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Abstract Behavioral disinhibition is a trait hypothesized

to represent a general vulnerability to the development of

substance use disorders. We used a large community-

representative sample (N = 7,188) to investigate the

genetic and environmental relationships among measures of

behavioral disinhibition, Nicotine Use/Dependence, Alco-

hol Consumption, Alcohol Dependence, and Drug Use.

First, using a subsample of twins (N = 2,877), we used

standard twin models to estimate the additive genetic,

shared environmental, and non-shared environmental con-

tributions to these five traits. Heritabilities ranged from .42

to .58 and shared environmental effects ranged from .12 to

.24. Phenotypic correlations among the five traits were lar-

gely attributable to shared genetic effects. Second, we used

Genome-wide Complex Trait Analysis (GCTA) to estimate

as a random effect the aggregate genetic effect attributable

to 515,384 common SNPs. The aggregated SNPs explained

10–30 % of the variance in the traits. Third, a genome-wide

scoring approach summed the actual SNPs, creating a SNP-

based genetic risk score for each individual. After tenfold

internal cross-validation, the SNP sumscore correlated with

the traits at .03 to .07 (p \ .05), indicating small but

detectable effects. SNP sumscores generated on one trait

correlated at approximately the same magnitude with other

traits, indicating detectable pleiotropic effects among these

traits. Behavioral disinhibition thus shares genetic etiology

with measures of substance use, and this relationship is

detectable at the level of measured genomic variation.

Keywords Behavioral disinhibition � Alcohol � Drug �
Tobacco � GWAS � Twins � Polygenetic

Introduction

Disinhibition is a behavioral trait hypothesized to represent

a general vulnerability in the development of substance use

disorders (Iacono et al. 2008; Zucker et al. 2011). Those with

greater levels of disinhibition are thought to act more

impulsively, be more thrill-seeking, and not consider as

deeply the long-term consequences of their actions. Disin-

hibited individuals are also more likely to use substances

and have a more difficult time quitting. Evidence for this

hypothesis comes from a variety of research designs sum-

marized in Iacono et al. (2008). There is additional evidence

that measures of substance use and disinhibition are herita-

ble (e.g., 50 % heritable as in the present study) and that the

relationships among them are significantly genetically dri-

ven (Hicks et al. 2011; Kendler et al. 2003a, b; Vrieze et al.

2012a; Young et al. 2000). However, research on measured

genetic variants, such as single nucleotide polymorphisms

(SNPs), has not been successful in locating individual genes

or genetic variants responsible for the genetic variance in

common substance use disorders, although there are notable

exceptions (Bierut et al. 2012; Furberg et al. 2010; Luczak

et al. 2006; Schumann et al. 2011).

Edited by Deborah Finkel.

S. I. Vrieze (&)

Center for Statistical Genetics, Department of Biostatistics,

School of Public Health, University of Michigan,

1415 Washington Heights, Ann Arbor, MI 48109, USA

e-mail: svrieze@umich.edu

M. McGue � M. B. Miller � W. G. Iacono

Psychology Department, University of Minnesota,

Minneapolis, MN, USA

B. M. Hicks

Department of Psychiatry, University of Michigan,

Ann Arbor, MI, USA

123

Behav Genet (2013) 43:97–107

DOI 10.1007/s10519-013-9584-z



It appears that for many complex traits the effects of

individual genetic variants are small (Manolio et al. 2009).

Genome-wide association studies (GWAS), which test for

the relationship between a phenotype and individual com-

mon SNPs, have confirmed that individual SNPs have

vanishingly small effects on complex traits (e.g., account

for\0.5 % of the phenotypic variance). Compounding the

problem, GWAS designs require around 1 million inde-

pendent tests, and this creates a very substantial multiple

testing burden requiring p values of 5 9 10-8 (Hirschhorn

and Daly 2005). The result is that massive sample sizes

have been required to reliably separate the genetic signal

from noise. One successful approach to dealing with these

challenges has been to assemble mega-samples of hundreds

of thousands of individuals to obtain sufficient statistical

power to detect these small effects. Such endeavors have

identified hundreds of variants (Visscher et al. 2012) for

complex traits like height (Allen et al. 2010), body mass

index (BMI) (Speliotes et al. 2010), and lipid levels

(Teslovich et al. 2010), as well as for complex diseases

such as Crohn’s disease (Franke et al. 2010) and Type-2

Diabetes (Voight et al. 2010).

The present study uses genome-wide scoring in a

moderately-sized twin and adoptive family study sample

(N = 7,188) to investigate the genetic architecture of

several measures of substance use pathology that have been

described in detail previously (Hicks et al. 2011), including

measures of nicotine use/dependence, alcohol consump-

tion, alcohol dependence, illicit drug use, and behavioral

disinhibition. A genome-wide association study of these

same data was unsuccessful in identifying any genome-

wide significant SNPs, reinforcing the need to aggregate

SNPs in small- to moderately-sized samples (McGue et al.

in press).

In addition to genome-wide markers, the present sample

contains a large number of twins, which allows estimation

of heritability using standard twin methodology, as well as

from Genome-wide Complex Trait Analysis (GCTA)

(Yang et al. 2011a, b). Twin-based estimates, for example,

provide estimates of the total additive genetic effect, which

may be due to other forms of genetic variation than com-

mon SNPs (Vrieze et al. 2012b). GCTA, on the other hand,

provides the additive genetic effect due to common SNPs

only. Comparison of the two methods provides insight into

the non-SNP, rare SNP, or structural genetic variation that

contribute to heritabilities estimated by twins.

Both twin-derived heritabilities and the GCTA method

provide heritability estimates, but do not give individual-

ized risk estimates for subjects. In contrast, Genome-wide

scoring does provide individual risk estimates, and the

scores can be applied in new samples to make risk pre-

dictions, although they typically return only a small frac-

tion of the twin-estimated or GCTA-estimated heritability

(Allen et al. 2010; Speliotes et al. 2010). In Genome-wide

scoring individual SNPs are weighted based on their uni-

variate association with the phenotype. All SNPs are then

combined into a weighted sum to produce, for each person,

a single aggregate SNP score. The score can then be used

for a new individual to predict their phenotype value.

Furthermore, twin- and GCTA-estimated heritabilities are

useful to inform the potential size and significance of the

genome-wide scoring effect.

Table 1 Means and variances of five substance use phenotypes

Sample Sex N Age M (SD) Means Variances

NIC CON DEP DRG BD NIC CON DEP DRUG BD

Twin families

Parents Male 1,396 43.87 (5.65) .53 .80 .86 .41 .63 1.16 .42 1.64 1.36 1.10

Female 1,587 41.67 (5.15) .18 .09 -.06 -.01 -.33 1.11 .35 .63 .83 .55

MZ twins Male 873 17.80 (0.61) -.21 -.23 -.25 -.17 .24 .70 1.38 .63 .90 1.17

Female 990 17.88 (0.77) -.44 -.64 -.51 -.39 -.44 .53 1.0 .25 .47 .66

DZ twins Male 457 17.75 (0.49) -.22 -.35 -.26 -.18 .25 .70 1.45 .61 .92 1.21

Female 557 18.03 (0.81) -.32 -.49 -.40 -.28 -.26 .65 1.05 .46 .65 .82

Adoptive families

Parents Male 384 48.43 (4.46) .22 .49 .44 .45 .22 1.13 .49 1.21 1.35 .73

Females 485 46.53 (4.11) -.18 -.11 -.21 .04 -.50 .91 .32 .47 .78 .28

Bio sibs Male 168 18.16 (1.01) -.26 -.14 -.09 .15 .35 .65 1.52 .78 1.37 1.31

Female 194 18.33 (1.14) -.46 -.49 -.37 -.15 -.27 .46 1.05 .41 .72 .76

Adopted sibs Male 50 18.54 (0.87) .09 .13 .05 .45 .68 .79 1.33 .98 1.47 1.20

Female 47 18.37 (1.05) -.24 -.25 -.29 .04 -.02 .51 .80 .61 .73 .59

Each variable in the full sample was scaled to have mean zero and variance one. NIC nicotine use/dependence, CON alcohol consumption, DEP
alcohol dependence, DRG drug dependence, BD behavioral disinhibition. MZ stands for monozygotic twins and DZ stands for dizygotic twins
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We computed twin- and GCTA-estimated heritabilities

as well as genome-wide scores for our measures of nicotine

use, alcohol consumption, alcohol dependence, illicit drug

use, and behavioral disinhibition. The twin heritabilities

and genome-wide scoring also allowed us to calculate the

genetic correlations among the traits, providing estimates

of pleiotropy among substance use disorders and behav-

ioral disinhibition. The theory that behavioral disinhibition

causes increased substance use would predict that genetic

variants causing disinhibition should also be related to

substance use—i.e., that there are pleiotropic genetic

effects. In sum, the present results inform the extent and

form of polygenetic heritability for substance use pheno-

types, and provide guidance for future study of behavioral

disinhibition and substance use traits and disease.

Methods

The sample used in this research has been described in

detail elsewhere (Iacono and McGue 2002; Miller et al.

2012). In short, it is composed of two studies of Minnesota

families: a community-representative sample of twins and

their parents, as well as a study of adoptive families.

Sample sizes for the twin and adoptive families are pro-

vided in Table 1. Twin families are further divided into

three prospective cohorts: (A) 17-year-old twins

(N = 1,139) first assessed between 1989 and 1996, fol-

lowed regularly at ages 20, 24, and 29; (B) 11-year-old

twins (N = 1,167) assessed at ages 11, 14, 17, 20, 24, and

29, with their age-17 assessment occurring between 1996

and 2003; and (C) another sample (N = 571) of 11-year-

old twins assessed at ages 11, 14, and 17, with their age-17

assessment occurring between 2005 and 2010. In the

adoption study all families were composed of two families

and two offspring. Some families had two biological off-

spring, some had two adopted offspring, and some had one

biological offspring and one adopted offspring. Parents

were typically assessed at intake, regardless of cohort. In

total, the present study included 7,188 Caucasian partici-

pants from 2,300 families.

Phenotypic Measures

Development and construct validity of the composite

measures for the phenotypes used in this study have been

described extensively in a development report (Hicks et al.

2011). Phenotype values are factor scores computed from

hierarchical factor analysis of items measuring substance

use and behavioral disinhibition. Nicotine Use/Dependence

(NIC) included lifetime symptoms of DSM-III-R nicotine

dependence, as well as frequency and quantity of nicotine

use during the period of an individual’s heaviest use.

Alcohol Consumption (CON) included number of lifetime

intoxications, maximum number of drinks consumed in a

24-hour period, and frequency of alcohol use during the

period of heaviest use. Alcohol Abuse/Dependence (DEP)

included the symptoms from several diagnostic systems

including DSM-III-R, DSM-III, Research Diagnostic Cri-

teria, and Feighner Criteria that assess pathological use of

alcohol organized around the content domains of physio-

logical tolerance and withdrawal, social and occupational

problems due to drinking, and compulsive drinking (e.g.,

little time for anything but drinking). Drug Use (DRG)

included the number of lifetime marijuana uses, a count of

the number of classes of illicit drugs a person had ever tried

(e.g., stimulants, hallucinogens, PCP, etc.), and DSM-III-R

symptoms of abuse and dependence for the drug to which a

person reported the most symptoms. Finally, Behavioral

Disinhibition (BD) included DSM-III-R symptoms of

conduct disorder, adult antisocial behavior (the adult cri-

teria for antisocial personality disorder), and other mea-

sures of antisocial and non-normative behavior (e.g.,

precocious sexual intercourse) and disinhibited personality

traits (e.g., impulsivity, aggression).

Genotyping

Details of the genotyping procedures are provided in (Miller

et al. 2012). In short, genome-wide genotyping was done on

the Illumina Human660 W-Quad Array, which contains a

total of 561,490 SNPs. Markers were excluded if: (1) they

had been identified as a poorly genotyped marker by Illu-

mina; (2) had more than one mismatch in duplicated QC

samples; (3) had a call rate\99 %; (4) had a MAF \ 1 %;

(5) had more than 2 Mendelian inconsistencies across

families; (6) significantly deviated from Hardy–Weinberg

equilibrium at p \ 1e-7; (7) was an autosomal marker but

associated with sex at p \ 1e-7; (8) had a significant batch

effect at p \ 1e-7; or (9) there were more than 2 hetero-

zygous X chromosome calls for males or mitochondrial

calls for anyone. A total of 32,153, or 5.7 % of the markers

attempted, failed one or more of these quality control filters,

leaving 527,829 markers that passed all QC filters. Of these,

515,384 were autosomal and used in the present study.

Genotyping was attempted on samples from 7,438 partici-

pants. Samples were eliminated if: (1) they had[5,000 no-

calls; (2) had a low GenCall score; (3) had extreme heter-

ozygosity or homozygosity; or (4) represented a sample

mix-up or we could not confirm known genetic relation-

ships. A total of 160 (2.2 %) of samples failed quality

control filters and were dropped from the present analysis.

Only one MZ twin from each MZ twin pair was genotyped.

Prior to genome-wide genotyping, zygosity had been

assigned through questionnaire-based methods (*99 %

accuracy). With genome-wide genotyping we determined
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that 1.5 % of DZ twins (per the questionnaire) were in fact

MZ. Zygosity for these 8 pairs of twins was therefore

reassigned as MZ. For all other MZ twins genotypes were

wholly imputed from the genotyped cotwin to the non-

genotyped cotwin (n = 1,127) for a final GWAS sample of

8,405 individuals.

The majority of the full sample self-identified as White

(90.4 %), but we selected individuals for the current anal-

ysis on the basis of the first 10 genetic principal components

computed with EIGENSTRAT (Price et al. 2006). Since

EIGENSTRAT solutions are sensitive to close relatives,

one member of each close relative pair was excluded. Full

details are provided in Miller et al. (2012). To identify

individuals as White for the present analysis we first found

the centroid in the 10-dimensional principal component

space for subjects thought to be white, and then computed

the distance of every individual from this centroid. A small

number closest to the centroid were used to compute the

centroid and variance–covariance matrix to compute Ma-

halanobis distance to the centroid. A hyperellipsoid of

constant Mahalanobis distance to the centroid was con-

structed such that points inside were those closest to the

centroid of the white group. The hyperellipsoid was con-

tinuously expanded, updating the centroid and variance–

covariance matrix every time another subject was added to

the white group inside the hyperellipsoid. Expansion con-

tinued until further expansion started to bring in primarily

subjects who were previously thought to be non-white on

the basis of self-report. Thus, the white group was defined

partly by self-report and partly by clustering in a principal-

component space. The process resulted in a sample of 7,702

putatively white individuals, including 101 for whom we

did not have self-reported ethnicity and 46 who had origi-

nally self-reported as something other than white. Ten

principal components were then computed on the newly

defined white group and they were also used as covariates in

all analyses to correct for any spurious effects arising from

population stratification.

Heritability Estimates with Biometry and GCTA

The present sample allows several methods to estimate

heritability of the phenotypes. First, a large portion of the

sample is composed of twins. We used knowledge of twin

zygosity and standard biometric statistical models to

compute the additive genetic (A), shared environmental

(C), and non-shared environmental (E) components of the

5 9 5 variance–covariance matrix of our five measures.

This is the standard multivariate ACE model (Neale and

Cardon 1992). Variance–covariance component matrices

were Cholesky-factorized and estimated by full informa-

tion maximum likelihood after correcting for fixed effects

of sex, age, year of birth, generational status, and the first

10 genetic principle components computed from EIGEN-

STRAT. Model fit was evaluated with accepted indexes of

fit, including a likelihood ratio test and the Akaike Infor-

mation Criterion (AIC). The likelihood ratio test is sensi-

tive to sample size and correlational magnitude, and so is

often augmented with measures of fit like the AIC, which

have attractive theoretical properties not shared by the

likelihood ratio, such as minimization of mean squared

error of estimation (Vrieze 2012).

A second way to estimate heritability is to consider the

additive effect of all SNPs considered simultaneously using

GCTA. GCTA has become increasingly used to provide an

estimate of the heritability in a trait due to measured SNPs

(Yang et al. 2011a, b). The method evaluates the joint effect

of all SNPs considered simultaneously as a random effect,

and estimates the variance in the phenotype attributable to

this random effect. In practice, the method computes the

genetic relatedness based on SNPs between all pairs of

individuals in the sample. This genetic relatedness matrix

(GRM) is then used as input in the random effects model,

and the similarity among individuals in genetic relatedness

predicts the similarity in phenotypic relatedness. In a sam-

ple of unrelated subjects the method produces the variance

in the trait accounted for by the SNPs, because the rela-

tionships between genetically unrelated subjects are not

influenced by shared environment or non-SNP genetic

variance. In a sample of related subjects, such as the fam-

ilies used in the present study, phenotypic relatedness and

genetic relatedness are confounded in important ways that

must be addressed. If estimates are based on everyone, then

SNP-based genetic relatedness and phenotypic relatedness

are confounded with rare and non-additive genetic rela-

tionships (e.g., MZ twins share almost all variants, includ-

ing rare and common SNPs) and shared environmental

effects due to shared family experiences.

To account for familial confounding, we used GCTA on

four samples. (1) The best way to estimate the random

effect of SNPs (the aggregate effect of common SNPs on

the phenotype) is with a large sample of unrelated indi-

viduals (Yang et al. 2010). The largest such sample in the

present study consists of all genetically unrelated parents

(n = 3,542), under a simplifying assumption of no assor-

tative mating. To determine genetic relatedness in this

parent sample we excluded one individual of every pair of

individuals who had a genetic relatedness of C .025 as

calculated by the GRM produced by GCTA on the full

sample. (2) To help inform the biometric twin heritability

estimates, we also estimated the random effect of SNPs on

an unrelated sample of the youth offspring (n = 1,784),

including one member from each twin and sibling pair, as

well as all adopted youth. Ideally, this would provide an

estimate of the aggregate effect of common SNPs in the

offspring youth sample and would be comparable to that
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produced by the unrelated parent sample. (3) We conducted

the same analysis on the full sample of youth offspring

(n = 3,336), without concern for genetic relatedness.

Because this analysis confounds phenotypes, genotypes,

and shared environment, it should return a genetic random

effect approximate to the sum of genetic and shared envi-

ronment from the biometric analysis (i.e., approximately

A ? C). (4) Finally, we estimate the random genetic effect

in the full sample (N = 7,188), which should provide an

estimate of the random effect somewhere between the

unrelated sample and the youth offspring sample, as the

full sample has less of a shared environment confound than

the twin sample. That is, parents are phenotypically related

due to shared environment, but the extent of shared envi-

ronmental influence is less than that between twins, again

under the simplifying assumption of no assortative mating.

Genome-Wide Scoring Procedure

The biometric and GCTA methods provide variance com-

ponent estimates of the aggregate effect of genetic variants.

They are limited in that they do not provide weightings for

individual SNPs, nor can they be applied to new samples in

attempts to predict genetic loading for some trait. Genome-

wide scoring, on the other hand, does return this information.

Scoring proceeded in a series of steps. First, the phe-

notype was residualized using a linear regression on

covariates of sex, generational status (parent or child), age,

year of birth, and the first 10 principal components pro-

duced by EIGENSTRAT. A GWAS was then conducted on

the residualized phenotype, producing a univariate regres-

sion weight for the minor allele count for each SNP. Minor

allele counts for each SNP were then multiplied by their

corresponding regression weight and summed to form a

single score for each participant in the sample. This sum-

score was then validated by correlating it with the residu-

alized phenotype. Squaring the correlation gives the

variance in the phenotype accounted for by the SNP score.

Gross overfitting is expected when the same sample is

used to generate and validate the SNP score, especially

when the number of predictors is much greater than the

number of subjects. To control for overfitting we employed

a k-fold cross-validation technique (Breiman and Spector

1992; Hastie et al. 2009). For this study we set the number

of k folds to be 10. To accomplish this, subjects were split

into 10 roughly equal subsamples (707, 734, 719, 718, 724,

690, 737, 734, 725, 700). The scoring algorithm described

above is conducted by combining 9 subsamples, providing

a set of SNP weights based on the 9 subsamples combined.

These weights were then applied to the minor allele counts

in the 10th sample and correlated with the phenotype in that

sample, producing an unbiased estimate of the cross-vali-

dated validity of the SNP score. This same procedure is

used for every combination of the 10 samples, such that

every single subject is in a development sample nine times

and in the test sample once.

Because the full sample is composed of families, and

individuals within families are correlated with respect to

genotypes and phenotypes, we always kept individuals from

the same family within the same subsample. This prevented

the algorithm, for example, from deriving the SNP score on

one twin and cross-validating it on the other – clearly in that

case we expect prediction bias given correlation between

twins on the phenotype and the genotype.

SNPs were also filtered on the basis of linkage disequi-

librium (LD). If two tag SNPs are in LD with a causal variant

and in LD with each other, then both SNPs will show a

relationship with the phenotype, despite the fact that the two

SNPs are redundant. To avoid over-counting such redundant

SNPs prior studies have imposed strict LD cutoffs, such that

no two SNPs included in the set of prediction SNPs can have

LD r2 [ .05 (e.g., Allen et al. 2010). We chose to evaluate

three different LD cutoffs: r2 = .05, .50, and 1.0 (i.e., no

cutoff). The cutoff was imposed in the following way. First,

all SNPs were regressed on the phenotype and their uni-

variate weights and p values recorded. SNPs were then

sorted according to p value. The most significant SNP was

selected, and all SNPs with LD greater than the cutoff were

culled from the list of SNPs. Then the remaining second-

most significant SNP was considered and all SNPs in LD

with it were removed. This process was completed until the

least significant SNP was considered. The proportion of

SNPs included in the score was varied from .0001 (allowing

only very highly significant SNPs in the score) to 1.0

(allowing all SNPs regardless of significance).

Finally, to increase our confidence in the scoring results,

we simulated three types of phenotypes. First, we simu-

lated a normally-distributed phenotype with no genetic

association, which we refer to as ‘‘Random.’’ Second, we

simulated phenotypes from 10,000, 50,000, and 100,000

causal SNPs under an additive model with normally dis-

tributed regression coefficients. Third, we simulated phe-

notypes from 10,000, 50,000, and 100,000 SNPs under an

additive model with uniformly distributed regression

coefficients. The phenotype in both the normal and uniform

scenarios was simulated to be 17 % heritable, in line with

expectations based on the GCTA analyses reported in the

current study.

Genome-wide scoring with tenfold cross-validation is

computationally demanding. This prevented us from con-

ducting permutation or other tests of statistical significance.

Fortunately, the cross-validation statistic in use here is the

Pearson correlation and is amenable to short-hand tests of

significance. The standard error of the Pearson correlation

coefficient after z-transformation is 1/H (N-3), and

z = arctan(r). A significant t-score = 1.96. The p value for
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z and any N is thus approximately 1 - U(z 9 HN), where

U is the distribution function of the standard normal dis-

tribution. The average within-family correlation, averaging

over all five phenotypes, was .24. Multiplying the total

sample size by one minus the squared average within

family correlation yields 7,188 9 (1–.242) & 6,774, an

estimate of the effective sample size. When N = 6,774, a

correlation coefficient r must be greater than .02 to be

significant at p \ .05. If we are conservative, and set our

effective sample size at 5,000 individuals, then a correla-

tion coefficient must be r [ .024 to be significant at

p \ .05. For all analyses we covaried out the linear effects

of age, sex, year of birth, generational status (parent/off-

spring), and the first 10 genetic principal components.

The k-fold cross-validation algorithm was programmed

in the R Environment 2.15.1 (R Development Core Team

2011), and GWAS conducted using the GenABEL package

1.7–2 (Aulchenko et al. 2007). Biometric twin models were

estimated with the OpenMx package 1.2 (Boker et al.

2011). GCTA analysis used the GCTA program 0.93.9

(Yang et al. 2011a). Scripts are available upon request.

Results

Descriptive statistics for the substance use phenotypes and

behavioral disinhibition are provided in Table 1. Figure 1

provides the biometric estimates, based on the twin sample

alone (average age = 17 years), of the heritable, shared

environmental, and nonshared environmental components

of the correlation matrix among the five phenotypes. The

variance in each phenotype, as well as the covariance

among phenotypes, is largely due to heritable variation.

However, there are also significant shared environmental

effects, both on the variances and covariances. Finally,

there are significant non-shared environmental effects,

especially on the variances. Fit statistics for the ACE,

ADE, and AE models are listed in Table 2. The ACE

model fit best, followed by the AE and ADE models,

according both to likelihood ratio tests and the AIC.

GCTA results are given in Fig. 2 and differ depending

on the sample and the GRM cutoff. For comparison, the

twin-estimated heritabilities are provided (gray), as well as

the sum of the heritabilities and shared environmental

Fig. 1 Phenotypic correlations

and biometric decomposition

(leading decimals were

removed). Shown here are the

phenotypic correlation matrix,

as well as the additive genetic,

shared environmental, and non-

shared environmental

component matrices. In

parentheses are the 95 %

maximum likelihood confidence

intervals. The component

matrices are scaled such that

they sum elementwise to

produce the full phenotypic

matrix. All entries are

significant at p \ .05. Estimates

are based solely on the twins,

who have an average age of

17 years. NIC nicotine use/

dependence, CON alcohol

consumption, DEP alcohol

dependence, DRG drug

dependence, BD behavioral

disinhibition
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estimates (black). First, the best estimate of the aggregate

effects of common SNPs was produced from the largest

sample of genetically unrelated individuals (the parents), as

determined by using a cutoff of \.025 on the genetic

relatedness matrix. The parents share environments but not

genes, and resulting GCTA estimates will not be con-

founded with non-common-SNP genetic effects and/or

strong shared environmental effects. As can be seen in

Fig. 2, the estimates of phenotypic variance accounted for

by the aggregated SNPs range from .16 to .22 in the sample

of unrelated parents (displayed in red). All estimates were

statistically significant at one-tailed p \ .05 except DEP

(Alcohol Dependence). The full sample estimates (no

GRM cutoff; displayed in yellow) yielded much higher

estimates, consistent with the notion that rare-SNP, non-

additive, non-SNP, and/or shared environmental effects are

contributing to phenotypic similarity, sometimes substan-

tially. It appears, however, that the GCTA estimates from

the full sample are highly similar to the additive genetic

estimates obtained in the biometric twin results, indicating

only small inflation in the GCTA results due to shared

environmental confound in the full sample.

In the sample of unrelated youths (GRM cutoff of .025)

estimates of the aggregate SNP effects are small and highly

unstable (Fig. 2 in green), perhaps due to less phenotypic

variability and a relatively small sample. When evaluating

the full sample of youths (blue), which does not control for

non-SNP genetic relatedness and shared environmental

confounding, estimates range from .70 to .75, perhaps

indicating a stronger role of shared environment in the

youth-only sample versus the full sample. In fact, if we

sum the heritabilities and shared environmental compo-

nents reported in Fig. 1, we find that they are strikingly

similar to the GCTA estimates on the full set of offspring.

While moderately strong aggregate SNP effects were

observed in the full sample by both GCTA and twin biom-

etry, the genome-wide scoring procedure was unable to tap

more than a small fraction of that variance. The results from

the scoring procedure are given in Fig. 3. The top row of sub-

figures in Fig. 3 provide the genome-wide scoring results for

the five phenotypes, under seven SNP proportion thresholds

and three LD thresholds. To explain, consider the top right

figure. Here we imposed an LD threshold of .05. That is,

SNPs were excluded whenever they were in LD [ .05 with a

nearby, more significant SNP. Each phenotype was then

analyzed under seven thresholds for the proportion of SNPs

to retain in the score. Stringent thresholds, such as including

only .0001 of all SNPs produced essentially null results for

every phenotype but nicotine. As the threshold was relaxed

and more SNPs were included, improvement is seen for

every phenotype (sans nicotine), until the effect plateaus at

around .05. This pattern of results is generally true for each of

the LD cutoffs (each of the three graphs in the top row of

Fig. 3). Most obviously, there appears to be a polygenetic

effect—the variance accounted for in the phenotype

increases substantially as the proportion of SNPs is

increased. Results appear to be generally dampened by the

choice of LD cutoff, although not substantially so. The

polygenetic effect, and the pattern of results, is true for the

phenotypic data as well as the simulated phenotypes,

regardless of the number of SNPs contributing to the phe-

notype in the simulations. The random, non-genetically-

Table 2 Fit of the biometric models

Model -2LL Free parameters v2(df), p value AIC

ACE 114,287.4 50 N/A 85,617.37

ADE 114,365.3 50 N/A 85,695.34

AE 114,314.9 35 27.5(15), .02 85,614.88

For the ACE, ADE, and AE models, the A refers to the additive

genetic component, D to the dominant/recessive genetic component,

C to the shared environmental component, and E to the non-shared

environmental component. -2LL is minus to the log of the likeli-

hood. AIC is the Akaike Information Criterion. The v2 is for com-

parison between the AE and the ACE model. The significant p value

of .02 indicates that the AE leads to decrement in fit

Fig. 2 GCTA results with Biometric Comparison. The GCTA results

are provided for each phenotype in a variety of samples. In grey are

the additive genetic heritability estimates from the biometric twin

analysis (also in Fig. 1). In black is the sum of the additive genetic

and shared environment estimates from the biometric analysis (also in

Fig. 1). Unrelated individuals were defined as those having a genetic

relatedness estimated by GCTA to be \.025 (more distantly related

than third cousins). The samples are: a All unrelated parents

(N = 3,542), b unrelated youths (N = 1,784), c All youths

(N = 3,336), and d the full sample (N = 7,188). Error bars are

95 % confidence intervals. NIC nicotine use/dependence, CON
alcohol consumption, DEP alcohol dependence, DRG drug depen-

dence, BD behavioral disinhibition
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related phenotype (bottom right figure in Fig. 3) shows no

association, as expected.

Table 3 reports cross-validated correlations between

genome-wide scores generated on one phenotype and

correlated with a different phenotype. Note that for some

phenotypes (e.g., nicotine use with drug use) the off-

diagonal value is greater than the diagonal. We expect this

is due to sampling error. Correlations among the drugs are

of smaller, but similar, magnitude, ranging from 0.03 to

0.07, suggesting small but detectable pleiotropic SNP

effects in this sample.

Discussion

Like with other complex traits, our results demonstrate that

substance use phenotypes are polygenetic and moderately

to highly heritable. Using standard biometric twin models,
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Fig. 3 Cross-validated Genome-wide Scoring Results. The top panel
of three graphs provides the empirical results for the four substance use

phenotypes and behavioral disinhibition. Each graph provides the seven

p value thresholds under consideration. The three top graphs only differ

in the LD cutoff imposed (1.0, .50, and .05). The bottom row provides

results from three kinds of simulated phenotypes. First, a simulated

phenotype with a normal distribution of SNP regression coefficients, for

each of the 7 p value thresholds and three different polygenetic

scenarios (100,000, 50,000, and 10,000 associated SNPs). Second, the

same scenario except with uniformly distributed effects. Both of these

simulated phenotypes were simulated such that the SNPs in aggregate

accounted for 17 % of the variance in the phenotype. Third, a

completely random phenotype with no SNP associations. The bold
horizontal line in each graph is zero. The dotted line represents a

correlation that would be significant at p \ .05, conservatively

assuming an effective sample size of 5,000. NIC nicotine use/

dependence, CON alcohol consumption, DEP alcohol dependence,

DRG drug dependence, BD behavioral disinhibition
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heritabilities ranged from 43 % for Alcohol Consumption

to 58 % for Behavioral Disinhibition (Fig. 1). Additive

SNP effects estimated by GCTA on the parent sample

account for 16 % of the variance in Alcohol Dependence to

22 % of the variance in Drug Use. While the aggregate

additive SNP effect, estimated by GCTA is relatively large

(e.g., 10–30 % of total phenotypic variance; Fig. 2), iden-

tifying and summing actual individual SNPs with genome-

wide scoring yields much weaker effects, accounting for

around 0.25 % of the variance in the substance use and

behavioral disinhibition measures. Dividing the GCTA

results estimated in the parent sample by the twin-esti-

mated heritabilities allows us to estimate the total heritable

variance accounted for by the aggregate SNP effect from

GCTA. We estimate that the additive SNP effect accounts

for 21 % (Alcohol Dependence), 32 % (Behavioral Disin-

hibition), 36 % (Nicotine Use/Dependence), 38 % (Alco-

hol Consumption), and 45 % (Drug Dependence) of the

heritable variance in these traits.

There were apparent pleiotropic effects observed in the

biometric twin heritability estimates. The genetic correla-

tions between disorders (Fig. 1) were relatively high

(.25–.47), such that one can expect genetic variants for one

disorder to predict from 7 to 22 % of the phenotypic var-

iance in another disorder. A genome-wide score developed

on one phenotype accounted for .1–0.5 % of the variance

in other phenotypes (squaring the minimum and maximum

correlation provided in Table 3), again indicating some

extent of pleiotropy in the associated SNPs.

The disinhibitory hypothesis, that disinhibition repre-

sents a substantial source of general and genetically-based

risk for substance use, was strongly supported by these

results. First, that behavioral disinhibition shares genetic

etiology with substance use disorders is supported by the

biometric twin results given in Fig. 1, in that the measure

of behavioral disinhibition was highly genetically corre-

lated with the other traits. What is more, the genome-wide

scores generated on behavioral disinhibition were predic-

tive of all the substance use traits (Table 3), indicating the

existence of a polygenetic SNP-based relationship between

disinhibition and substance use. Despite statistical signifi-

cance, the predictive validity of the genome-wide scores

was modest, indicating that the ratio of signal to noise is

very small for a brute-force genome-wide approach.

Clearly more samples are required to have sufficient pre-

cision in estimating weights at a genome-wide level. While

the GCTA SNP-based estimates account for considerably

more—21–45 % of the twin-estimated heritable variance—

there remains a majority of that heritable variance to be

explained. There is much conjecture about the source of

remaining additive genetic variance, including non-addi-

tive or rare SNP effects, additive and non-additive struc-

tural variation (e.g., CNVs, insertions/deletions), gene-

environment interaction, or gene–gene interaction (Mano-

lio et al. 2009; Zuk et al. 2012). Further research involving

much larger samples and more comprehensive genotyping,

such as whole genome sequencing or rare variant chips,

will be necessary to tackle these issues.

Future work would also do well to continue to evaluate

both individual SNP effects as well as aggregate effects, as

both can be informative about the genetic architecture of,

and genetic relationships among, various psychological

traits and other phenotypes. Applying diverse methods,

such as twin biometry, GCTA, and genome-wide scoring

provides an array of useful information. To be maximally

informative, consortia might share more than GWAS

p values, and to report more than just the genome-wide

significant values (e.g., the top 100 or 1,000 in supple-

mentary materials with all values available upon request).

Supplemental materials could routinely include the top 100

or 1,000 hits, including effect sizes, allele and strand

information, standard errors, and p values, which all would

be extremely useful for the purposes of aggregating effects

(as in the present study) as well as evaluating environ-

mental and developmental moderation of genetic effects.

Indeed, environmental and developmental moderation of

genetic effects are two possible reasons (of many) why

genetic association studies have failed thusfar in identify-

ing more variants associated with behavioral traits. Sub-

stance use development, for example, shows significant

change in structure and heritability during adolescence

Vrieze et al. (2012a, 2012c), which suggests a possible

limitation of the present study, as we examined middle-

aged parents along with their 17-year-old children. If

genetic effects are substantially different between these age

groups it may minimize the effects observed in the present

Table 3 Genome-wide scores created on one phenotype and applied

to another

NIC CON DEP DRG BD RANDOM

NIC .040

CON .030 .034

DEP .041 .044 .038

DRG .056 .042 .043 .068

BD .046 .054 .050 .069 .071

RANDOM -.008 -.022 -.013 -.016 -.015 -.004

NIC nicotine use/dependence, CON alcohol consumption, DEP
alcohol dependence, DRG drug dependence, BD behavioral disinhi-

bition, RANDOM randomly generated phenotype. The diagonal rep-

resents the cross-validated correlation between the genome-wide SNP

score and the actual phenotypic measurements. Off-diagonals repre-

sent the mean correlation between trait 1’s genome-wide score and

trait 2’s phenotypic measurements, plus the correlation between trait

2’s genome-wide score and trait 1’s phenotypic measurements. Scores

here are taken from the models with no LD cutoff and no p value

cutoff. All correlations are significant at p \ .05, assuming an

effective sample size of 5,000, as discussed in the ‘‘Methods’’
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study. Unfortunately, determining whether a SNP or other

genetic variant is moderated by development (or environ-

ment) is greatly facilitated by a priori knowledge of SNPs

known to be associated with the phenotype, and there are

very few such SNPs known at present. There has been

preliminary work in evaluating developmental moderation

for height and smoking (Vrieze et al. 2011; Vrieze et al.

2012c), two phenotypes where there are strong SNP asso-

ciations found through consortia with large meta-analytic

GWAS results. Increased data sharing and the resulting

larger samples will provide more hits for future work,

which will allow powerful investigation of interaction

effects for behavioral traits.
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