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phenotypes or a latent construct on a genome-wide basis 
using a diagonally weighted least squares (DWLS) estima-
tor for four common SEMs: a one-factor model, a one-fac-
tor residuals model, a two-factor model, and a latent growth 
model. We demonstrate that the DWLS parameters and 
p-values strongly correspond with the more traditional full 
information maximum likelihood parameters and p-values. 
We also present the timing of simulations and power analy-
ses and a comparison with and existing multivariate GWAS 
software package.
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Structural equation modeling · SEM · Diagonally weighted 
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Introduction

With the proliferation of genome wide association data and 
the development of high-speed, low-cost whole genome 
and exome sequencing, the availability of high quality 
genomic data has rapidly and greatly increased (Paltoo 
et al. 2014). The initial benefit of genome wide association 
studies (GWAS) was seen in the areas of common physical 
diseases such as heart disease, auto-immune disorders and 
diabetes (Visscher et al. 2012). These disorders have largely 
unambiguous symptoms that make them relatively easy to 
measure with high levels of precision. More recently, there 
have been genetic associations for psychiatric disorders, 
such as schizophrenia (Schizophrenia Psychiatric Genome-
Wide Association Study (GWAS) Consortium 2011) or cig-
arette smoking (Lips et al. 2010; Liu et al. 2010; Saccone 
et al. 2009), major depressive disorder (CONVERGE con-
sortium 2015; Hyde et al. 2016), neuroticism (Okbay et al. 
2016; Smith et al. 2016), and bipolar disorder (Muhleisen 

Abstract Improving the accuracy of phenotyping through 
the use of advanced psychometric tools will increase the 
power to find significant associations with genetic vari-
ants and expand the range of possible hypotheses that can 
be tested on a genome-wide scale. Multivariate methods, 
such as structural equation modeling (SEM), are valuable 
in the phenotypic analysis of psychiatric and substance use 
phenotypes, but these methods have not been integrated 
into standard genome-wide association analyses because 
fitting a SEM at each single nucleotide polymorphism 
(SNP) along the genome was hitherto considered to be too 
computationally demanding. By developing a method that 
can efficiently fit SEMs, it is possible to expand the set of 
models that can be tested. This is particularly necessary 
in psychiatric and behavioral genetics, where the statisti-
cal methods are often handicapped by phenotypes with 
large components of stochastic variance. Due to the enor-
mous amount of data that genome-wide scans produce, the 
statistical methods used to analyze the data are relatively 
elementary and do not directly correspond with the rich 
theoretical development, and lack the potential to test more 
complex hypotheses about the measurement of, and inter-
action between, comorbid traits. In this paper, we present 
a method to test the association of a SNP with multiple 
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et al. 2014). Early GWASs of psychiatric phenotypes were 
based on the assumption that there existed single variants 
with large effect sizes that influenced complex traits. Years 
of collaboration that amassed very large datasets have sub-
sequently shown that assumption to be false: most complex 
phenotypes are highly polygenic. Hundreds, if not thou-
sands, of genetic variants with very small effect sizes con-
tribute to variation in complex, multidimensional, impre-
cisely measured phenotypes. Today, very large sample sizes 
continue to be needed to compensate for the low statisti-
cal power to detect genetic associations for these complex 
traits. Increasing the precision by which phenotypes are 
measured, using the structural equation modeling (SEM) 
techniques proposed herein, should enhance our ability to 
find significant associations and will expand the possible 
hypotheses that can be tested on a genome wide basis.

While some multivariate GWAS (MV-GWAS) meth-
ods allow for the association of a single nucleotide poly-
morphism (SNP) with multiple phenotypes, they do not 
closely correspond with the analytical techniques used 
in multivariate or developmental analyses of the respec-
tive phenotypes. This disconnect limits the extent to 
which identified genetic associations can improve our 
understanding of the etiology and progression of a dis-
order. For example, current MV-GWAS methods rely 
on various statistical techniques such as multivariate 
regression (multiple DV’s), canonical correlation analy-
sis and MANOVA (MV-PLINK—Ferreira and Purcell 
2009), simultaneously regressing the SNP on multiple 
phenotypes (MultiPhen—OReilly et  al. 2012), imputa-
tion based methods (MV-SNPTEST—Marchini et  al. 
2007, MV-BIMBAM—Stephens 2013; Servin and Ste-
phens 2007, and PHENIX—Dahl et  al. 2016), principal 
components analysis (PCHAT—Klei et  al. 2008), mul-
tivariate linear mixed modeling (GEMMA—Zhou and 
Stephens 2012, 2014; mvLMM—Furlotte and Eskin 
2015; Wombat—Meyer and Tier 2012), or meta-ana-
lytic procedures (TATES—van der Sluis et  al. 2013). 
SEM methods have been applied genome-wide with 
twin and family models using FIML estimators (Med-
land and Neale 2010; Medland et  al. 2009; Fardo et  al. 
2014; Kent et al. 2009; Choh et al. 2014) in Classic MX 
(Neale 1994) or SOLAR (Blangero et  al. 2000), which 
is particularly relevant because twin and family models 
utilize SEM techniques and each family members has a 
unique phenotype and as such could be considered mul-
tivariate SEM GWAS. While these diverse MV-GWAS 
methods estimate the relationship between a SNP and 
multiple phenotypes, to increase the efficiency of opti-
mization it is necessary to restrict the potential flexibility 
of each method, and therefore the variety of hypotheses 
that can be tested. Moreover, these methods may be unfa-
miliar to substantive researchers who lack broad training 

in statistics and genomics. As such, they may not be 
germane to commonly encountered scenarios in psychi-
atric genetics. Nevertheless, these existing multivariate 
GWAS techniques typically yield greater statistical power 
than univariate methods that rely on sum- or factor-score 
approaches, and this benefit can be retained in GW-SEM.

Because these MV-GWAS methods do not necessar-
ily dovetail with the phenotypic (non-genetic) methods, 
many researchers summarize multivariate data into sum- or 
factor-scores that can be analyzed with existing univariate 
GWAS methods (Purcell et al. 2007; Laird 2011; Abecasis 
et  al. 2002). While this univariate approach is very rapid 
and may approximate a MV-GWAS under some circum-
stances, a trait or disorder may be better modeled as a latent 
factor that would be only approximated by a sum-score or a 
diagnosis. Further, factor score indeterminacy may produce 
erroneous scores, or bias the standard errors of the param-
eters thereby inflating the test statistics and Type I Error 
rates (Grice 2001). More importantly, constructing these 
scores negates any possibility for testing alternative, and 
truly multivariate, hypotheses that may inform our under-
standing of the phenotype. While preliminary methods for 
exploring the effects of SNPs on phenotypes can provide 
important insights into genetic associations, the statisti-
cal tools necessary to deliver additional insights can be 
improved.

Finally, existing GWAS methods typically treat ordinal 
variables as either continuous or binary. Treating ordinal 
items as continuous can result in biased parameters esti-
mates and incorrect standard errors and model test statistics 
(Muthen 1984; Agresti 1981; Johnson and Creech 1983). 
Alternatively, treating ordinal items as binary reduces the 
power to detect significant associations. Therefore, treat-
ing ordinal items appropriately will reduce the bias in the 
parameter estimates while maximizing power.

GW-SEM utilizes SEM, a common method in psychol-
ogy and psychiatry. The approach closely corresponds to 
the conceptualization of phenotypes derived from DSM-V 
diagnoses of psychiatric and substance use disorders. This 
interpretation of a diagnosis implies that one’s liability on 
a latent trait can be indexed by a number of specific symp-
toms or behaviors (e.g., nicotine dependence leads individ-
uals to smoke more cigarettes per day, have a harder time 
abstaining in socially inappropriate circumstances, and to 
experience more intense cravings for nicotine). This idea, 
known more broadly as the common factor model, depicted 
in in Fig. 1a, is the natural extension of the current GWAS 
methods for multiple phenotypes. The common factor 
model is a special case of a larger set of SEMs that are rou-
tinely applied to phenotypes in the psychiatric genetics lit-
erature. For example, multiple factor models are routinely 
used to examine comorbidity between phenotypes (Doyle 
et  al. 2016; Carragher et  al. 2016; Krueger 1999), and 



347Behav Genet (2017) 47:345–359 

1 3

Latent Growth Models (LGMs) are widely used to exam-
ine developmental trajectories (Duncan et  al. 2006, 1997; 
Neale and McArdle 2000).

Furthermore, comorbidity within and between psychiat-
ric and substance use disorders is often substantial (Kes-
sler et  al. 2005; Cross-Disorder Group of the Psychiatric 
Genomics Consortium 2013), implying that the genetic 
factors associated with one phenotype (e.g. smoking) may 
be shared with other logically distinct but correlated phe-
notypes (e.g. schizophrenia). These pleiotropic expecta-
tions must take the correlation between the phenotypes into 
consideration in order to accurately estimate the association 
between a SNP and either phenotype. This type of pleiot-
ropy (two latent factors regressed on a single SNP) cannot 

be directly specified in current GWA methods. To test such 
hypotheses requires a GWAS method that directly uses 
SEM.

There are several reasons why SEM methods are not 
commonly used in a genome-wide context. First, GWAS 
utilze an immense amount of data for each subject. While 
this may seem beneficial, from a data analysis perspective 
colossal datasets pose massive challenges for analysis. Con-
sequently, any statistical procedure that is employed must 
be either hypothesis driven, such as candidate gene stud-
ies, or extremely fast so as to process millions of analyses 
in a reasonable amount of time. Methods that are computa-
tionally intensive are not feasible when millions of tests are 
conducted. This limitation is only going to become more 

Fig. 1  Schematic representations of the structural equation models 
that can be fit using the GW-SEM package. a presents the one-factor 
model, in which a latent factor (F

1
) causes the observed items (x

k
). 

The association between the latent factor and the observed indicators 
are estimated by the factor loadings (�

k
). The residual variances (�

k

) indicate the variance in x
k
 that is not shared with the latent factor. 

The regression of the latent factor on the SNP (for all SNPs in the 
analysis) is depicted by �

F
. b presents the residuals model, which has 

very similar parameters to the one-factor model, with the notable dif-

ference that the individual items are regressed on each SNP (�
k
). c 

presents the two-factor model. In this model, both latent factors (F
1
 & 

F
2
) are regressed on every SNP (�

F1
 & �

F2
) and the latent factors are 

allowed to correlate (�). Finally, d presents the latent growth model, 
where the factor loadings are fixed to specified values, and the means 
(�

F
), variances and covariances (Ψ) of the latent growth parameters 

are estimated. Each latent growth factor is then regressed on each 
SNP (�

F
)
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difficult to deal with as GWAS data becomes more avail-
able through data sharing agreements such as The Database 
of Genotypes and Phenotypes (DbGaP).

Second, each additional parameter that is added to a sta-
tistical model exponentially increases the computational 
complexity. Thus, univariate models are computationally 
efficient, but as the model gets more complex (by increas-
ing the number of variables) computation time increases. 
This is especially true when numerical optimization is 
required to estimate model parameters. While certain statis-
tical shortcuts can make it relatively easy to calculate asso-
ciations, many do not generalize to the multivariate case.

Specifically, many CFA models rely on maximum likeli-
hood (ML) Estimators that are computationally intensive. 
While ML estimators have excellent statistical properties 
(they are asymptotically unbiased and have minimum vari-
ance of asymptotically unbiased estimators), converging 
to ML solutions via numerical optimization can be com-
putationally demanding. This is especially true for ordinal 
indicators that are so pervasive in psychiatric, substance 
use and psychological assessments. There have been sev-
eral attempts to estimate genetic associations with latent 
factors within an SEM context using ML (Medland and 
Neale 2010; Medland et al. 2009; Fardo et al. 2014; Kent 
et al. 2009; Choh et al. 2014). ML algorithms, however, are 
computationally intensive (taking 30  s per SNP) and may 
be prone to optimization failures. These limitations make 
conducting SEM analyses on a genome wide scale imprac-
tical for many researchers.

Finally, as alluded to above, most phenotypes, espe-
cially those in psychology and psychiatry, have binary (Yes 
or No) or ordinal (None, A Little, Some, A Lot) response 
options, which greatly increases the numerical complex-
ity of optimization. Under the normal threshold model, the 
likelihood must be calculated using numerical integration 
of the multivariate normal distribution (or by repeated inte-
gration of the conditional normal distribution while inte-
grating over the factors; Bock and Aitkin 1981). The com-
plexity increases exponentially with either the number of 
items or the number of factors. This difficulty in part led to 
the development of asymptotic weighted least squares esti-
mators by Browne and others (Browne 1984; Joreskog and 
Sorbom 1993).

While the challenges noted above are serious, several 
solutions exist that can attenuate the most difficult ones. 
While the ‘Big Data’ problem will get worse as genotyping 
becomes cheaper, the solution to this problem is partially 
solved by relying on alternative estimators. One alternative 
is to rely on least squares (LS) estimation procedures (espe-
cially diagonally weighted least squares, DWLS), which 
greatly reduce the computational complexity. Given suffi-
ciently rapid methods, it becomes possible to fit a SEM mil-
lions of times, one for each measured SNP. Furthermore, 

while adding parameters to a model increases processing 
time with any estimation procedure, it does not necessarily 
become prohibitive if the model converges rapidly.

Model fitting and optimization

In this section we discuss the details of the estimation pro-
cess, along with the algebra for calculating the weights and 
the estimation of the SEM. All of the code is written for 
the R computing environment (R Development Core Team 
2008) and OpenMx (Neale et al. in press; Boker et al. 2015, 
2011) is used to fit the models.

Briefly, a 4-step procedure is followed. In the first, the 
SNP invariant covariances and weights are computed. Sec-
ond, the covariances between the items/covariates and each 
SNP and the associated weights are calculated. Third, the 
individual SNP covariances are appended to the SNP invar-
iant covariance matrix. Finally, the specific model from 
Fig.  1 is fit to the covariance matrix using a DWLS esti-
mation procedure. GW-SEM requires the user to provide a 
phenotype and genotype file, with individuals on the rows 
and items or SNPs on the columns, respectively. The geno-
type data must be properly QC’d prior to analysis. Then, by 
selecting one of the models from Fig. 1, the model is fit to 
the data. GW-SEM therefore provides a rapid, accurate and 
user-friendly method that can be applied to SEM with con-
tinuous, binary and ordinal items, along with genome-wide 
data. The data for GW-SEM may be either hard-called or 
dosage format data, however they will need to be formatted 
so that SNPs are on the columns and individuals are on the 
rows (See the tutorial for more details).

The first step in the GW-SEM algorithm is to calculate 
the SNP-invariant variance-covariance matrix and the asso-
ciated weights. These are the variances and covariances 
of the indicators of the latent factor(s) and any covariates 
(such as age, sex or population stratification principal com-
ponents), and the corresponding weights. Because these 
statistics are included in the SEM for every SNP, it is pos-
sible to calculate them once and re-use them in the analy-
sis of every SNP. Different data types (continuous, ordinal 
and binary) may be used in an analysis, so SNP-invariant 
matrices are constructed from pairwise maximum-likeli-
hood covariances between the variables. The function is 
designed to automatically detect the data type, and estimate 
the appropriate covariance for any pair of variables. These 
are covariances for pairs of continuous variables, tetra-
choric/polychoric correlations for pairs of ordinal variables, 
and point-biserial covariances for mixed continuous-binary 
pairs of variables. Standard errors of the MLE’s are calcu-
lated during the same process. Finally, the weight matrix is 
constructed as follows:
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where Nj is the number of observations contributing to 
the jth covariance, and SEj is the standard error of the jth 
covariance. Covariances with larger samples and/or smaller 
standard errors will have larger weights. This accounts for 
missing data patterns by using pairwise estimates of each 
variance, covariance, mean and threshold. As with most 
statistical procedures, data that are not missing at random 
may result in biased estimates. Thus, in contrast to other 
packages that use list-wise deletion (removing an entire 
observation if there is any missing value), the current pack-
age uses all of the available information, and is appropri-
ate when the data are missing at random (Little and Rubin 
1989). This is particularly important for multivariate mod-
els, because an individual’s probability of missing a single 
variable increases with the number of variables per person. 
Further, for longitudinal models, this pair-wise procedure 
can greatly reduce the impact of attrition across time.

The next step is to estimate the SNP-item and SNP-
covariate covariances. The covariances between the SNPs 
and both the items and the covariates must be estimated 
for each SNP. This step effectively conducts a univariate 
GWAS for each item and covariate; it is the longest and 
most computationally intensive part of the algorithm. To 
minimize the number of objects stored in the R environ-
ment, and therefore increase processing speed, this function 
accesses data that are not loaded into the R environment, 
but instead stored as *.txt files. As the raw files have the 
potential to be extremely large (even if the genotype data 
is separated into multiple files), all of the data management 
is done using unix functions. Subsets of SNPs are copied 
to much smaller temporary files and these temporary files 
are loaded into R. The covariance of each SNP with each 
item and covariate is then calculated, as is the mean and 
variance of the SNP. The number of analyses that are con-
ducted are extremely large, storing the results in R would 
also hinder processing speed, so the estimated SNP-item 
and SNP-covariate covariances, weights and standard 
errors are written to external files. The covariances, stand-
ard errors and weights are calculated the same way as was 
done in step 1.

The final steps of the model is when the SEM is actually 
fit to the data. The DWLS fit function is:

where Σ� is the expected covariance matrix, ΣObs is the 
observed covariance matrix, W is matrix of weights.

The expected covariance matrix, Σ�, is calculated using 
the standard Reticular Action Model (RAM: McArdle 
and McDonald 1984; McArdle and Boker 1990), which 

(1)
W =

√

Nj − 1

SEj

(2)DWLS =
1

2
tr[(ΣObs − Σ�)

2W]

produces the same expectations as the LISREL model 
(Joreskog and Sorbom 1989, 2001, 1996a, b). The two 
approaches differ with respect to the size and number of the 
matrices involved in the calculation; the RAM model has 
4 larger matrices, while the LISREL model has up to 13 
smaller matrices. The algebra for the RAM expected covar-
iance matrix is:

where F is a filter matrix k (the number of observed vari-
ables) × m (the number of observed + latent variables), 
I is an m × m identity matrix, A is an m × m matrix with 
the Asymmetric (single-headed) paths, and S is an m × m 
matrix with the Symmetric (double-headed) paths. Accord-
ingly, the residual variances and variances of exogenous 
variables are in the S matrix, while the factor loadings and 
regression paths are in the A matrix. Because the scripts 
are publicly available, the simplicity of the RAM matrices 
makes it possible for advanced users to edit the code and 
construct alternative SEM functions that are not included in 
the current software.

The observed covariance matrix is constructed using 
the SNP-invariant covariances obtained in step 1, and the 
SNP-item and SNP-covariate covariances obtained in step 
2. For each SNP, the observed SNP-item and SNP-covar-
iate covariances and the SNP variance are appended to 
the SNP-invariant covariance matrix, thereby providing a 
complete observed variance-covariance matrix. The weight 
matrix is constructed similarly.

While there is some debate about the reliability of LS 
estimators, previous research has demonstrated that DWLS 
and ML parameters are equally accurate when the data is 
continuous and multivariate normal, but that DWLS esti-
mators may be slightly more accurate with categorical or 
non-normal data (Mindrila 2010; Li 2015). We directly 
address these questions below. For the current algorithm, 
the important difference between DWLS and FIML estima-
tors is speed of optimization.

The expected relationships between the Items and 
Covariates The observed covariances between the items 
and the covariates are estimated in the same way as covari-
ances among the items, but the relationships between the 
items and the covariates in the expected covariance matrix 
are modeled in a very specific way, as there are multiple 
possible associations between the items and covariates. 
For the current models, the items are directly regressed on 
the covariates. This is in contrast to the alternative method 
where the latent variables were regressed on the covariates. 
While there are clear benefits to both strategies, the chosen 
method is slightly more conservative in that it uses addi-
tional parameters to capture these associations. Specifically, 
for each covariate, j, the model estimates k (the number of 
items) regression parameters, resulting in j × k estimates. 

(3)Σ� = F(I − A)S(I − A)TFT
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In the alternative specification, one regression parameter 
is estimated for each covariate, resulting in j regression 
parameters. The alternative specification, however, imposes 
the assumption that the covariates are associated with the 
items proportional to their factor loadings, an assumption 
that is avoided in the current specification.

Essential features of GW‑SEM

GW-SEM is a method to fit a SEM on a genome-wide basis. 
The new software provides algorithms to fit 4 SEMs, pre-
sented in Fig. 1. Because the code is entirely open source, 
users to can modify and extend the methods to other types 
of SEM and for other types of data (e.g. fMRI data).

Comparison between DWLS and FIML

The DWLS estimator may not have the same desirable 
properties as full information maximum likelihood (FIML) 
estimators, making it necessary to compare the estimators 
via simulation. Although DWLS estimators appear to be 
asymptotically unbiased (DiStefano and Morgan 2014), it is 
necessary to demonstrate unbiasedness for the current esti-
mator. In doing so, it is possible to compare the efficiency 
and convergence of the DWLS and FIML estimators.

To compare the DWLS and the FIML methods, data 
were simulated for a one-factor model with four ordi-
nal indicators and one covariate for 10,000 observations, 
along with 10,000 independent SNPs generated under 
the null hypothesis of no association. The factor loadings 
of the items on the latent factor, �, were specified to be 
0.7, 0.6, 0.5, and 0.4, with residual variance of each item 
being, � = 1 − �2, so that the variance of each item was 
constrained to unity. The factor variance, �, was fixed at 
1. Observed items were generated using the mvrnorm 
package in R (Venables and Ripley 2002), which produces 
multivariate normal, continuous variables. To construct 
the ordinal items, the continuous data were split into four 
equally frequent ordinal categories. The SNPs were simu-
lated from independent binomial distributions with minor 
allele frequencies ranging from 0.01 to 0.5. The simulated 
data were then analyzed with both the DWLS and the 
FIML fit functions for raw ordinal data. The key statistics 
for the purposes of GW-SEM are: (i) the estimated regres-
sion parameters, (ii) the p-values associated with these esti-
mates, and (iii) failures of model convergence. Any models 
that failed to converge were excluded from comparisons of 
the regression parameters and p-values.

The correlation between the regression parameters for 
the DWLS and FIML algorithms is very strong (r = 0.99

), and the p-values for the DWLS and FIML algorithms 
is also very large (r = 0.96). Notably, there appears to be 

a small, though detectable, nonlinearity in the relationship 
between the p-values at the low end of the spectrum. This 
non-linearity appears to be a function of the minor allele 
frequency and variance of the SNPs. To further examine 
this relationship, Spearman’s rank-order correlations were 
calculated for the FIML p-values lower than 0.1, resulting 
in a correlation of rspearman = 0.647. As most researchers 
are interested in the extreme tails of the p-value distribu-
tion, we also correlated the −log

10
(p), which was also very 

large (r = 0.95). It is important to reiterate that the asso-
ciations were simulated under the null model, making the 
extreme tails of the distribution quite rare, and contributing 
to the attenuation of the correlations. In toto, these results 
suggest that the estimates and and p-values from the DWLS 
procedure are extremely similar to those obtained by FIML.

To evaluate the Type I Error rate of the DWLS method 
in more detail, we examine the proportions of p-values that 
exceeded four critical thresholds: 0.10, 0.05, 0.01, and 
0.001. The raw p-values from the DWLS procedure tend to 
be liberal with 0.1230 of the p-values falling below p = 0.1

, 0.0669 falling below p = 0.05, 0.0159 falling below 
p = 0.01, and 0.0026 falling below p = 0.001. This implies 
inflation of the test statistic, t. To quantify this inflation, we 
calculated an inflation factor, 

√

1

n
Σt2, which should be the-

oretically equal to 1 but was 1.076 in the simulated sample. 
We then adjusted each test statistic by the inflation factor 
and recalculated the p-values. The resulting p-values fol-
lowed the null distribution very closely: 0.0980 of the 
p-values were below p = 0.1; 0.0504 below p = 0.05; 
0.0103 below p = 0.01, and 0.0012 below p = 0.001. Thus, 
while there may be a slight inflation of the raw DWLS 
p-values, the corrected DWLS p-values follow a null distri-
bution, and the rank-order of p-values are consistent with 
the FIML statistics. Accordingly, we recommend that the 
DWLS algorithm be used as an initial screen for significant 
SNPs, and that the most promising ones be investigated 
further with the FIML algorithm to obtain more precise 
p-values.

Finally, it is possible to compare the likelihood of con-
vergence problems for the DWLS and FIML estimators. Of 
the 10,000 SNPs that were analyzed, the DWLS estimator 
failed on 80 SNPs (0.8% of the trials) while the FIML esti-
mator failed on 793 SNPs (7.9% of the trials). Thus, con-
vergence issues were much more frequent for the FIML 
estimator. SEM methods often struggle to converge when 
there are relatively large differences in the magnitude of the 
variance for the variables in the model. To further explore 
the DWLS convergence failures in more detail we exam-
ined the MAF for the convergence failures as SNPs with 
small MAFs have correspondingly small variances. For 
the 80 DWLS models that did not converge, the SNPs had 
minor allele frequencies ranging from 0.009 to 0.016 MAF. 
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To put this in context, 218 SNPs had a MAF less than 0.02, 
meaning that approximately 1 / 3 of SNPs with a MAF less 
than 0.02 failed to converge using the DWLS algorithm. 
While DWLS convergence failures do not disrupt the esti-
mation process, this implies that researchers should restrict 
their analyses to SNPs with MAFs larger than 0.02 with 
sample sizes in the 10,000 observation range. With smaller 
sample sizes (N < 5000) MAFs larger than 0.05 may be 
prudent.

Timing

Next we addressed two key questions about timing via 
simulation: sample size and number of observed variables. 
Because sample size is unrelated to the time it takes to fit 
the SEM, the current timing studies focus on the SNP-Item 
and SNP-covariate correlations, the prerequisite steps for 
the SEM analyses.

To examine the time to estimate the covariances, a 
five-indicator model with three covariates for was fitted 
to datasets with 2500, 5000, or 10,000 observations. For 
all models, the factor loadings were simulated at 0.8, 0.7, 
0.6, 0.5, and 0.4, with the residual variance of each item 
being, � = 1 − �2. Again, the factor variance, �, was fixed 
at 1, and continuous, multivariate normal variables were 
simulated. The continuous data were used for the con-
tinuous models. For the ordinal models, the continuous 

data were split into four equally frequent categories, and a 
median split was used to create the binary data. The three 
covariates were simulated as independent random normal 
variables, to mimic the inclusion of ancestry principal com-
ponents in the analysis. Each item was regressed directly 
on each covariate. The SNPs were again simulated from 
independent binomial distributions with minor allele fre-
quencies ranging from 0.01 to 0.5. To examine the impact 
of adding items to the model, the same simulation process 
was employed, but only 3, 4 or 5 of the items were included 
in the analysis. For each timing study, 50,000 SNPs were 
simulated and were accessed in 1000 SNP batches, pro-
viding 50 observed times for each timing condition. The 
mean and standard deviation of the time in minutes were 
then calculated. All simulations were conducted on dual 
4-core or dual 6-core Intel Xeon 3.6  GHz processors and 
128–256 Gb RAM.

The first timing study addressed the impact of increasing 
sample size for 2500, 5000, and 10,000 observations with 
three different variable types : binary, ordinal, and continu-
ous items and 3 continuous covariates. The results of the 
simulation are presented in Fig. 2a.

As can be seen the Fig.  2a, as sample sizes double 
from 2500 to 5000 to 10,000 observations, there is an 
exponential increase in the time it takes to estimate the 
covariances between SNP and the items and covariates 
for all item types. It is important to note, however, that 

Fig. 2  The average duration (min) to estimate covariances between 
the SNPs, items, and covariates (error bars represent ±1.96 standard 
deviations). a presents the mean number of minutes (and standard 
deviations) to estimate covariances between 1000 SNPs and 5 items 
and 3 covariates for 2500, 5000 and 10,000 observations for the one-

factor model. b presents the mean number of minutes (and standard 
deviations) to estimate covariances between 1000 SNPs and 3 covari-
ates and 3, 4 and 5, items for 2500 observations for the one-factor 
model
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for the smaller sample sizes there are no substantial dif-
ferences in the time taken to estimate the categorical 
and the continuous correlations. When the sample size 
increases to 5000 or 10,000, the continuous correla-
tions take significantly longer. Specifically, for the ordi-
nal data models, when the sample size is approximately 
2500, the algorithm takes 9.53  min to estimate the 8 
necessary correlations for 1000 SNPs (0.57 s per SNP), 
while when the sample size is 10,000 it takes 17.63 min 
to estimate the same number of correlations (1.06 s per 
SNP). As a point of comparison, using FIML it took 2 h 
and 19 min to fit the same ordinal model to N = 10,000 
observations for a single SNP.

The second timing study assessed the impact of 
increasing the number of measures in the analysis. To 
examine this, three separate models were estimated with 
3, 4 and 5 items (again with binary, ordinal and continu-
ous items), and 3 continuous covariates with a sample 
size of 2500. The results are presented in Fig. 2b. As can 
be seen in Fig.  2, the increase in the time required to 
estimate correlations between an increasing numbers of 
items is approximately linear for all variable types. It is 
important to note that as the average computation time 
increases, the standard deviation of the mean conver-
gence time also increases. This increase is in part due 
to traffic on the server that was not part of the timing 
study, but mimics realistic server conditions in many 
laboratories.

The final factor that affects processing time is the size 
of the genotype file. Large SNP files take longer to pro-
cess. While it is possible for genotype files to be larger 
than 1 Tb, such files are very difficult to manage. To deal 
with these massive genotype files, most analysts cre-
ate multiple genotype files. For example, 50,000 SNPs 
for 10,000 observations is approximately 1 Gb, which 
is still quite large, but computationally feasible. Indi-
vidual users must balance file size and file proliferation 
concerns.

If we assume that it takes approximately 20  min 
to estimate associations for 1000 SNPs, and the 1000 
Genomes Project reference imputation of well genotyped 
samples with R2 ≥ 0.6 and MAF ≥ 0.05 covers approxi-
mately 6.5 million variants, it would take approximately 
2267 h of processing time to complete the analysis on a 
single thread of a cpu core. Capitalizing on the potential 
for parallel processing would reduce the processing time 
by a factor of the number of available processors. Thus, a 
standard laptop (with 2 dual-core multithreaded proces-
sors) would be able to process a 5-indicator CFA model 
for 6,500,000 SNPs in approximately 271 h (11 days). On 
a server with parallel processing capacity, analysis time 
could be substantially reduced to a few hours. While this 
length of time is reasonable, it is inevitably slower than 

other MV-GWAS methods that treat the items as continu-
ous variables (Zhou and Stephens 2014, 2012; Furlotte 
and Eskin 2015; Meyer and Tier 2012).

Power

To calculate the power to detect a significant association, 
two models were fit using FIML: one freely estimating 
the effect of the SNP on the latent factor and one where 
the effect was fixed at zero. The difference in the -2 log-
likelihoods of the two models follows a �2 distribution 
with one degree of freedom under the alternative hypoth-
esis HA. Importantly, the �2 value increases linearly with 
sample size, making it possible to extrapolate the expected 
�2 value across a range of sample sizes. This value can be 
used as the non-centrality parameter (NCP) for power cal-
culation. Accordingly, the power to detect a genome-wide 
significant association for a 1 df test is 1 − p(�2

crit
) where 

�2

crit
∼ �2

1
(ncp). In R, this can be done using the function: 

power = 1‑ pchisq(qchisq(1‑5e‑8, 1), 1, ncp), where 5e−8 
is the value for genome wide significance for 1 df and ncp 
is the calculated non-centrality parameter for each sample 
size (see Verhulst, in press, for more details).

For the power analyses, a five-indicator model was sim-
ulated with all of the factor loadings fixed at .7, the residu-
als fixed at 1 − 0.7

2
= 0.51, and the factor variance fixed 

at 1. An association between the SNP and the latent fac-
tor was simulated to have an effect of 0.20, 0.10 or 0.05. 
To construct the SNP for each analysis, two minor allele 
frequencies were used: 0.25 and 0.05. As genetic theory 
provides excellent justifications of the mean and variance 
of a SNP (� = 2p & �2

= 2p(1 − p), where p is the minor 
allele frequency), the SNP mean and variance was specified 
accordingly. All of the data was simulated using mvrnorm 
(Venables and Ripley 2002), producing multivariate nor-
mal data. As done previously, the ordinal items were split 
into 4 equally sized ordinal categories. The SNP was split 
into three genotypes in such a way that the proportions of 
each genotype was in Hardy-Weinberg Equilibrium for the 
specified minor allele frequency. As transforming continu-
ous variables into ordinal items and SNPs slightly changes 
the observed covariances, models were scrutinized to 
ensure that the estimated SNP regression parameters were 
within .001 of the simulated values for both the continuous 
and ordinal models.

We then examined the power to detect significant asso-
ciations between a SNP and a single latent factor. The 
power to detect significant associations between a SNP and 
a latent variable from any of the models follows directly 
from existing SEM power analysis (Lai 2011; MacCallum 
and Hong 1997; Wolf et al. 2013; Miles 2003; Chin 1998). 
Two factors adversely affect statistical power to detect the 
trait-relevant genetic associations in many human traits of 
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interest. One is that the variants typically have small effect 
sizes (of the order of 1% of variance or less). The second is 
that ordinal data are generally less precise than continuous 
measures. Therefore we present statistical power curves for 
several illustrative cases. Power curves for continuous and 
ordinal models, with minor allele frequencies (MAF) of 
0.25 (relatively common allele) and 0.05 (relatively rare), 
and a range of effect sizes (� = 0.20, 0.10, & 0.05) are pre-
sented in Fig  3. These effect sizes would equate to a 1

5
sd 

change between either homozygote and the heterozygote, a 
1

5
sd change between the minor allele homozygote and the 

major allele homozygote, or a 1

10
sd change between the 

minor allele homozygote and the major allele homozygote.
Two important lessons can be learned from Fig. 3. First, 

because the effect sizes are small, large sample sizes are 
required to obtain adequate levels of power. Specifically, 
for a continuous (ordinal) item model and a minor allele 
frequency of 0.25, 3,235 (3,579), 12,984 (14,117), and 
50,035 (69,751) observations would be required for 80% 
power for the three � weights. For a minor allele frequency 
of 0.05, 12,804 (13,224), 51,059 (64,679), and well over 

100,000 observations would be required for 80% power for 
the three � weights.

Second, power depends on MAF. SNPs with larger 
MAFs have larger variances, and these directly affect 
the latent factor variance. The R2 for a MAF = 0.25 and 
� = 0.20, 0.10 & 0.05 are 0.015, 0.00375, and 0.0009375, 
respectively. When MAF = 0.05, the corresponding R2 are 
0.0038, 0.00095, and 0.0002375. While all of these effect 
sizes may seem infinitesimal, they are consistent with those 
seen in many GWAS studies of complex traits.

Comparison between GW‑SEM and GEMMA

Finally, we compared GW-SEM to an existing MV-
GWAS software package, GEMMA (Zhou and Stephens 
2014), which conducts multivariate GWAS using a linear 
mixed model (LMM) with restricted maximum likelihood 
(REML) fit function. While many SEMs can be speci-
fied as LMMs, not all can (especially those with feedback 
loops). Accordingly, LMM-based GWAS software is less 
general than an SEM-based equivalent. To compare the 
two approaches, we use here the one-factor CFA model 

Fig. 3  Power to detect a genome-wide significant association with 
varying effect sizes and minor allele frequencies. a–d present the 
power curves for the ability to detect genome-wide significant asso-

ciations between a SNP and a latent factor for a one-factor model 
with 5 items for continuous and ordinal items and SNPs with a minor 
allele frequency of 0.25 or 0.05
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in GEMMA and in GW-SEM. We simulated data on 5000 
individuals under a five-indicator CFA model. The j=15 
measures were set to 0.8, 0.7, 0.6, 0.5, and 0.4, and the 
residual variance of each item was �i = 1 − �2

i
. The fac-

tor variance, �, was fixed at 1, and continuous, multivari-
ate normal variables were simulated using the R package 
mvrnorm (Venables and Ripley 2002). For this simula-
tion, the first SNP was generated with a MAF of 0.15 
and a regression coefficient of 0.20, corresponding to an 
R2

= 0.01. The remaining SNPs were simulated under the 
null from independent binomial distributions with minor 
allele frequencies ranging from 0.01 to 0.5. Each simula-
tion was repeated 1000 times.

Three comparisons are of interest in this simulation. 
First, we compare the statistical significance of the test sta-
tistic of the SNP simulated under the alternative for each 
software package. As there was a slight inflation of the 
t-statistics for GW-SEM, the t-statistics were corrected 
prior to calculating the p-values using: 

√

1

n
Σt2. For GW-

SEM analysis, the mean −log
10

 p-value was 4.92 (SD = 
1.05), while the mean −log

10
 p-value for the GEMMA 

analysis was 3.81 (SD = 1.19). Thus, the p-value obtained 
using GW-SEM is more significant than that obtained from 
GEMMA. Second, we compared the Type I Error rate 
under the null for each model. For GW-SEM, 0.001, 0.01, 
0.049 and 0.097 models had p-values less than 0.001, 0.01, 
0.05 and 0.10 respectively. For GEMMA, the correspond-
ing statistics were: 0.0008, 0.009, 0.046 and 0.093. Thus, 
the Type I Error rate is approximately equal for both meth-
ods. Third, we examined the CPU time taken to fit the 
model for each SNP. It took 0.58  s to estimate each SNP 
using GW-SEM, and only 0.20  s using GEMMA. Thus, 
GEMMA is almost three times faster than GW-SEM.

Our comparison is limited in several respects. First, 
while many SEMs can be specified as multivariate linear 
mixed models, GEMMA is not exactly designed to conduct 
such analyses. Specifically, the multivariate LMM method 
implemented in GEMMA uses Wald tests of the null 
hypothesis that no association exists between the SNP and 
any of the items. The degrees of freedom for the Wald tests, 
therefore, differ from those of the One-Factor CFA model 
fitted using GW-SEM. This is likely the major source of 
the discrepancies between the p-values found by the two 
methods.

Discussion

GW-SEM is able to fit SEMs to ordinal or continuous 
data genome wide. This advance permits a great variety 
of models popular in the assessment of traits and their 

development over time to be fitted genome wide. Specific 
functions are provided for a one-factor GWAS, a one-fac-
tor residuals GWAS, a two-factor GWAS, and an LGM 
GWAS. As it is not possible to fit three of these mod-
els using existing software packages, GW-SEM greatly 
expands the analytical tools for GWAS, and increases the 
potential value of many existing datasets.

The four SEMs included in the GW-SEM package 
will likely be the most widely applied. The one-factor 
model is a direct extension of the current zeitgeist of 
using factor- or sum-scores in a univariate GWAS, with 
the advantage that issues of factor score indeterminacy 
are avoided (Grice 2001). The residuals model may be 
seen as a follow-up method to the one-factor model, as 
it partitions the genetic variance in an observed item into 
that shared with other items, and that which is unique to 
the specific item. It is an empirical question whether the 
genetic architecture and SNP effect sizes differ between 
a common factor or a residual variance component. The 
possible hypotheses that can be tested using the residuals 
model go far beyond those that can be tested using one-
factor model. Specifically, users can test (1) whether a 
SNP is associated with a specific item or subset of items 
rather than the latent factor, (2) whether the association 
between the SNP and the factor accounts for the entire 
association between the SNP and the specific item, and 
(3) whether some items are more or less associated with 
the SNP, after controlling for the association between 
the items as a function of the latent factor. In principle 
at least, it is possible that the residual components have 
a simpler structure and larger SNP effect sizes and yield 
more valuable insights into individual differences.

It is important to note that the residuals model is not 
identified if all of the residuals and the latent factor are 
regressed on the SNP. The model is identified if all of the 
items are regressed on the SNP but the latent factor is not, 
or if the latent factor and a subset of the items are regressed 
on the SNP. When the residuals model is tested in con-
junction with the one-factor model, the residuals model 
can deepen the interpretation of the one-factor model by 
highlighting the items that are, or possibly are not, asso-
ciated with the SNP. For example, if the residuals model 
suggests that all the items are broadly associated with the 
SNP but perhaps at sub genome wide significance levels, 
then the SNP is likely associated with the underlying latent 
construct (as would be interpreted by a significant associa-
tion with the latent factor). Alternatively, it is possible that 
the SNP is only associated with one, or a small subset, of 
the items of the latent factor. This would imply that the 
association with the latent factor is better characterized by 
an association with the reduced set of items or may sug-
gest that the heterogeneity in the phenotype has a genetic 
basis. Note that the interpretation of the association and the 
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implications for the underlying genetic mechanism are sub-
stantially different in each case. While some components 
of this residuals model are comparable to the multivariate 
regression methods used in other MV-GWAS packages, 
the range and precision of potential hypotheses that can be 
tested in the current package are unmatched by the existing 
MV-GWAS alternatives.

The two-factor model allows for the direct assessment of 
pleiotropy within a single SEM by modeling the correla-
tion between two sets of latent phenotypes. In this model, 
two latent factors are regressed on each SNP, as depicted 
in Fig  1c. Unlike running two separate univariate GWAS 
models and searching for SNPs associated with both phe-
notypes, this model simultaneously regresses both factors 
on each SNP, while taking into consideration the correla-
tion between the latent factors. If two factors are correlated, 
conducting two separate univariate GWASs would produce 
a correlated set of regression parameters. In such a case, 
it would be difficult to distinguish whether the association 
between a SNP and Factor A was due to a true relation-
ship between the SNP and the Factor A or whether it was 
due to the fact that the Factor A was correlated with Fac-
tor B. In the current software, however, because we are 
explicitly accounting for the correlation between the two 
factors, this confounding problem is minimized. For exam-
ple, imagine conducting a two-factor GWAS on nicotine 
and alcohol dependence. There clearly exist differences 
between the genetic architectures of the phenotypes. Spe-
cifically, variants in the CHRNA5-CHRNA3-CHRNB4 
cholinergic nicotinic receptor subunit gene cluster on chro-
mosome (rs16969968 in particular) (Lips et  al. 2010; Liu 
et al. 2010; Saccone et al. 2009) are associated with nico-
tine dependence, and variants in the alcohol dehydrogenase 
(ADH) and aldehyde dehydrogenase (ALDH), and rs671 in 
particular, are associated with alcohol dependence (Whit-
field et al. 1998; Nakamura et al. 1995; Duell et al. 2012). 
These differences, however, obscure the possibility that 
genetic commonalities between the phenotypes may occur 
due to a latent addiction component common to both traits, 
which has yet to be identified with the existing methods. 
Thus, using the two-factor GWAS it is possible to distin-
guish the sources of genetic liability for both phenotypes 
from the unique sources of genetic liability for each of the 
phenotypes. Furthermore, it becomes possible to specify 
causal relationships between the factors, which in turn may 
resolve pathways to substance use and dependence.

Finally, the LGM model allows researchers to test the 
developmental trajectories of phenotypes. As research-
ers begin to collect genotypes that can be paired with their 
existing longitudinal phenotypic data, methods to analyze 
these trajectories become essential. Current multivari-
ate methods cannot effectively handle longitudinal data, 
and factor scoring methods for longitudinal SEMs contain 

assumptions such as measurement invariance which may 
be difficult to resolve. The current method, therefore, is the 
only package that can effectively fit longitudinal models on 
a genome wide basis. The LGM is very popular in develop-
mental studies, as it can predict changes of trait means and 
variances over time. The LGM depicted in Fig. 1d decom-
poses the variance of the observed measures into three 
latent factors: a latent intercept that captures the average 
level of the phenotype; a latent linear slope that captures 
the linear increase (or decrease) in a phenotype over time; 
and a latent quadratic slope that captures the curvature in 
the growth of a phenotype. Note that the factor loadings 
for the intercept, linear and quadratic slopes are all fixed at 
particular values and not estimated freely. Instead, means 
and variances of the latent growth factors are estimated. 
The mean of each latent factor indicates the estimated sam-
ple average, while its variance accounts for random effects. 
For example, a mean of 0.8 and a variance of 0.5 in the lin-
ear slope factor would indicate that with each passing year 
(or other specific unit of time) you would expect, an 0.8 
increase in the phenotype with some individuals increasing 
much faster, and some increasing much slower, to the point 
that some people may actually decrease. Further, the model 
allows for correlations between latent growth parameters. 
For the LGM, each latent growth factor is regressed on 
each SNP. Accordingly, each SNP can potentially predict 
not only the average level of the trait, but also linear and 
quadratic changes in the trait across time. Thus, it is possi-
ble to distinguish SNPs that increase the rate of change in a 
phenotype from those that increase the average level.

The comparison between the DWLS and FIML estima-
tors demonstrates that there is a very high level of consist-
ency between the more traditional FIML approach and the 
faster DWLS approach. The speed of the DLWS estima-
tion procedure makes genome wide analysis feasible, while 
the FIML approach remains too computationally intensive 
genome wide. While there may be some inflation in the 
DWLS test statistics, producing an inflated Type I Error 
rate, this inflation can be addressed by computing corrected 
test statistics using the t-inflation factor. Importantly, even 
the raw or uncorrected test statistics correlate very highly 
with the more traditional FIML statistics, making it feasi-
ble to use the DWLS algorithm to screen for ‘promising’ 
SNPs, and to follow up analyses using FIML on this sub-
set of loci. As there are likely to be a limited number of 
promising SNPs in any given GWAS analysis, the FIML 
procedure would not be overwhelmingly computationally 
intensive. Further, after an promising SNP is identified, a 
FIML approach can be used to further explore the associa-
tion by fitting related models in order to further illuminate 
the underlying genetic architecture.

The timing analyses show that there is an exponential 
increase in the required time to fit the model as sample 
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size increases, and a linear increase in the required time 
for increasing numbers of items. While this is appreciably 
longer than many of the other MV-GWAS or univariate 
GWAS methods, with sufficient parallelization the analysis 
could be conducted in a reasonable amount of time.

The statistical power to detect significant associations 
is still low. This is primarily due to the fact that most 
phenotypes are highly polygenic, with each individual 
genetic variant having a very small effect size. With 
10,000 to 20,000 observations, which is relatively small 
for many GWAS consortia, there is reasonable power to 
detect associations with r2 ≥ 0.00375.

Limitations

Users should be aware of several limitations of the cur-
rent algorithm. First, as discussed above, there is infla-
tion in the DWLS test statistics, and correspondingly to 
smaller p-values, while there is no inflation in the FIML 
p-values. Accordingly, we recommend using the DWLS 
algorithm to ‘screen’ SNPs and then following up the 
promising SNPs with FIML to obtain more accurate 
p-values. Second, it takes longer to conduct a GWAS 
with the current algorithm than with other univariate 
or multivariate GWAS software packages. The current 
algorithm, however, effectively models ordinal data and 
allows the user to fit a very wide variety of SEMs that 
more directly relate to the hypotheses of interest. Third, 
because the SEM algorithm utilizes covariances and 
weights, it is not possible to moderate specific pathways 
between the latent variables, such as the factor covari-
ances or dynamically assigning the factor loadings in 
the growth model by the precise age of the assessment. 
Again, using a FIML approach to follow-up an ‘interest-
ing’ association would allow for a wide array of modera-
tion models. Finally, with small MAFs, the variance of 
the SNPs are correspondingly small, causing issues with 
model convergence. Accordingly, we suggest a MAF cut-
off of 0.05 for small sample sizes (N < 5000) and a MAF 
cutoff of 0.03 for larger sample sizes (N ≈ 10,000)

Future directions

While the 4 SEMs that have been included in the current 
software package cover a wide range of possibilities, there 
are still many models that have been excluded. We plan on 
increasing the number of models included in subsequent 
releases of the software. For example, in the future we 
plan on building functions to conduct GWAS on twin, G×
E, multiple group, mendelian randomization, and medita-
tional models, as well as univariate and bivariate models 

that compare directly with existing GWAS software pack-
ages. Furthermore, we are also working on increasing the 
optimization speed. Finally, in order to be more consistent 
with other GWAS packages, we are working on methods of 
incorporating a variety of different genome file types.

Conclusion

More precise phenotypic measurements increase the 
chances of finding true genetic associations. In this arti-
cle, we present a novel method, GW-SEM, to conduct 
SEM on a genome-wide level. This method closely corre-
sponds with those used in the phenotypic literature, which 
is not the case with existing multivariate GWAS methods. 
Accordingly, GW-SEM allows researchers to test hypoth-
eses that cannot be tested with existing multivariate or 
univariate GWAS software. GW-SEM relies on a DWLS 
estimator, which we demonstrate is comparable to the more 
traditional full information maximum likelihood estima-
tor, but rapid enough to fit a SEM for millions of SNPs 
genome wide. We provide functions to estimate four spe-
cific, widely applicable SEMs: a one-factor model, a resid-
uals models, a two-factor model, and a latent growth model 
(LGM). Accordingly, GW-SEM provides a method to 
incorporate genetic variants into standard phenotypic mul-
tivariate models thereby making it possible to test a larger 
array of hypotheses regarding the genetic architecture of a 
phenotype.
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Appendix 1: syntax and application

A supplementary goal of GW-SEM is to create a user-
friendly set of commands that researchers who may not be 
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dedicated data analysts can use effectively. Therefore to 
demystify the process, in this section we explain the use of 
each of the principal functions.

The first step in the analysis is to calculate the SNP-
invariant covariances. These calculations are conducted 
using the facCov() function:

facCov( dataset, VarNames, covariates)
where dataset is a dataframe in R, VarNames is a list of 

the variable names of the items, and covariates is a list of 
covariates. The function returns covariances, weights, and 
standard errors of all of the variances, covariances, means 
and thresholds for all of the items and covariates. Because 
this function runs quickly (even for a relatively large num-
ber of items), and is necessary for all subsequent functions, 
it is called directly by the other functions. Users can use 
this function to ensure that their data is properly organized, 
and to ensure that there are no peculiarities with any of the 
variables they plan on including in their analyses.

The second step in the analysis is to estimate the SNP-
item and SNP-covariate covariances. These calculations are 
conducted using the snpCovs() function:

snpCovs(FacModelData, vars, covariates, SNPdata, out-
put, zeroOne, runs, inc, start)

where FacModelData is the path to the text file with 
the item and covariate data, vars is a list of items, covari‑
ates is a list of covariates, SNPdata is the path to the text 
file with the SNP values, output is the prefix for the output 
files, zeroOne is a logical value indicating whether the first 
and second thresholds should be fixed at 0 and 1, freeing up 
parameters to estimate the mean and the variance following 
the liability-threshold Model (Mehta et  al. 2004), runs is 
the number of batches of SNPs to be analyzed, inc is the 
number of SNPs included in each batch, and start, is the 
column in the SNP file of the first SNP to be sampled. The 
output from this function is saved in three separate files 
as specified by the output argument: the covariances, the 
weights and the standard errors.

The final step of the model fits the SEM using the gwas‑
DWLS function:

gwasDWLS(itemData, snpCov, snpWei, VarNames, 
covariates, runs, output, inc)

where itemData is the path to the text file with the item 
and covariates, snpCov is the path to the text file with 
covariances between the SNPs and the item and covari-
ates (calculated in the previous step), snpWei is the path 
to the text file with the weights, VarNames is a list of 
items, covariates is a list of covariates, runs is the number 
of batches of SNPs to be analyzed, output is the file name 
for the output file, and inc is the number of SNPs included 
in each batch. Due to identification restrictions, users must 
supply at least three items (indicators) for the latent fac-
tor. There is no minimum or maximum for the number of 
covariates that can be included in the analysis. Note that 

with these two lines of R code, it is possible to conduct the 
one-factor GWAS.

The next SEM is the residuals model. The syntax to fit 
the residuals model is:

snpCovs(FacModelData, vars, covariates, SNPdata, out-
put, zeroOne, runs, inc, start)

resDWLS(itemData, snpCov, snpWei, VarNames, covari-
ates, resids, factor, runs, output, inc)

As can be seen above, for the residuals model, the only two 
arguments that differ from the one-factor model are resids 
which is a list of the items to be regressed on the SNPs, and 
factor which is a logical value asking whether the latent fac-
tor is to be regressed on the SNPs. The other arguments oper-
ate in exactly the same way as with gwasDWLS. Further, 
the snpCovs function is equivalent for both the gwasDWLS 
and the resDWLS, making it possible to easily conduct addi-
tional analyses with minimal additional steps. Again, at least 
three items are required in order to provide an identified fac-
tor model.

The third model in the package is the two-factor SEM. The 
syntax to run the two-factor GWAS is:

snpCovs(FacModelData, vars, covariates, SNPdata, out-
put, runs, inc, start)

twofacDWLS(itemData, snpCov, snpWei, f1Names, 
f2Names, covariates, runs, output, inc)

Again the snpCovs argument is identical to the previous 
GWAS models, and the only change in arguments from the 
gwasDWLS to the twofacDWLS is the addition of f1Names 
and f2Names, which are lists of the variable names that 
load on Factor 1 and Factor 2, respectively. These lists are 
not exclusive for generality but at least three items must be 
specified for each factor, with at least one item for each factor 
excluded from the alternative factor.

The last model included in the software is the LGM, 
depicted in Fig 1d. The syntax for the LGM GWAS is:

snpCovs(FacModelData, vars, covariates, SNPdata, out-
put, zeroOne, runs, inc, start)

growDWLS(itemData, snpCov, snpWei, VarNames, 
covariates, quadratic, orthogonal, runs, output, inc)

The snpCovs function is again equivalent to the function 
described above, except that for categorical data, the zeroOne 
argument should be specified as TRUE, to facilitate the esti-
mation of the LGM. As the LGM is particularly focused on 
mean and variance changes, this is an important feature of 
the covariance model. The only change in the growDWLS() 
function from the gwasDWLS() function is the inclusion of 
the quadratic and orthogonal arguments. The quadratic 
argument is a logical value asking whether to include a latent 
quadratic growth parameter. The orthogonal argument is a 
logical value asking whether to use the standard growth load-
ings or orthogonal contrasts. The other arguments are exactly 
the same as the gwasDWLS function.
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