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Abstract For quantitative behavior genetic (e.g., twin)

studies, Purcell proposed a novel model for testing gene-

by-measured environment (GxM) interactions while ac-

counting for gene-by-environment correlation. Rathouz

et al. expanded this model into a broader class of non-linear

biometric models for quantifying and testing such inter-

actions. In this work, we propose a novel factorization of

the likelihood for this class of models, and adopt numerical

integration techniques to achieve model estimation, espe-

cially for those without close-form likelihood. The validity

of our procedures is established through numerical

simulation studies. The new procedures are illustrated in a

twin study analysis of the moderating effect of birth weight

on the genetic influences on childhood anxiety. A second

example is given in an online appendix. Both the extant

GxM models and the new non-linear models critically as-

sume normality of all structural components, which implies

continuous, but not normal, manifest response variables.

Keywords Gene-by-measured environment interaction �
Gene-by-environment correlation � Likelihood

factorization � Adaptive Gauss–Hermite quadrature �
Derivative-free optimization � Twin study

Introduction

It is now well-established that genetic vulnerabilities are

necessary but not sufficient for the expression of many

health problems and most mental disorders, and that

moderation of genetic influences by non-genetic factors

plays an important role in the degree to which such dis-

orders are expressed (Weaver et al. 2004; Rutter et al.

2006; Bennett 2008). Accurately identifying such gene-

environment interactions, wherein genetic variation influ-

encing the phenotype of interest is greater under certain

environmental conditions than under others, is therefore of

critical importance for mental health research (Eaves et al.

2003). To address this need, gene-environment interaction

is now being regularly investigated using quantitative be-

havior genetic (BG) designs. In these designs, genotype is

not observed directly; rather the genetic contribution to one

or more phenotypes is inferred based on varying degrees of

genetic relatedness among individuals such as twins. In

contrast, a measured aspect of the environment, together

with the phenotype of interest, is observed, and the mea-

sured environment is posited as a putative moderator of

genetic influences on the phenotype. Models and methods

of analysis for testing such gene-by-measured (GxM) en-

vironment interaction based on these designs are of great

significance in furthering mental health research (Lahey

and Waldman 2003).

Beginning with an article by Dick et al. (2001) and

especially popularized by Purcell (2002), non-linear latent

variable models have been intensively used for estimating

GxM in quantitative BG designs. In Purcell’s paper, he

proposed an important extension of the classic bivariate

biometric model to allow quantifying and testing GxM

between a measured environment and each of the classic

biometric variance components, including additive genetic
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influences (A), and shared (C) and unshared (E) environ-

mental factors. The importance and novelty of this work is

that it also accounted for potential correlations between M

and those same A, C, or E variance components. Rathouz

et al. (2008) and Van Hulle et al. (2013) have examined

statistical aspects of Purcell’s approach and found in pre-

liminary studies that, under some plausible conditions,

identification of GxM interaction in Purcell’s model is not

fully convincing because models not including such inter-

actions may explain the data as well as Purcell’s interaction

model. In applied studies, however, such alternative mod-

els have not been regularly considered as explanations for

the underlying biological mechanism.

A novel class of such models would greatly enlarge the

available model space for the data to distinguish between

GxM and equally parsimonious non-GxM mechanisms.

The methodological hypothesis is that, in this broader class

of models, findings of GxM would be more robust because

the opportunity for alternative explanations of the data

generating process—with different biologic interpreta-

tions—is greater. We describe their entire class of models

in ‘‘Non-linear biometric models for GxM’’ section. To

illustrate the importance of considering such models in real

investigations of GxM, we present an analysis of the

moderation of genetic influences on anxiety by birth weight

in a community sample of twins in ‘‘Illustrative applica-

tion: birth weight and anxiety’’ section. Different models

from ‘‘Non-linear biometric models for GxM’’ section are

fitted and compared. A second example is given in an

online appendix and is also discussed briefly in ‘‘Non-lin-

ear biometric models for GxM’’ section.

Whereas the class of models posited by Rathouz et al.

(2008) is biologically interesting, one of the main reasons

up to now that some of these models have not been fully

investigated is that an important subset of them cannot be

estimated or tested in standard structural equation model-

ing software such as Mplus (Muthén and Muthén 1998–

2012). To rectify this situation, the present article concerns

new fitting algorithms for all of these proposed models. A

major challenge is that some of the models contain latent

multiplicative terms, leading to integrals which cannot be

expressed analytically, and a likelihood which is inex-

pressible in closed-form.

Although the likelihood can be expressed in terms of a

multiple integral, large dimensional integration is involved

in its calculation, and direct application of numerical

techniques to obtain an approximation is not feasible. To

address this key issue, our strategy, elaborated in ‘‘Model

testing and estimation’’ section, is to exploit the special

structure of this class of models in order to re-express the

likelihood via a novel factorization into a closed-form

factor and a factor containing a low-dimensional integral,

and then to apply high-accuracy numerical integration

techniques to approximate the resulting low-dimensional

integral. Technical details including adaptive Gauss–Her-

mite quadrature (AGHQ) and its specific application to our

problem are covered in ‘‘Appendix 1’’ section. A common

value of k as the number of AGHQ nodes for each di-

mension of numerical integration is set to perform the

calculation. Available routines of derivative-free opti-

mization, implemented entirely in freely available pack-

ages in the R statistical software environment (R Core

Team 2013), are employed for numerical maximization,

and the inverse of the Hessian matrix, also obtained nu-

merically, is used to estimate standard errors of the pa-

rameter estimates.

In ‘‘Numerical performance of model estimation’’ sec-

tion, we first validate our model estimation and testing

procedures via comparisons with those in Mplus for some

models that are available in that environment. Expanding

to models that are not available in Mplus, we examine the

numerical accuracy and stability of our model estimates

across varying numbers of integration nodes, with the goal

of making recommendations on the required number of

such nodes for computationally efficient yet accurate ap-

proximations. We note here that the aim of our empirical

investigation is to examine the numerical—and not the

statistical—performance of our proposed procedures. The

final section contains conclusions and a discussion. Sta-

tistical operating characteristics are examined in a com-

panion paper (Zheng et al. 2015), which also provides an

overarching summary of our findings in the form of guid-

ance to the worker using these models in applications.

Non-linear biometric models for GxM

In this section, we briefly revisit the proposed models from

Rathouz et al. (2008) for testing and estimating GxM;

complete explanation and interpretation of these models are

available elsewhere (Rathouz et al. 2008; Van Hulle et al.

2013). We denote the measured—or putatively moderat-

ing—environmental variable by M, and the response vari-

able by P for phenotype. Both M and P are observable on

each individual in a sample of relative pairs, and are mod-

eled together in a joint bivariate latent structural equation

model. Whereas variation in relatedness yields model

identifiability, for the most part, we present models in terms

of a single individual for compactness of exposition.

The standard biometric model for M is given by

M ¼ lM þ aMAM þ cMCM þ eMEM; ð1Þ

where AM , CM and EM are latent variables representing

additive genetic influences, and shared and unshared en-

vironmental influences on M (Jinks and Fulker 1970; Neale

and Cardon 1992). As is common in latent variable models,
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AM , CM and EM are standard normal latent random vari-

ables, independent of one another. Parameter hM ¼
ðlM; aM ; cM; eMÞT for M contains the mean lM of M, and

non-negative coefficients of ðaM; cM; eMÞ of ðAM ;CM ;EMÞ.
Thus, a2

M ; c
2
M and e2

M are the additive genetic, shared, and

non-shared environmental components of variance of M

respectively, with total varðMÞ ¼ a2
M þ c2

M þ e2
M .

When the data from a relative (e.g., twin) pair are

combined, M, AM , CM and EM become two-vectors. The

model is therefore expressed more completely as:

M1

M2

� �
¼ lM þ aM

AM1

AM2

� �
þ cM

CM1

CM2

� �
þ eM

EM1

EM2

� �
;

ð1�Þ

where Mj, AMj
, CMj

and EMj
represent the corresponding

quantities on twin j; j ¼ 1; 2: In a twin study, the model is

identified via extra constraints, specifically AM1
¼ AM2

for

monozygotic (MZ) twins, corrðAM1
;AM2

Þ = 0.5 for dizygotic

(DZ) twins, CM1
¼ CM2

, and corrðEM1
;EM2

Þ= 0 for all twin

pairs. Other relationship pairs require different values

of corrðAM1
;AM2

Þ.
With the model for M specified, GxM interactions are

explored through various specifications for P. Purcell’s

(Purcell 2002) Cholesky with GxM (CholGxM) model for

phenotype P specifies

P¼lPþðaCþaCMÞAMþðcCþjCMÞCMþðeCþeCMÞEM

þðaUþaUMÞAUþðcUþjUMÞCUþðeUþeUMÞEU ;

ð2Þ

where AU , CU and EU are also standard normal latent

random variables, independent of each other and of

ðAM;CM ;EMÞ, and lP is the intercept for P. Coefficients aC
and aC quantify additive genetic effects on P that are

common with those on M, cC and jC quantify additive

shared environmental effects on P that are common with

those on M, and eC and eC quantify additive non-shared

environmental effects on P that are common with those on

M. In a parallel manner, ðaU ;aUÞ, ðcU ;jUÞ and ðeU ;eUÞ
quantify additive genetic, shared and non-shared environ-

mental effects on P that are unique to P. Coefficients aU ,

cU , and eU are assumed non-negative. Greek coefficients

aC, jC, �C, aU , jU and eU capture the interaction of mod-

erator M with the various genetic and environmental fac-

tors that act on P. In particular, the magnitude of aC (aU)

captures the GxM interaction of M with common (unique)

genetic factor AM (AU) in determining P. Thus, GxM can

be detected via the statistical hypothesis that aC¼aU ¼0.

Without interaction, Model (2) reduces to the classic bi-

variate Cholesky (Chol) model, specified as

P¼ lP þ aCAM þ cCCM þ eCEM þ aUAU þ cUCU þ eUEU :

ð3Þ

Rathouz et al. (2008) note that Model (2) does not ex-

plicitly contain a ‘‘main effect’’ of M on P, but rather

captures such effects indirectly through aC, cC and eC on

common genetic and environmental influences AM , CM and

EM . Those authors have proposed an alternative, more

parsimonious, model that does contain direct effects of M

on P. This non-linear main effects model with GxM

(NLMainGxM), viz.

P ¼ lP þ b1M þ b2M
2 þ ðaU þ aUMÞAU

þ ðcU þ jUMÞCU þ ðeU þ eUMÞEU ;

is nested within Model (2) but yields a different interpre-

tation in terms of GxM. In sub-model (4), the common

factors AM , CM and EM only operate through the manifest

value M to influence P. Because of that, genetic and en-

vironmental influences on P are mediated through M.

When aU ¼ 0 in Model (4), this model does not contain

GxM. However, in that situation, Rathouz et al. (2008) and

Van Hulle et al. (2013) have shown that if Model (2) is

fitted to the data without considering Model (4) as an al-

ternative, GxM may be artifactually detected as non-

zero aC.

As indicated by the appearance of unique effects AU , CU

and EU , Model (2), (3) and to a partial degree Model (4) are

based on the bivariate Cholesky parameterization. As dis-

cussed by Johnson (2007), the Cholesky parameterization

is more interpretable when there is a clear theoretical,

causal, or temporal ordering of the variables M and P in the

model. In situations without a clear causal ordering,

Loehlin (1996) has suggested using either a ‘‘common

factor’’ or a ‘‘correlated factors’’ model. These models,

which treat M and P on equal footing, might be simpler and

more defensible reference (null) models for analysis of

GxM. Denoting by AP, CP, and EP the genetic and envi-

ronmental influences on P, an alternative to Model (2)

obtains by extending the correlated factors model to allow

for GxM (CorrGxM), viz.,

P¼lPþðaPþaPMÞAPþðcPþjPMÞCPþðePþ ePMÞEP ;

ra ¼ corrðAM ;APÞ ; rc¼ corrðCM;CPÞ and re¼ corrðEM ;EPÞ:
ð5Þ

Model (5) provides a more straightforward model for

testing and quantifying GxM than does Model (2) when M

and P do not have a clear causal ordering. Moreover,

Model (5) allows for multiplicative effects with M with

three fewer parameters than Model (2), which may increase

the power to detect GxM. We note that Model (5) is nested

in Model (2), and that when aP ¼ jP ¼ eP ¼ 0, Model (5)

reduces to Model (3).

The foregoing Cholesky and correlated factors models

are available in Mplus and have been studied earlier by

Van Hulle et al. (2013). There are, however, two important
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and novel variants on these models which are not available

in standard software. These models have different biolo-

gical interpretations that do not involve GxM in the sense

of (2). Rather they posit that genetic and shared and non-

shared environmental effects operate additively and inde-

pendently—but not linearly—in the model for P. The non-

linear Cholesky (CholNonLin) model is specified as:

P¼ lPþaCAM þ cCCM þ eCEM þ c1A
2
Mþ c2C

2
M þ c3E

2
M þaUAU

þ cUCU þ eUEU þd1AMAU þd2CMCU þd3EMEU :

ð6Þ

Unlike Model (2), the defining and unique feature of this

model is that additive genetic (AM , AU), and shared (CM ,

CU) and unshared or (EM , EU) environmental influences do

not interact or moderate one another, nor are they moder-

ated by measured environment M, even while each of them

does act non-linearly. Rather, like the classical ACE

model, the three underlying sources of variation combine

additively and independently to influence P. Such a model

could arise because the genetic factors common to M and P

(i.e. AM) and the shared and non-shared environmental

counterparts simply operate on a different scale for M than

for P. Alternatively, the model could arise out of gene-by-

gene interaction of additive genetic effects—either of AM

with itself or of AM with AU , with similar terms for com-

mon and unique environmental effects.

In an analogous spirit, one can extend the classic bi-

variate correlated factors model to include non-linear but

additive genetic and environmental influences, yielding the

model (CorrNonLin):

P¼lPþaPAPþcPCPþePEPþk1AMAPþk2CMCPþk3EMEP ;

ra¼ corrðAM;APÞ ; rc¼ corrðCM ;CPÞ and re¼ corrðEM;EPÞ:
ð7Þ

In this model, the additive genetic effects AM on M mod-

erate the additive genetic effects AP on P. In the following

we describe a likelihood factorization and numerical inte-

gration routine suitable for fitting and testing all of the

foregoing models, including Models (6) and (7).

Illustrative application: birth weight and anxiety

Here we present a real data analysis to illustrate our ap-

proach. The data arise from a random sample of 6-17-year-

old twin pairs born in Tennessee and living in one of the

state’s five metropolitan statistical areas in 2000-2001

(Lahey et al. 2004). Twin pairs were selected stratified on

age and geographic area, and psychopathology information

was collected. One of the research interests is to examine

the relationship between birth weight and childhood anxi-

ety. In this illustration, we use a quantitative measure of

twins’ anxiety symptoms and birth weight in ounces as

reported by their biological mothers. The analysis pre-

sented here extends the results in Van Hulle et al. (2013) to

include newly available models.

Our analysis comprises 541 MZ and 887 DZ twin pairs.

Measured environment M is the residual for birth weight

after linear regression on gender and ethnicity. Similarly,

phenotype P is the residual anxiety measure after regres-

sion on gender, ethnicity and age. Models are fitted based

on numerical likelihood calculation with k = 8 AGHQ

nodes. The definition of AGHQ nodes k is covered in the

‘‘Model testing and estimation’’ section.

Model fit statistics, including Bayesian information

criterion (BIC) (Schwarz 1978; Raftery 1995), are sum-

marized in Table 1 in terms of differences relative to the

basic Chol model; lower values of �2� log-likelihood or

BIC imply a better fit to the data. Whereas we recognize

there has been some criticism of the BIC for overly fa-

voring simpler models (Weakliem 1999), there are several

features in its favor in this setting. First, with our moder-

ately large sample size, likelihood ratio tests will tend to

detect effects that are statistically important, but not sci-

entifically significant. Second, the BIC allows a basis for

comparing non-nested models, which is of critical utility in

this setting. Third, when examining a construct such as

GxM, we seek results which are robust and replicable; it

therefore behooves us to take a conservative stance and

favor simpler models unless there is very strong evidence

to the contrary.

Turning to Table 1, we note that the Chol model is

nested in all other models except the NLMainGxM model.

Additionally, the CorrGxM (CorrNonLin) model is nested

in the CholGxM (CholNonLin) model. Based on likelihood

ratio tests (LRT), CholGxM fits better than CorrGxM and

Chol, and CorrGxM also fits better than Chol. Ignoring

new models NLMainGxM, CholNonLin, and Cor-

rNonLin, one might conclude that the data are supportive

of a GxM effect. The new CorrNonLin model is, how-

ever, a strong competitor and also fits better than Chol.

Based on LRT alone, one might conclude that Cor-

rNonLin is the best fitting model; this model does not

contain GxM. Incorporating BIC values, we would con-

clude that NLMainGxM and CorrNonLin are roughly

equivalent in terms of model fit. However, we have

previously shown (Van Hulle et al. 2013) that model

NLMainGxM without the GxM effects provides a better

fit to the data.

Fitted individual models are shown in Table 2. We note

that in the CholGxM model, the coefficient of M � AM is

significant, especially as compared to the coefficient of AM ,

as are the coefficients of M � CM and M � EM . Without

considering other models, these effects might be scien-

tifically compelling. The CorrNonLin model is notable in
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that all of its non-linear terms are significant, suggesting

the model is well-suited to the data. In the NLMainGxM

model, the coefficient -0.104 of M � AU is found sig-

nificant based on the standard error from inverting the

hessian matrix. However, the entries related to lM in that

hessian matrix are all very close to zero, which makes the

inverse suffer numerical issues. The standard error from

inverting the hessian matrix without those entries suggests

an insignificant coefficient of M � AU . To resolve this is-

sue, we turn to LRT, comparing models with and without

M � AU , resulting in a p-value greater than 0.1 on 1 degree

of freedom. As such, whether one concludes that the

CorrNonLin or the NLMainGxM models is the best fitting,

the evidence for GxM effects, including M � CM and

M � EM , is not greatly supported by the data. In contrast,

analysis with only the CholGxM and Chol models from

Purcell (2002) would have led to a conclusion of GxM in

the Tennessee Twins sample.

In a second example,1 we analyzed the potential mod-

erating effect of quality of infant and toddler family

environment (M) on reading ability in middle childhood

(P). This example illustrates use of our algorithm in a study

wherein the relationships are primarily siblings and half-

siblings. The analysis revealed very important non-linear

effects which do not include GxM, highlighting the im-

portance of considering alternative models to those con-

taining GxM.

Model testing and estimation

We return to estimating models from Rathouz et al. (2008)

in this section. The strategy is to exploit the special

structure of this class of models in order to re-express the

likelihood. Denote h ¼ ðhTM ; h
T
PÞ

T
, where hP is the pa-

rameter vector for the specified structural equation model

for P. Likelihood L for h arising from data on a sample of

Table 1 Differences of degrees of freedom (df), �2� log-likelihood, and BIC of fitted models in Tennessee Twin Study relative to the fitted

Chol model (terms of fitted Chol model serving as subtrahends)

Difference CholGxM NLMainGxM CorrGxM CholNonLin CorrNonLin

D (df) 6 2 3 6 3

D (�2� log-likelihood) -22.65 -15.90 -14.27 -24.21 -21.82

D (BIC) 20.93 -1.37 7.52 19.37 -0.03

For the fitted Chol model, df equal 11; �2� log-likelihood equals 14,321.22; BIC equals 14,401.13

Results slightly differ from those of Van Hulle et al. (2013) because one pair of twins containing missing values was removed in this analysis

Table 2 Fitted models for Tennessee Twins Study. Starred (�) coefficients are significant at the 0.05 level based on Wald tests using the inverse

of the Hessian matrix to obtain standard errors

Model Estimate

CholGxM M ¼ 0:003 þ 0:417� AM þ 0:824� CM þ 0:384� EM

P ¼ �0:038 þ ð0:022 � 0:155�MÞAM þ ð�0:082� þ 0:089�MÞCM þ ð�0:040 þ 0:083�MÞEM

þð0:567� þ 0:003MÞAU þ ð0:470� � 0:010MÞCU þ ð0:635� � 0:024MÞEU

Chol M ¼ 0:003 þ 0:419� AM þ 0:825� CM þ 0:383� EM

P ¼ 0:004 þ 0:059AM � 0:110�CM � 0:052EM þ 0:576�AU þ 0:483�CU þ 0:645�EU

NLMainGxM M ¼ 0:003 þ 0:419� AM þ 0:825� CM þ 0:383� EM

P ¼ �0:041 � 0:075� M þ 0:045� M2 þ ð0:593� � 0:104MÞAU þ ð0:455� þ 0:077MÞCU þ ð0:642� � 0:005MÞEU

CorrGxM M ¼ 0:003 þ 0:418� AM þ 0:825� CM þ 0:383� EM

P ¼ �0:028 þ ð0:594� þ 0:088MÞAP þ ð0:455� � 0:133� MÞCP þ ð0:638� � 0:042� MÞEP

corrðAM ;APÞ ¼ 0:123; corrðCM ;CPÞ ¼ �0:229�; corrðEM ;EPÞ ¼ �0:089�

CholNonLin M ¼ 0:004 þ 0:410� AM þ 0:825� CM þ 0:387� EM

P ¼ �0:057 þ 0:197� AM � 0:147� CM � 0:091� EM � 0:008A2
M þ 0:030C2

M þ 0:038E2
M

þ 0:514� AU þ 0:462� CU þ 0:634� EU þ 0:163� AMAU � 0:140� CMCU � 0:056� EMEU

CorrNonLin M ¼ 0:004 þ 0:408� AM þ 0:827� CM þ 0:387� EM

P ¼ �0:083 þ 0:550� AP þ 0:130� AMAP þ 0:490� CP � 0:132� CMCP þ 0:645� EP � 0:060� EMEP

corrðAM ;APÞ ¼ 0:328�; corrðCM ;CPÞ ¼ �0:267�; corrðEM ;EPÞ ¼ �0:139�

1 Available at https://www.biostat.wisc.edu/*rathouz/Software/

GxM/index.html.
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relative pairs i ¼ 1; . . .; n, is given by LðhÞ ¼
Qn

i¼1

f ðMi;Pi; hÞ. This likelihood involves up to ten latent di-

mensions per relative pair. In what follows, we develop a

decomposition to avoid integration over all but three of

those dimensions.

The contribution from one individual pair can be written

(suppressing subscripts i) using the factorization

f ðM;P; hÞ ¼ f ðM; hMÞ f ðPjM; hÞ: ð8Þ

The likelihood has two parts: the contribution from data M

and the contribution from P given M. The first part,

f ðM; hMÞ, is a bivariate normal density, expressible in

closed-form, with mean lM and variance-covariance matrix

based on ðaM; cM ; eMÞ and corrðAM1
;AM2

Þ. The second part,

f ðPjM; hÞ, is more complex, for it might involve non-linear

terms and is not necessarily available in closed-form.

From Model (1), ðAM;CM;EMÞ are jointly multivariate

normal, and there is a linear relationship between M and

ðAM;CM;EMÞ. As such, M is bivariate normal, and the

conditional distribution of ðAM;CMjMÞ is multi(tri)variate

normal as well. The variates are AM1
, AM2

and CM1
, since

CM1
and CM2

are equal. Turning to the distribution of

ðPjAM;CM;EMÞ, because EM is jointly determined by

ðAM;CM;MÞ, we have that f ðPjAM;CM;EM ; hÞ ¼
f ðPjAM;CM;M; hÞ. Therefore,

f ðPjM; hÞ ¼
Z
R3

f ðP;AM;CMjM; hÞ dAM dCM

¼
Z
R3

f ðPjAM;CM;M; hÞ f ðAM;CMjM; hMÞ dAM dCM

¼
Z
R3

f ðPjAM;CM;EM; hÞ f ðAM;CMjM; hMÞ dAM dCM:

ð9Þ

Moreover, for Models (2)–(7) for P, ðPjAM;CM;EMÞ is

bivariate normal marginally over either ðAU ;CU ;EUÞ or

ðAP;CP;EPÞ; we do not need to explicitly integrate over

ðAU ;CU ;EUÞ or ðAP;CP;EPÞ to obtain ðPjAM ;CM ;EMÞ.
The reason for this is that, given ðAM;CM;EMÞ, P is linear

in ðAU ;CU ;EUÞ or ðAP;CP;EPÞ, and either ðAU ;CU ;EUÞ or

ðAP;CP;EPÞ is multivariate normal given ðAM ;CM ;EMÞ.
We conclude that f ðPjM; hÞ reduces to a trivariate integral

given on the right hand side of (9). du Toit and Cudeck

(2009) use a similar method to calculate marginal distri-

bution by separating random effects in random coefficient

model estimation.

Based on considerations similar to those of Klein and

Moosbrugger (2000) in estimating latent interaction ef-

fects, we turn to numerical integration techniques—

specifically AGHQ—for evaluation of this integral. We

show in ‘‘Appendix 1’’ section that the contribution to the

likelihood from ðPjMÞ can be approximated for all pro-

posed models in Rathouz et al. (2008). The procedure

involves three-dimensional AGHQ. Even though each

dimension can in theory have a different number of nodes

for numerical integration, denoted using k1; k2 and k3 in

‘‘Appendix 1’’ section, we fix k1 ¼ k2 ¼ k3 ¼ k in our

algorithm, and refer to the value k as the number of

AGHQ nodes. Larger values of k yield more accurate

approximations, but are more computationally intensive.

The choice of k aims to balance accuracy and computa-

tional cost. In later simulation-based numerical analysis,

we show that moderate values of k (e.g., k = 8) yield

satisfactory results.

With both f ðM; hMÞ and f ðPjM; hÞ available, individual

likelihood contributions obtain through (8). With the

aforementioned numerical integration approach, we use

maximum likelihood for estimation and inferences in the

class of models. Owing to the lack of a closed-form ex-

pression for the likelihood, however, analytic derivatives

are especially difficult to obtain. We propose to use a

derivative-free optimization technique, the BOBYQA al-

gorithm for bound constrained optimization without

derivatives (Powell 2009). This algorithm has been inte-

grated into an R package minqa (Bates et al. 2012) and is

directly available in the R environment.

A computational barrier in derivative-free optimization

is that many more evaluations of the likelihood are re-

quired than when analytic derivatives are available. We

alleviate this burden through parallel computing using the

parallel facility in R, distributing the likelihood calcula-

tion across observations at each step to as many cores as

are available. We also provide a variety of options for

obtaining initial values; these and other options are de-

scribed in the documentation for our R package entitled

GxM (Zheng and Rathouz 2013), and the package is

available on CRAN.

Numerical performance of model estimation

Comparison of GxM package in R to Mplus

We conducted computational experiments comparing

model estimation with our new R package GxM to that in

Mplus using scripts from Van Hulle et al. (2013). As the

current standard in structural equation modeling, Mplus

can estimate a variety of latent variable models, including

those with non-linearities. Models involving the product of

latent terms—such as CholNonLin and CorrNonLin—are,

however, not available in Mplus. As such, we compared fits

for the CholGxM model in this investigation. With a

moderate number of AGHQ nodes, we hypothesized that

our model estimation results would match those from

Mplus very closely.

We simulated data under two data generating mechan-

isms, labeled A and B:
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M ¼
ffiffiffiffiffiffiffiffiffi
0:45

p
AM þ

ffiffiffiffiffiffiffiffiffi
0:10

p
CM þ

ffiffiffiffiffiffiffiffiffi
0:45

p
EM ;

P ¼ 0:5AM þ 0:01CM þ 0:1EM

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9 � 0:52

p
AU þ

ffiffiffiffiffiffiffi
0:2

p
CU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9 � 0:12

p
EU ; ðAÞ

and

M ¼
ffiffiffiffiffiffiffiffiffi
0:45

p
AM þ

ffiffiffiffiffiffiffiffiffi
0:10

p
CM þ

ffiffiffiffiffiffiffiffiffi
0:45

p
EM ;

P ¼ 0:1AM þ 0:01CM þ 0:5EM

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9 � 0:12

p
AU þ

ffiffiffiffiffiffiffi
0:2

p
CU þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:9 � 0:52

p
EU ; ðBÞ

wherein AM1
¼ AM2

for MZ twins, corrðAM1
;AM2

Þ = 0.5

for DZ twins, and CM1
¼ CM2

and corrðEM1
;EM2

Þ = 0 for

all the twins. In each of 2,000 replicates, we simulated data

either from 250 MZ twin pairs and 250 DZ twin pairs

(n = 500), or from 1,000 MZ pairs and 1,000 DZ pairs

(n = 2,000).

For each replicate, we applied both our R package GxM

and Mplus to perform model estimation for CholGxM.

Eight (k = 8) AGHQ nodes were used in the numerical

integration routine. Examining the standard deviation of

the pair-wise differences, we see that the log-likelihood

values from two approaches are almost identical, especially

given the scale of the total log-likelihood (Table 3).

To quantify accuracies of individual parameter esti-

mates, we rely on the root-mean-square error (RMSE). For

a given scalar element n of parameter vector h, and letting

n̂ðsÞ denote the estimate of n in the s-th replicate from the

total S = 2,000 replicates, we compare the average per-

formance of GxM to Mplus via what we refer to as RMSE

‘‘Ratio 1’’:

Ratio 1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPS
s¼1ðn̂

ðsÞ
R � nÞ2

PS
s¼1ðn̂

ðsÞ
Mplus � nÞ2

vuut :

How close Ratio 1 is to unity indicates the accuracy of

parameter estimation using GxM relative to that of Mplus.

Results are in the first four columns of Table 4 for all four

simulation conditions. The ratios for all parameters are

very close to unity, strongly suggesting, together with the

log-likelihood results (Table 3), that the two computational

approaches are equally valid.

As with the likelihood values, it is also of interest to

quantify the coherence of the two approaches, even as they

provide similar results on average across replicates. For

this purpose, we compare the RMSE of the pair-wise dif-

ferences of estimates from Mplus and GxM, relative to

RMSEðn̂MplusÞ, the reference variability of estimates from

Mplus. This yields ‘‘Ratio 2’’, viz.,

Ratio 2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPS
s¼1ðn̂

ðsÞ
R � n̂ðsÞMplusÞ

2

PS
s¼1ðn̂

ðsÞ
Mplus � nÞ2

vuut :

The smaller the value of Ratio 2, the closer the results from

the two computational approaches. Results are in the last four

columns of Table 4. Values corresponding to intercepts and

unshared environmental influences are satisfactorily small,

suggesting the differences between fitting results for these

parameters are negligible compared with the simulated

sampling variabilities. Ratio 2 values corresponding to ge-

netic influences and shared environmental influences are

larger, suggesting some differences betweenGxM and Mplus

in the optimization algorithm or in the nature of the likeli-

hood surface near the maximum for these parameters. In

conclusion, with a moderate number (k = 8) of AGHQ

nodes for the CholGxM model, some differences exist.

Nevertheless, estimation based on numerical integration and

optimization using GxM appears equally valid to that in

Mplus. Further, in many settings, GxM and Mplus yield

highly concordant results for specific data sets.

Stability and computational time of model estimation

with respect to number of AGHQ nodes

To further assess the performance of our GxM procedure

and to examine its performance in models CholNonLin and

CorrNonLin models which are not available in standard

structural equations modeling packages, we conducted an

investigation of its numerical stability with respect to the

number of AGHQ nodes. In this experiment, we fit all of

Table 3 Simulated means (standard deviations) of log-likelihood values comparing GxM in R to Mplus for 2,000 replicates for two sample sizes

and two parameter specifications

Setting Log-likelihood n ¼ 500 n = 2,000

A GxM result �3,020.890 (31.592) �12,109.116 (61.568)

Mplus result �3,020.881 (31.592) �12,109.108 (61.568)

Pair�wise difference �0.009 (0.019) �0.008 (0.018)

B GxM result �2,985.590 (31.901) �11,961.148 (61.531)

Mplus result �2,985.582 (31.901) �11,961.141 (61.530)

Pair�wise difference �0.008 (0.108) �0.007 (0.030)

Pair-wise differences subtract Mplus results from GxM results
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the proposed models through maximization of the likeli-

hood computed with numerical integration, with several

choices of number k of AGHQ nodes for each data set and

model. We expected that, when the number of nodes is

adequate, the fitted models will be close to each other. In

addition, closed-form likelihood calculation is available for

the Chol, NLMainGxM, CholGxM, and CorrGxM models,

so for these models, we include results obtained through

maximizing the closed-form likelihood in the pool of

comparisons.

We simulated 23 data sets corresponding to different

scenarios. These scenarios follow the simulation specifi-

cations in Van Hulle et al. (2013), with additional scenar-

ios based on the CholNonLin and CorrNonLin models.

These scenarios are based on various combinations of

factors with different biological meanings; the configura-

tions are listed in ‘‘Appendix 2’’ section. For each con-

figuration, we simulated data for 1,000 MZ twin pairs and

1,000 DZ twin pairs. When numerical integration is used,

k = 8, 10, and 15 AGHQ nodes are employed to provide

estimates for the parameter vector. When k = 15, com-

putations become very time-consuming, but are feasible for

a small number (e.g., 23) cases. A possible fourth estimate

results from maximizing the closed-form likelihood when

it is available. Hence, the likelihood and parameter vector

in the CholGxM, Chol, NLMainGxM, and CorrGxM model

have 4 estimates, and those in the CholNonLin and Cor-

rNonLin models have 3 estimates. Variation among the

three or four estimates is an index of the stability of our

model estimation across k.

We first compare the log-likelihood values across dif-

ferent values of k. For each data set and fitted model, the

three or four log-likelihood values yield an interval cov-

ering these values; the range of this interval provides a

direct measure of the dispersion of log-likelihood values.

For each model, we calculated individual ranges for all 23

data sets, and summarize them in Table 5 via the median,

the 3rd largest (21st out of 23), and the largest range.

Whereas the ranges for fitted CholGxM, Chol,

NLMainGxM and CorrGxM models are uniformly close to

zero, those for the new CholNonLin and CorrNonLin

models are relatively larger. The differences, however,

remain small in an absolute sense. Multiplying by two puts

the differences on a comparable scale as the chi-square

statistic for comparing two nested models. We see that

whereas using numeric integration could occasionally yield

different conclusions in a statistical hypothesis test, this is

likely a rare event.

For each data set and fitted model, we also compare

fitted parameter vectors across values of k via the

Table 4 Ratio 1 and 2 values

(defined in text) for estimated

parameters from 2,000

replicates for two sample sizes

(n = 500 and n = 2,000) and two

parameter specifications (setting

A and B)

Parameter Ratio 1 Ratio 2

Setting A Setting B Setting A Setting B

n = 500 n = 2,000 n = 500 n = 2,000 n = 500 n = 2,000 n = 500 n = 2,000

Intercept

lM 1.000 1.000 1.000 1.000 0.001 0.045 0.001 0.002

lP 1.000 1.000 1.000 1.000 0.003 0.004 0.010 0.003

Genetic influences

aM 0.997 0.998 1.003 0.996 0.043 0.057 0.088 0.058

aU 1.012 0.994 1.011 0.990 0.113 0.034 0.209 0.055

aC 1.006 1.002 1.017 1.001 0.046 0.022 0.136 0.029

aC 1.001 0.993 0.999 0.992 0.072 0.154 0.165 0.185

aU 0.999 0.999 1.008 0.995 0.043 0.065 0.220 0.131

Shared environmental influences

cM 1.002 1.014 1.006 1.004 0.059 0.068 0.072 0.073

cU 0.992 1.005 0.982 1.010 0.178 0.151 0.210 0.167

cC 0.998 1.005 0.988 1.005 0.140 0.125 0.147 0.145

jC 0.996 0.999 0.995 0.994 0.194 0.220 0.213 0.267

jU 1.004 1.002 1.002 1.012 0.242 0.293 0.323 0.376

Unshared environmental influences

eM 1.008 1.015 1.009 1.014 0.042 0.082 0.062 0.082

eU 1.017 1.025 1.030 1.050 0.036 0.073 0.066 0.128

eC 1.008 1.010 1.011 1.008 0.033 0.062 0.049 0.028

�C 1.004 1.005 1.006 1.004 0.022 0.043 0.054 0.038

�U 1.005 1.005 1.007 1.007 0.012 0.015 0.025 0.017
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maximum norm distance. For two parameter vectors a ¼
ða1; :::; apÞ and b ¼ ðb1; :::; bpÞ, the maximum norm dis-

tance from a to b is defined as ka� bk1 ¼ maxðja1 �
b1j; :::; jap � bpjÞ: The pairwise combinations of model

estimates provide a set of distance vectors. For instance, in

fitting the CholGxM model, 4 parameter vector estimates

are available, and thus, 6 difference vectors and their cor-

responding maximum norm values (distances) are pro-

duced; we computed the maximum of these pairwise

distances, and summaries of these maxima are reported in

Table 5 as well; there we report the median, the 3rd largest

(21st out of 23), and the largest of the maximum pairwise

distances across the 23 data generation conditions. Given

the foregoing likelihood results, it is not surprising that the

difference values from fitting model CholNonLin and

CorrNonLin are larger than others. Yet for most cases,

differences are quite modest and acceptable.

The computational time of fitting these models with

k = 8, 10, and 15 AGHQ nodes is shown in the bottom

panel of Table 5. The median values of time cost across 23

conditions using our package GxM with a single 2.4 GHz

CPU are listed. The time cost increases with k, but the

increase is slower than cubic growth.

Discussion and conclusion

This paper continues the work of Rathouz et al. (2008) and

Van Hulle et al. (2013) by developing computational al-

gorithms and associated code to fit alternative non-linear

behavior genetic models to twin data as competitors to a

now-classic GxM model proposed by Purcell (2002). The

focus here is on numerical implementation of models not

available in standard structural equation modeling soft-

ware. To illustrate our approach, we presented an analysis

of the putative moderation of genetic influences on anxiety

by birth weight in a community sample of twin children.

The implementation of new non-linear latent variable

models provides alternative interpretations of the underly-

ing biological relationships. Had these models not been

considered, a researcher might have concluded that GxM

was an important feature in the structural model for

anxiety.

We achieved our model estimation via a novel factor-

ization of likelihood and implementation of AGHQ, and

maximized the likelihood using derivative-free optimiza-

tion. We showed via numerical simulation that our fitting

algorithm is equally valid to that of standard software, and

is stable for a moderate number integration nodes.

The problem addressed by our novel class of models is

related but not equivalent to that of scaling issues leading

to loss of power to, or false detection of, gene-by-envi-

ronment interaction. A comprehensive review is beyond

the scope of this paper, but some key references include the

compelling work by Eaves et al. (1977), Eaves (2006),

Molenaar and Dolan (2014). That work for the most part

deals with unmeasured environments versus our mea-

sured M. It also deals with problems of the scale of the

response variable. In this and our prior work, we raise a

different problem, namely that alternative latent non-linear

structural models could be misinterpreted as GxM. Should

scaling problems overlay our latent structural models, ad-

ditional problems could arise. This is an issue which we

will address in future work.

A few comments about the numerical results and future

work. First, in numerical experiments, the accuracy of our

numerical algorithm was very high for models admitting a

closed-form likelihood (even with numerical integration in

lieu of the closed-form objective function); corresponding

results for models CorrNonLin or CholNonLin were not

quite as strong, although it appears acceptable. We note,

however, that the data used in these studies was generated

from mechanisms involving fairly strong departures from

the global null Chol model. Our experience thus far is that

Table 5 Summaries of fitting results using median values from 23 data sets

CholGxM Chol NLMainGxM CorrGxM CholNonLin CorrNonLin

Median (12th) log-likelihood range 9E-05 9E-05 9E-05 9E-05 0.021 0.030

21st log-likelihood range 1E-04 9E-05 9E-05 9E-05 0.117 0.118

Largest (23rd) log-likelihood range 0.008 9E-05 9E-05 9E-05 0.222 0.151

Median (12th) maximum norm of differences 3E-05 2E-05 4E-06 3E-05 0.002 0.004

21st maximum norm of differences 0.008 2E-04 8E-06 4E-04 0.021 0.061

Largest (23rd) maximum norm of differences 0.017 0.006 2E-05 0.010 0.102 0.160

Median computational time cost (k = 8) 6,928(s) 2,687(s) 2,158(s) 4,760(s) 9,645(s) 8,975(s)

Median computational time cost (k = 10) 10,086(s) 3,804(s) 2,620(s) 5,463(s) 14,696(s) 10,856(s)

Median computational time cost (k = 15) 23,762(s) 9,519(s) 4,378(s) 11,899(s) 40,616(s) 34,372(s)

The first two panels show the log-likelihood range values and maximum norm distances of parameter vectors from different numerical

integration settings (k = 8, 10, or 15 AGHQ nodes) and closed-form setting if available. The third panel lists computational time (seconds) from

different numerical integration settings
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all of the fitting algorithms perform more accurately and

more efficiently when departures from the Chol model are

more modest. Second, we note that the GxM package

cannot currently handle missing data. For small amounts of

missing data, we recommend using an imputation routine.

Finally, the statistical—as differentiated from the nu-

merical—operating characteristics of these new model fit-

ting algorithms are presented in a companion paper in this

same issue of Behavior Genetics (Zheng et al. 2015). To

briefly summarize, in that paper, Type I error analysis

suggests conservative behavior for models based on the

bivariate Cholesky behavior genetic model, and liberal

behavior for models based on the bivariate correlated fac-

tors models; for some models comparisons, asymptotic

convergence to the correct Type I error rate is very slow.

Simulations of the bias in parameter recovery are very

encouraging as, by and large, maximum likelihood pa-

rameters estimators exhibit very little bias. In examination

of the ability of the data to discriminate among alternative

models with and without GxM, we found that it can be

difficult to distinguish GxM from other non-linear effects.

Please see (Zheng et al. 2015) for full details; in that work,

we also provide some practical comments and guidance to

applied researchers based on the present work. In addition,

taking a longer view, we also summarize all of our results

to date on these GxM methods in a technical report on

‘‘Lessons Learned’’, again with the researcher using these

methods in applied work as the intended audience.2
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Appendix 1: Likelihood calculation through numerical

integration

Adaptive Gauss–Hermite quadrature

In the calculation of a definite integral, even when the for-

mula for the integrand is known, it may be difficult to find an

antiderivative which has a closed-form expression. In such

circumstances, numerical integration methods are often

applied to obtain approximate results. The Gaussian quadra-

ture rule is one of the most widely used numerical integration

techniques to approximate the integral of a function gðxÞ over

a specified domain D with a known weighting kernel /ðxÞ. If

the integrand gðxÞ can be well approximated by a polynomial

of order 2k � 1 or less, then a quadrature with k nodes suf-

fices for a good estimate of the integral,

Z
D
gðxÞ/ðxÞdx �

Xk
i¼1

wigðxiÞ:

The nodes xi and weights wi, i ¼ 1; . . .; k, are uniquely

determined by the domain D and the weighting kernel /ðxÞ
(Stroud and Secrest 1966). In the case wherein the inte-

gration domain is the real line and the integration kernel is

/ðxÞ ¼ e�x2

, the resulting quadrature rule is known as

Gauss–Hermite quadrature (GHQ).

Because of its close relationship to the normal distribution,

GHQ is widely used in statistics. Adaptive GHQ (AGHQ)

(Liu and Pierce 1994; Naylor and Smith 1982) arises by

shifting and scaling the kernel for greater numerical accuracy,

strategically placing the nodes xi to emphasize the areas of

greatest mass in the integrand function. The advantages of

AGHQ over traditional GHQ are shown in the estimation of

latent models with nonlinear random effects by Pinheiro and

Bates (1995) and Rabe-Hesketh et al. (2005). In this work, we

relocate the nodes according to the easily obtainable location

and scale of the normal density. Specifically, if Y �Nðm; r2Þ
and g is a known but complicated function, the expectation of

gðYÞ can be calculated approximately as

EðgðYÞÞ ¼
Z þ1

�1
gðyÞ 1ffiffiffiffiffiffi

2p
p

r
exp �ðy� mÞ2

2r2

( )
dy

¼
Z þ1

�1

gðmþ
ffiffiffi
2

p
rxÞffiffiffi

p
p e�x2

dx

�
Xk
i¼1

wi gðmþ
ffiffiffi
2

p
rxiÞffiffiffi

p
p ;

ð10Þ

using x ¼ ðy� mÞ=
ffiffiffi
2

p
r. Whereas this is not ‘‘adaptive’’ in

the strictest sense of Liu and Pierce (1994), we still use

AGHQ to represent this technique because of the applica-

tion of the relocation of nodes.

With regard to numerical evaluation of a multiple integral,

a natural way forward is to decompose it into a sequence of

nested one-dimensional quadratures and to repeatedly apply

(10). Taking integration over domain Rp, we could use kj
points in the jth dimension, j ¼ 1; . . .; p, and obtain a multi-

dimensional version of AGHQ. Specifically, if Y is a p-di-

mensional random vector which follows a multivariate nor-

mal distribution with mean vector m and covariance matrix

R, the expectation of gðYÞ, where gð�Þ is now a multivariate

function, obtains approximately as

2 Available at https://www.biostat.wisc.edu/*rathouz/Software/

GxM/index.html.
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EðgðYÞÞ ¼
Z
Rp

gðyÞ 1

ð
ffiffiffiffiffiffi
2p

p
Þp jRj1=2

� exp � 1

2
ðy�mÞTR�1ðy�mÞ

� �
dy

¼
Z
Rp

gðmþ
ffiffiffi
2

p
R1=2 xÞ

pp=2
expf�xTxg dx

�
with x ¼ 1ffiffiffi

2
p R�1=2ðy�mÞ

�

�
Xk1

i1¼1

� � �
Xkp
ip¼1

wi1 � � �wip

gðmþ
ffiffiffi
2

p
R1=2 xðiÞÞ

pp=2
;

ð11Þ

where xðiÞ ¼ ðx1i1 ; . . .; xp ipÞ
T
; xj1; . . .; xjkj are the nodes for

the jth dimension; and the product wi1 � � �wip is the corre-

sponding weight for node xðiÞ.

AGHQ in likelihood calculation

In the application of AGHQ to approximation of likelihood

f ðPjM; hÞ, we incorporate distribution functions from specific

models into the integration. We denote y ¼ ðAM ;CMÞT to

simplify the notation. Because f ðAM ;CM jMÞ is a multivariate

normal density function, we set m ¼ EðyjM; hMÞ and R ¼
CovðyjM; hMÞ, so that the function specified by f ðPjy;MÞ ¼
f ðPjAm;CM;MÞ plays the role of gðyÞ in (11). Therefore, we

have

f ðPjM; hÞ ¼
Z
R3

f ðPjx;M; hÞ 1

p3=2
expf�xTxg dx

�
Xk1

i1¼1

Xk2

i2¼1

Xk3

i3¼1

wi1wi2wi3

f ðPjxðiÞ;M; hÞ
p3=2

;

where conditional distribution function f ðPjxðiÞ;M; hÞ is

computable for all proposed models from Rathouz et al.

(2008).

Appendix 2: Argument options in R package GxM

Model option

We consider both bivariate Cholesky models and bivariate

correlated factors models, including Chol, CholGxM,

NLMainGxM, CorrGxM, CholNonLin and CorrNonLin.

The routines for fitting these models are provided in our R

package, GxM. For models that do not admit a closed-form

likelihood, we apply numerical integration techniques; for

models that have closed-form likelihood, both fitting with

closed formula and numerical techniques are provided. All

models exploit derivative-free optimization.

Zero set option

This option provides for constraining some parameters to

zero, greatly expanding the number of nested sub-models that

are available, and allowing testing of specific parameters via

likelihood ratio tests or by comparing BIC values. As ex-

plained in the Model section, GxM can be detected by testing

statistical hypothesis under which certain parameters are zero.

We supply an option named ‘‘zeroset’’ to enable users to fit

models with chosen parameter(s) constrained to zero.

Initialization and priority option

For optimization problem with high dimensional parameters

and non-concave surfaces, it is important to have reasonable

and multiple starting points. By setting the non-linear latent

terms to zero, all of our proposed models except Model (4)

reduce to a common trivial model, and direct parameter es-

timation such as a method of moment estimator can be ap-

plied. This set of estimates serves as a desirable starting

point. For Model (4), we use polynomial regression tech-

nique to eliminate the main effect of M on P. After replacing

the original P with regression residuals, the modified model

can also be viewed as a case of the common trivial model. For

non-linear models, we further add an intermediate update

using a small number (k = 3) of AGHQ nodes. Lastly, we

provide for the option of leaving the initialization to potential

users. With priority level equal to 1, the user-specified ini-

tialization would be updated in the intermediate stage. By

increasing priority level from 1 to 2, the manually specified

initialization would ignore the intermediate update.

AGHQ nodes number option

We provide this option to allow a tradeoff between accu-

racy and computational intensity. As one may expect, a

larger number of AGHQ nodes produces more accurate

likelihood values. On the other hand, because the integra-

tion is 3-dimensional, the computation cost increases fast.

Parallel computing option

As an interpreted language, the performance of R in terms of

computational speed is not as satisfactory as that for compiled

languages. This issue is of concern when using computa-

tionally intensive numerical integration and derivative-free

optimization techniques. Therefore, we embed parallel pro-

cessing technique in response to the challenge.

Parallel computing with R is directly supported begin-

ning with release 2.14.0. The package parallel provides

convenient functions to perform parallel computing in both

explicit and implicit modes. For instance, in the calculation

of log-likelihood for GxM models, because of the
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summation over individual observations as lðhÞ ¼ log LðhÞ
¼

P
i log f ðMi;Pi; hÞ, the global log-likelihood computa-

tion can be performed in a parallel manner. Users are

provided the option to use parallel computation, and if so

the number of CPU cores to allocate the computations.

Appendix 3: Configurations for 23 scenarios

The configurations of simulation settings for 23 scenarios

in numerical analysis is shown in Table 6.

Table 6 Configurations of model settings and data generation for 23 scenarios in numerical analysis

Scenario

index

Model Simulation condition Simulation parameter values

Correlation Interaction Nonlinear

main effect

1 Chol High rGM aC ¼ 0:5; aU ¼ 0:806; eC ¼ 0:1; eU ¼ 0:94

Low rEM

2 Chol Low rGM aC ¼ 0:1; aU ¼ 0:94; eC ¼ 0:5; eU ¼ 0:806

High rEM

3 CholGxM High rGM High GxM aC ¼ 0:5; aC ¼ 0:25; aU ¼ 0:806; aU ¼ 0:403;

Low rEM Low ExM eC ¼ 0:1; �C ¼ 0:025; eU ¼ 0:94; �U ¼ 0:235

4 CholGxM High rGM Low GxM aC ¼ 0:5; aC ¼ 0:125; aU ¼ 0:806; aU ¼ 0:25;

Low rEM High ExM eC ¼ 0:1; �C ¼ 0:05; eU ¼ 0:94; �U ¼ 0:47

5 CholGxM Low rGM High GxM aC ¼ 0:1; aC ¼ 0:05; aU ¼ 0:94; aU ¼ 0:47;

High rEM Low ExM eC ¼ 0:5; �C ¼ 0:125; eU ¼ 0:806; �U ¼ 0:202

6 CholGxM Low rGM Low GxM aC ¼ 0:1; aC ¼ 0:025; aU ¼ 0:94; aU ¼ 0:235;

High rEM High ExM eC ¼ 0:5; �C ¼ 0:25; eU ¼ 0:806; �U ¼ 0:403

7 NLMainGxM Low GxM Large b1 ¼ 0:51;b2 ¼ 0:127; aU ¼ 0:806; aU ¼ 0:201;

Low ExM eU ¼ 0:94; �U ¼ 0:235

8 NLMainGxM Low GxM Small b1 ¼ 0:51;b2 ¼ 0:0637; aU ¼ 0:806; aU ¼ 0:201;

Low ExM eU ¼ 0:94; �U ¼ 0:235

9 NLMainGxM Large b1 ¼ 0:51;b2 ¼ 0:127; aU ¼ 0:806; eU ¼ 0:94

10 NLMainGxM Small b1 ¼ 0:51;b2 ¼ 0:0637; aU ¼ 0:806; eU ¼ 0:94

11 NLMainGxM b1 ¼ 0:51; aU ¼ 0:806; eU ¼ 0:94

12 CorrGxM High rGM High GxM rGM ¼ 0:527; aP ¼ 0:237; aP ¼ eP ¼ 0:94;

Low rEM Low ExM rEM ¼ 0:105; �P ¼ 0:119

13 CorrGxM High rGM Low GxM rGM ¼ 0:527; aP ¼ 0:119; aP ¼ eP ¼ 0:94;

Low rEM High ExM rEM ¼ 0:105; �P ¼ 0:237

14 CorrGxM Low rGM High GxM rGM ¼ 0:105; aP ¼ 0:237; aP ¼ eP ¼ 0:94;

High rEM Low ExM rEM ¼ 0:527; �P ¼ 0:119

15 CorrGxM Low rGM Low GxM rGM ¼ 0:105; aP ¼ 0:119; aP ¼ eP ¼ 0:94;

High rEM High ExM rEM ¼ 0:527; �P ¼ 0:237

16 CholNonLin High rGM High GxM aC ¼ 0:5; c1 ¼ 0:125; aU ¼ 0:806; d1 ¼ 0:403;

Low rEM Low ExM eC ¼ 0:1; c3 ¼ 0:025; eU ¼ 0:94; d3 ¼ 0:235

17 CholNonLin High rGM Low GxM aC ¼ 0:5; c1 ¼ 0:0625; aU ¼ 0:806; d1 ¼ 0:202;

Low rEM High ExM eC ¼ 0:1; c3 ¼ 0:05; eU ¼ 0:94; d3 ¼ 0:47

18 CholNonLin Low rGM High GxM aC ¼ 0:1; c1 ¼ 0:025; aU ¼ 0:94; d1 ¼ 0:47;

High rEM Low ExM eC ¼ 0:5; c3 ¼ 0:0625; eU ¼ 0:806; d3 ¼ 0:202

19 CholNonLin Low rGM Low GxM aC ¼ 0:1; c1 ¼ 0:0125; aU ¼ 0:94; d1 ¼ 0:235;

High rEM High ExM eC ¼ 0:5; c3 ¼ 0:125; eU ¼ 0:806; d3 ¼ 0:403

20 CorrNonLin High rGM High GxM rGM ¼ 0:527; c1 ¼ 0:474; aP ¼ eP ¼ 0:94;

Low rEM Low ExM rEM ¼ 0:105; c3 ¼ 0:237

21 CorrNonLin High rGM Low GxM rGM ¼ 0:527; c1 ¼ 0:237; aP ¼ eP ¼ 0:94;

Low rEM High ExM rEM ¼ 0:105; c3 ¼ 0:474
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Table 6 continued

Scenario

index

Model Simulation condition Simulation parameter values

Correlation Interaction Nonlinear

main effect

22 CorrNonLin Low rGM High GxM rGM ¼ 0:105; c1 ¼ 0:474; aP ¼ eP ¼ 0:94;

High rEM Low ExM rEM ¼ 0:527; c3 ¼ 0:237

23 CorrNonLin Low rGM Low GxM rGM ¼ 0:105; c1 ¼ 0:237; aP ¼ eP ¼ 0:94;

High rEM High ExM rEM ¼ 0:527; c3 ¼ 0:474

In applicable assignment, we set aM ¼ eM ¼
ffiffiffiffiffiffiffiffiffi
0:45

p
, cM ¼

ffiffiffiffiffiffiffi
0:1

p
, cU ¼

ffiffiffiffiffiffiffi
0:2

p
, cP ¼

ffiffiffiffiffiffiffi
0:1

p
and cC ¼ jC ¼ jU ¼ jP ¼ 0:01:
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