the need to partition the component PGS, result-
ing in greater statistical power and easier interpretation 

Fig. 2  Partial correlation 
squared of GM vs GMNT across 
1000 simulations. Note. 
This figure plots the vari-
ance uniquely explained by 
GM versus GMNT across 1000 
simulations with varying 
maternal effect sizes, showing 
that the complete maternal PGS 
consistently explains a greater 
proportion of variance in the 
phenotype of the child than a 
PGS of the non-transmitted 
maternal alleles alone while 
statistically controlling for the 
effects of the transmitted alleles 
by inclusion of GO as a predic-
tor in the regression model
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than models which propose separate transmitted and non-
transmitted PGS.

The results of our mixed models show a statistically sig-
nificant age-dependent effect of maternal genetic nurture 

on child BMI which is 39% that of the similar interaction 
effect of a child’s own polygenic risk with age. Our results 
suggest that the effects of maternal genetic nurture on 
child BMI become stronger throughout development. This 

Fig. 3  Power of �
m
 vs �

nm
, 

and overall regression model 
power (measured by F-statistic). 
Results are from 1000 simula-
tions of varying sample size 
with fixed direct, maternal 
genetic nurture and paternal 
genetic nurture effects. Model 
M1 regresses the phenotype 
y on offspring PGS, paternal 
PGS, and maternal PGS. M2 
differs from M1 in that the 
two parental PGSs are based 
on alleles not transmitted to 
offspring. Lastly M3 differs 
from M2 by further partitioning 
the offspring PGS into compo-
nents transmitted from the two 
parents. Panel a compares the 
statistical power to detect the 
presence of a maternal effect 
utilizing a PGS computed from 
all maternal alleles ( �

m
 ) versus 

a PGS constructed from only 
the maternally non-transmitted 
alleles ( �

nm
, ) across the three 

regression models. We show 
that of M1 had greater power 
to detect the maternal genetic 
effects than of M2 or M3. Panel 
b compares the F-statistics 
of each model. In terms total 
model power, M1 and M2 had 
equal power to predict the off-
spring phenotype, which were 
both greater than that of M3

Table 1  Descriptive statistics of clinical measures and PGS calculated from genotype data in our analytic sample of the ALSPAC dataset

Clinical measures N BMI Age

Mean (SD) Min–max Mean (SD) Min–max

Mothers
 Average of 2 clinic visits 3120 26.67 (5.26) 15.30 to 55.04 48.74 (4.38) 34 to 62.79

Children (48% male)
 7 year clinic visit 2858 16.12 (1.97) 10.85 to 31.65 7.49 (0.26) 6.83 to 9.42
 9 year clinic visit 2890 17.52 (2.75) 12.64 to 34.25 9.81 (0.27) 8.75 to 11.33
 10 year clinic visit 2889 18.01 (2.95) 12.36 to 34.72 10.60 (0.22) 9.92 to 12.17
 11 year clinic visit 2891 18.85 (3.26) 12.44 to 36.08 11.71 (0.21) 10.75 to 13.58
 17 year clinic visit 2494 22.54 (3.87) 13.00 to 50.05 17.74 (0.39) 16.25 to 19.75

BMI polygenic scores Mean (SD) Min–max

Mothers 0.61 (0.90) − 2.74 to 3.62
Children 0.60 (0.89) − 2.91 to 3.68
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is somewhat surprising, as twin studies suggest that the 
effects of the shared environment, which would partially 
subsume the effects of genetic nurture, decrease through-
out childhood and adolescence (Nan et al. 2012; Silven-
toinen et al. 2010). However, maternal genetic nurture may 
also contribute to the unique environment component if 
one twin is treated differently from their co-twin, which 

may happen with greater frequency through development, 
potentially explaining our seemingly disparate results. 
Alternative explanations may include a cumulative effect 
of genetic nurture or an increasing similarity to maternal 
diet as children approach adulthood and become less picky 
or relatively less constrained in their choice of food.

Table 2  Results from a mixed effects model predicting log-transformed child BMI

Bold font indicates p-value less than 0.05
All variables (apart from  age2) were standardized to have a mean of 0 and standard deviation of 1
BMIC log-transformed child BMI, BMIM log-transformed maternal BMI, CI 95% confidence interval, FID unique family ID, ID unique child ID, 
PGSC offspring polygenic score, PGSM maternal polygenic score

Predictors BMIC Model A BMIC Model B

Estimates CI p Estimates CI p

Fixed effects
 Intercept − 0.072 − 0.163 to 0.018 0.118 − 0.093 − 0.181 to − 0.005 0.039
 Age 0.617 0.589 to 0.644 < 0.001 0.613 0.585 to 0.640 < 0.001
 Sex (1 = M, 2 = F) 0.086 0.029 to 0.142 0.003 0.099 0.044 to 0.154 < 0.001
 PGSC 0.278 0.194 to 0.361 < 0.001 0.270 0.189 to 0.352 < 0.001
 PGSM 0.030 − 0.054 to 0.113 0.489 − 0.024 − 0.111 to 0.064 0.597
 Age2 − 0.020 − 0.041 to 0.000 0.055 − 0.018 − 0.039 to 0.003 0.088
 Age * Sex 0.009 − 0.008 to 0.026 0.288 0.012 − 0.005 to 0.029 0.168
 Age *  PGSC 0.036 0.026 to 0.046 < 0.001 0.035 0.025 to 0.044 < 0.001
 Age *  PGSM 0.014 0.004 to 0.023 0.007 0.000 − 0.010–0.011 0.948
 Age2 * Sex − 0.022 − 0.035 to − 0.009 0.001 − 0.024 − 0.037 to − 0.011 < 0.001
 Age2 *  PGSC − 0.037 − 0.045 to − 0.030 < 0.001 − 0.036 − 0.043 to − 0.028 < 0.001
 Age2 *  PGSM − 0.000 − 0.008 to 0.007 0.897 0.009 0.001 to 0.017 0.033
 Sex *  PGSC 0.023 − 0.028 to 0.074 0.386 0.021 − 0.029 to 0.070 0.418
 Sex *  PGSM − 0.010 − 0.061 to 0.041 0.703 − 0.027 − 0.081 to 0.026 0.316
 BMIM 0.141 0.061 to 0.221 0.001
 Age *  BMIM 0.033 0.024 to 0.042 < 0.001
 Age2 *  BMIM − 0.023 − 0.030 to − 0.016 < 0.001
 Sex *  BMIM 0.038 − 0.009 to 0.086 0.116

Random effects
 σ2 0.04 0.04
 τ00 0.23ID:FID 0.23ID:FID

0.40FID 0.36FID

 τ11 0.02ID:FIDage 0.02ID:FIDage

0.01ID:FIDage^2 0.01ID:FIDage^2

0.02FIDage 0.02FIDage

0.02FIDage^2 0.02FIDage^2

 ρ01 0.58 0.59
− 0.83 − 0.83
− 0.06 − 0.13
− 0.59 − 0.57

 ICC 0.94 0.94
 N 3120ID 3120ID

3099FID 3099FID

Observations 14,022 14,022
Marginal/conditional  R2 0.419/0.965 0.446/0.965
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Although the age-dependent effect of maternal genetic 
nurture is statistically significant, the combined effects of 
 PGSM and its interactions with age as predicted by Model A 
uniquely explain about 0.02% of the variance in child BMI. 
In comparison, the combined effects of  PGSC and its inter-
actions with age from Model A are able to uniquely explain 
1.15% of the variance in child BMI, about 50 times greater 
than the combined  PGSM effects. Further, maternal genetic 
nurture increases in relative importance throughout develop-
ment. For instance, the combined effect size estimates for 
 PGSM and its interactions with age are 5% that of those esti-
mates for  PGSC predicted at the mean age for year 7 follow-
up visit, but 26% as large as the  PGSC effect size estimates 
predicted at the mean age for the 18-year follow-up. This 
suggests that the effects of maternal genetic nurture on child 
BMI may be relatively unimportant in practical applications 
compared to the influence of other risk factors including the 
child’s own genetic risk.

After inclusion of maternal BMI as a predictor in the base 
Model A, the effect of Age *  PGSM was no longer statisti-
cally significant, but the  Age2 *  PGSM became significant. 
Thus, it is unclear whether the genetic factors responsible 
for the effects of genetic nurture may be mediated by the 
manifest maternal BMI, which would suggest shared genetic 
factors contributing both to the maternal BMI and indirectly 
to the child’s BMI.

In contrast to results from previous twin modeling (Nan 
et al. 2012; Silventoinen et al. 2010) showing that the 
influence of additive genetic factors increases throughout 

child development, our model results suggest that poly-
genic effects on BMI may actually decrease slightly in 
importance as children get older. One potential explana-
tion for these seemingly divergent findings is that while 
twin studies are able to model the effects of all additive 
genetic factors, polygenic scores based on GWAS results 
are unable to adequately capture the effects of rare or 
structural genetic variants, which might have cumulative 
or developmentally-dependent effects on BMI risk.

The apparent discrepancy between some of our results 
and those of previous twin studies highlights some poten-
tial limitations of our approach. As previously discussed, 
the common variants examined by SNP-based genotyping 
are not ideal for capturing the effects of rare or structural 
genetic variants, which may have a larger effect on the 
phenotype, and may even fail to capture a large propor-
tion of the variance explained by non-typed common 
SNPs as well. Additionally, our polygenic scores for both 
mothers and children were calculated using summary sta-
tistics from GWAS examining BMI in adults. Although 
they are likely to overlap greatly, it is possible that the 
genetic variants which influence childhood BMI differ 
from those which are important in adulthood. However, 
GWAS of BMI in children lack the statistical power of 
their adult BMI counterparts of significantly larger sam-
ple size (Felix et al. 2016). As our sample consists only 
of British mother–child pairs of European ancestry, the 
applicability to other populations with different cultural 
or ancestral backgrounds is limited. Future work should 

Fig. 4  Simple slope of the predicted effect of  PGSM and  PGSC on 
BMI across age. Note. Tick marks correspond to target assessment 
ages of children in years. Child BMI is log-transformed and standard-

ized. Lines represent the predicted value of child BMI from child age, 
 age2, respective PGS, PGS * age, and PGS *  age2
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strive to collect and analyze such longitudinal family data 
in understudied populations.

A number of obstacles may bias the estimation of 
maternal genetic nurture in our study. First, our estimates 
of genetic nurture effects could be downwardly biased by 
utilizing a BMI-based PGS, as maternal genetic variants 
which affect the child’s BMI may not be restricted to the 
same factors important in determining the mother’s own 
BMI. As discussed by Kong et al. (2018), bias in the esti-
mates of maternal effects can clearly occur in the presence 
of un-modelled paternal effects that are correlated with 
maternal effects due to assortative mating, which has been 
shown to exist for BMI in humans (Robinson et al. 2017; 
Silventoinen et al. 2003). However, recent theoretical work 
by our group has shown that collider bias can occur even 
when un-modelled paternal effects are independent of 
maternal effects (Tubbs et al. 2020).

We have shown that utilizing a combined maternal 
PGS to estimate the effects of genetic nurture represents 
an improvement in the techniques introduced by Kong 
et al (2018) and Bates et al. (2018). By utilizing the full 
child, mother, and father polygenic scores, we show a 1/3 
increase in power to detect a genetic nurture effect over 
models which separate these scores into non-transmitted 
and transmitted component scores. Further, in applying 
this model to developmental BMI trajectories, we have 
shown a statistically significant age-dependent effect of 
maternal PGS on child BMI, such that the effects of mater-
nal genetic nurture appear to increase throughout devel-
opment and into late adolescence. Although the size of 
observed maternal genetic nurture effects on child BMI 
are miniscule compared the effects of transmitted alleles 
present in the child, the current analysis does not negate 
the potential importance of the parentally provided envi-
ronment on the child’s BMI, which warrants continued 
future study.
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