
ORIGINAL RESEARCH

Are Extended Twin Family Designs Worth the Trouble?
A Comparison of the Bias, Precision, and Accuracy of Parameters
Estimated in Four Twin Family Models

Matthew C. Keller • Sarah E. Medland •

Laramie E. Duncan

Received: 23 June 2009 / Accepted: 24 November 2009 / Published online: 16 December 2009

� Springer Science+Business Media, LLC 2009

Abstract The classical twin design (CTD) uses observed

covariances from monozygotic and dizygotic twin pairs to

infer the relative magnitudes of genetic and environmental

causes of phenotypic variation. Despite its wide use, it is

well known that the CTD can produce biased estimates if its

stringent assumptions are not met. By modeling observed

covariances of twins’ relatives in addition to twins them-

selves, extended twin family designs (ETFDs) require less

stringent assumptions, can estimate many more parameters

of interest, and should produce less biased estimates than

the CTD. However, ETFDs are more complicated to use

and interpret, and by attempting to estimate a large number

of parameters, the precision of parameter estimates may

suffer. This paper is a formal investigation into a simple

question: Is it worthwhile to use more complex models such

as ETFDs in behavioral genetics? In particular, we compare

the bias, precision, and accuracy of estimates from the CTD

and three increasingly complex ETFDs. We find the CTD

does a decent job of estimating broad sense heritability, but

CTD estimates of shared environmental effects and the

relative importance of additive versus non-additive genetic

variance can be biased, sometimes wildly so. Increasingly

complex ETFDs, on the other hand, are more accurate and

less sensitive to assumptions than simpler models. We

conclude that researchers interested in characterizing the

environment or the makeup of genetic variation should use

ETFDs when possible.

Keywords Behavior genetics � Model misspecification �
Extended twin family design � Classical twin design �
Parameter indeterminacy

Introduction

The observed covariances of twins, adoptees, and their

family members are often used to understand the relative

importance of genetic and environmental causes of phe-

notypic variation. The most commonly used genetically

informative design is the Classical Twin Design (CTD),

which compares the monozygotic (MZ) twin covariance to

the dizygotic (DZ) twin covariance to estimate the varia-

tion in a trait due to unique environmental effects (VE) as

well as any two of the three variance components—addi-

tive genetic (VA), dominance genetic (VD), and common

environmental (VC)—that cause familial similarity.

There are several appeals to the CTD. For example, MZ

and DZ twins serve as natural controls to one another, their

data is relatively simple to collect, and shared environ-

mental effects are not confounded with genetic effects, as

they are in non-twin familial studies (Martin et al. 1997).

Nevertheless, it has long been understood that the CTD

suffers from several important limitations (Eaves et al.
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1978). For one, V̂A,V̂D, and V̂C are mutually confounded in

the CTD, allowing only two of these three parameters to be

estimated.1 This follows from the fact that it is impossible

to simultaneously estimate three parameters (V̂A,V̂D, and

V̂C) from just two pieces of relevant information (the MZ

and DZ covariances). To circumvent this under-identifi-

cation problem, behavioral geneticists using the CTD

routinely assume that either VD = 0 or that VC = 0.

However, these are simply assumptions, untestable using

twins alone, born from the mathematical necessity of

making the CTD identified. To the degree these assump-

tions are violated, CTD estimates of VA tend to be biased

upward and estimates of VD and VC tend to be biased

downward (Grayson 1989; Heath et al. 1985; Keller and

Coventry 2005). Second, the CTD does not model the

effects of assortative mating or gene-environment covari-

ance, the presence of which will create biases in estimates

(e.g., V̂A will be too low). Third, the CTD has nothing to

say about the etiology of the shared environmental effects

(contributing to VC): to what degree are they passed cul-

turally from parent to offspring and to what degree are they

due to non-parental factors such as peer influences?

Finally, the CTD does not use information efficiently: for

every twin pair recruited (two new subjects), only a single

additional bit of information (one covariance estimate) is

gained useful to modeling the causes of familial similarity.

For these and other reasons, in the 1970s researchers

began exploring extended twin family designs (ETFDs),

which require less stringent assumptions and produce less

biased estimates than the CTD (Fulker 1982). These

alternative designs use data on parents of twins (Eaves

et al. 1978; Neale and Fulker 1984) and offspring of twins

(Nance and Corey 1976) to better reveal genetic non-

additivity and the role of parental environmental effects,

and use parents of twins and spouses of twins (Eaves 1979)

to model the effects of assortative mating. Cloninger et al.

(1979) first described how to use all of these relative types

together in a single model. Their model is the forerunner to

the three ETFDs described in this paper: the Nuclear Twin

Family Design (NTFD) (Heath et al. 1985), the Stealth

design (Truett et al. 1994), and the Cascade design (Keller

et al. 2009). For a more thorough history of twin and family

designs, see Eaves (2009).

Extended twin family designs (ETFDs) address the lim-

itations of the CTD described above. Compared to the CTD,

ETFDs allow for finer grained descriptions of the causes of

phenotypic variation, they produce less biased parameter

estimates, and more information (increasing statistical

power) is gained per additional subject in ETFDs (Posthuma

and Boomsma 2000). Yet, the reduction in bias and more

detailed information associated with ETFDs comes at the

cost of greatly increased complexity. This complexity is a

major problem for instantiating the model into code. For

example, such scripts written in Mx (Neale 1999) can stretch

for 50 printed pages or more, making human errors a virtual

certainty regardless of how vigilant the error checking is.

We note, however, that a new version of Mx, OpenMx

(http://openmx.psyc.virginia.edu/), will be available as a

package for the R statistical language in early 2010, and

changes in the OpenMx syntax should significantly simplify

ETFD code. Nevertheless, the complexity of ETFDs may

also obscure logical errors at the heart of the designs; certain

expectations may simply have been wrong at the modeling

stage. Furthermore, as with all models, ETFDs also must

make assumptions in order for their models to be identified,

and it is possible that they may perform as bad or worse than

simpler models when these assumptions are violated.

Finally, the complexity of ETFD models and the number of

parameters they attempt to estimate may lead to an unac-

ceptable level of imprecision in estimates caused by the high

covariation between the large numbers of estimated

parameters (multicolinearity problems). For these reasons,

some researchers in behavioral genetics remain skeptical of

the value of ETFDs and favor the use of simpler, time-tested

models such as the CTD, which are easy to use and interpret

and require less data collection.

The goal of this paper is to explore these trade-offs. In

particular, we use simulations to gauge the bias, precision,

and accuracy of parameters estimated using the CTD and

three ETFDs in order to understand whether they work as

intended, under what circumstances their estimates are

biased, if the increase in information in ETFDs comes at an

unacceptable cost in precision, and how violations of

assumptions affect parameter estimates. In addition to

identifying the central tendency of the parameter estimates,

we also explore their spread, covariation, and distributional

shapes. Such results can help researchers interpret CTD

and ETFD findings with proper circumspection. In sum-

mary, this paper is a formal investigation into a simple

question: Is it worthwhile to use more complex models

such as ETFDs in behavioral genetics?

Method

General strategy

We seek four properties—the bias, precision, accuracy, and

distributions—of parameter estimates derived from the

CTD, NTFD, Stealth, and Cascade designs. Of course, the

parameter bias, precision, accuracy, and distributions for a

given design change depending on the scenario, so we need

to measure these properties under several scenarios that

1 We follow the convention that V̂� is the estimate of the population

parameter V�
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might occur in nature. A given scenario, for example,

might simulate specified levels of additive genetic, domi-

nant genetic, and common environmental effects on some

hypothetical trait. These scenarios should also violate

assumptions of the four designs to check their sensitivities

to assumptions. To accomplish these goals, the first author

created a program, GeneEvolve, that simulates twin family

data. The user supplies input for various parameters (e.g.,

the amount of variation in a phenotype due to various types

of genetic and environmental effects) to simulate different

scenarios. We obtained simulated twin family data from

GeneEvolve under several different scenarios that might

occur in real life and ran Mx models from the four designs

above on this data. We then compared the estimated vari-

ance parameters (denoted by V̂�) derived from Mx, to the

true variance parameters (denoted by V�) simulated using

GeneEvolve. We iterated this process 500 times for each of

10 different scenarios. In total, 20,000 Mx models were fit

(500 iterations 9 4 models per iteration 9 10 scenarios),

taking a total of *13,000 h of CPU time.

Description of the three extended twin family designs

(ETFDs)

Table 1 gives the interpretations of the variance parameters

discussed in this paper as well as which designs can esti-

mate which variance parameters. For a description of the

CTD, see Plomin et al. (2001), and for a more detailed

description and explanation of these three ETFDs, includ-

ing algebraic expectations, see Keller et al. (2009).

Nuclear twin family design (NTFD)

The NTFD (Fig. 1) uses data on MZ twins, DZ twins, and

their parents. These three relative classes provide four

pieces of information from which parameters are esti-

mated: the covariance between MZ twins, CV̂ðMZ;MZÞ,
the covariance between DZ twins, CV̂ðDZ;DZÞ, the

covariance between parents, CV̂ðspouseÞ, and the covari-

ance between parents and children, CV̂ðPar;ChildÞ. This

additional information allows the NTFD to estimate V̂A,

V̂D, and V̂C simultaneously, allows the effects of assortative

mating on parameter estimates to be accounted for, and

allows passive gene-environment covariance to be differ-

entiated from the effects of V̂C. While there are many ways

the NTFD can be parameterized, we focus here on a

parameterization (Fig. 1) that divides V̂C into the variance

of effects shared between siblings and twins but not parents

(V̂S) and the variance of effects that are transmitted via

vertical transmission from parents to offspring (V̂F).

Because only three pieces of data, CV̂ðMZ;MZÞ,
CV̂ðDZ;DZÞ, and CV̂ðPar;ChildÞ, provide information on

four parameters (V̂A, V̂D, V̂S, and V̂F), one of these

parameters (typically V̂F or V̂S) must be set to 0 in any

NTFD model. Latent variances that are not shown in

Fig. 1, 2, and 3 are equal to 1.

Stealth design

By using data from MZ and DZ twins and their siblings,

parents, offspring, and spouses, 88 sex-specific relative

covariances can be estimated. Many of these 88 relative

classes are identical except for sex-specific pathways. For

example, nephew-aunt covariances between sons of DZ

females and their female DZ co-twins are differentiated

from nephew-aunt covariances that are between sons of DZ

males and female DZ co-twins. The Stealth uses these 88

covariance observations to simultaneously estimate sex-

specific V̂A, V̂D, V̂S, V̂F, V̂T, and V̂E (see Table 1 for their

interpretations) as well as additive genetic variation unique

to males/females, the effects of assortative mating, and

A–F covariance. The Stealth model used in this paper is

simplified by excluding sex effects, reducing the number of

relative classes from 88 to 17. The path diagram for this

Stealth model is shown in Fig. 2, and is identical to Fig. 1

except that spouses of twins and children of twins have

been added. To keep the diagram uncluttered, siblings of

twins are not shown.

Cascade design

Like the Stealth, the Cascade uses information on twins

and their siblings, parents, spouses, and children to model

all of the variance components modeled by the Stealth.

However, a limitation of the Stealth is that it models only

one type of mating (primary phenotypic mating) and only

one type of vertical transmission (from parental phenotype

to offspring F). The purpose of the Cascade is to provide a

general framework for relaxing the assumptions regarding

mate choice and vertical transmission made by the Stealth.

This is done through the use of latent phenotypes upon

which spouses mate or upon which parents influence their

children. To keep the number of model comparisons

manageable, we focus here on the mating aspect of the

Cascade rather than the vertical transmission aspects of it.

The only difference between Fig. 2 (the Stealth model) and

Fig. 3 (the Cascade model) is the addition of the latent

phenotype ( ~P) upon which mates assort. Depending on the

type of mating or vertical transmission model being used,

the path coefficients to ~P are set to either be equal to the

path coefficients to P or to be equal to zero. For example,

to model social homogamy, all genetic path coefficients to
~P are set to zero (~a ¼ 0 and ~d ¼ 0) and all environmental

path coefficients to ~P are constrained to be equal to the

values of the corresponding path coefficients to P (~f ¼ f ,

~s ¼ s, ~t ¼ t, and ~e ¼ e). To understand whether social
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homogamy or primary phenotypic mating best fits the data,

the fit of the social homogamy model can be compared

to a model of primary phenotypic assortment, in which

~a ¼ a, ~d ¼ d, ~f ¼ f , ~s ¼ s, ~t ¼ t, and ~e ¼ e.

Simulating twin family data

GeneEvolve (Keller 2007) is an open source program

written in the R programming language (R Development

Table 1 Explanation of variance parameters in the 10 different simulated scenarios

Parameter Estimable in Interpretation

VP, r2 CTD, NTFD, Stealth, Cascade Phenotypic variance

VA CTD*, NTFD**, Stealth, Cascade Additive genetic variance; variance of marginal or average allelic effects

VD CTD*, NTFD**, Stealth, Cascade Dominance genetic variance; variance of effects attributable to

combinations of alleles at the same locus

VC CTD*, NTFD VC = VS ? VF; typically estimated in CTD models and some NTFD

models. In the Stealth, Cascade, and some NTFD models, it is split into

VS and VF

VS NTFD**, Stealth, Cascade Sibling environmental variance; variance in non-genetic effects (e.g.,

peers, cohort, school, parenting style, etc.) shared between siblings and

twins but not between parents and offspring

VF NTFD**, Stealth, Cascade Familial environmental variance; variance in non-genetic effects (e.g.,

SES, social mores, education) passed (via ‘‘vertical transmission’’) from

parents to offspring

VT NTFD, Stealth, Cascade Twin environmental variance; variance in non-genetic effects (e.g., peers,

cohort, classrooms, in utero effects) shared by twins but not siblings

VE CTD, NTFD, Stealth, Cascade Unique or residual environmental variance; variance in non-genetic

effects (e.g., peers, unique experiences, somatic mutations,

measurement error) that are unshared with any other relative class

VA9A None Additive-by-additive epistatic genetic variation; variance attributable to

combinations of alleles’ additive effects at different loci

VA9Age None Non-scalar additive genetic-by-age interaction variance; this causes a

reduction in additive genetic covariance between relatives as a function

of their age difference

CV(A, F) NTFD, Stealth, Cascade Covariance between additive genetic and familial environmental effects;

arises if vertical transmission (causing VF) is a function of the parental

phenotype because, e.g., higher values on A create higher phenotypic

values, which are passed to offspring F via vertical transmission

* The CTD can estimate any two of VA, VD, or VC. ** The NTFD can estimate any three of VA, VD, VS or VF
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Core Team 2009) and available at www.matthewckeller.

com. GeneEvolve accurately simulates genetically infor-

mative data as well as complex dynamics in evolutionary

genetics. With complicated scenarios, it is difficult or

impossible to find expected equilibrium parameter values

analytically (e.g., the equilibrium additive-by-additive

epistatic genetic variation in a population mating assorta-

tively). Doing so through simulation, however, is

straightforward. Given user input, GeneEvolve simulates

the effects of alleles and environments on individuals’

traits in a population, and allows this population to evolve

(meet, mate, and have offspring, who meet, mate, and have

offspring, etc.…) for many generations, until parameters

reach equilibrium. Currently, GeneEvolve allows user input

of 48 different parameters, including 21 variance and

covariance parameters, 3 different types of assortative

mating, and 3 different types of vertical transmission.

GeneEvolve has an option to create twin and twin

relative phenotypes during the final generation of the

simulation. We used this option to write out the phenotypic

scores of twins and their siblings, spouses, parents, and

offspring to flat files (one row per family), which were then

used as input into Mx (see below). Each flat file contained a

total of *15,000 families (6,500 MZ families and 8,500

DZ families). Although there were a total of 18 potential

relative types in each family (two twins, two parents, four

siblings, one spouse of twin 1, one spouse of twin 2, four

children of twin 1, and four children of twin 2), families

had an average of about five non-missing phenotypic scores

and each flat file contained a total *70,000 individuals.

These numbers were chosen to reflect the sample sizes

and missingness patterns in the combined Australia and

Virginia extended twin databases (see Medland and Keller

2009), which is the largest extended twin family dataset in

existence. Missingness in extended twin datasets arises

through difficulties in ascertainment as well as variation in

age of death and number of children within families.

Sample sizes of this magnitude are necessary for making

fine-grained distinctions between parameters, especially

with respect to sex-specific pathways (Heath et al. 1985;

Medland and Keller 2009), although more modest datasets

are adequate for differentiating models that do not require

sex differentiated pathways.

Table 2 shows how each of the ten scenarios examined

in this project was defined. VE was set to .3 for each sce-

nario, and all other variance parameters not shown in

Table 2 were set to zero. The variance components inher-

ited by offspring—VA, VF, VA9A, and VA9Age—tend to

increase across generations as a function of assortative

mating and/or vertical transmission, and reach equilibrium

values within 5–10 generations. We ran each GeneEvolve

simulation for 20 generations to ensure that these param-

eters reached equilibrium. It can be difficult to predict the

equilibrium values of these variance components at the

beginning of a simulation. Our strategy was therefore to

begin each GeneEvolve simulation such that all variance

components summed to unity (Vp = 1) at the first gener-

ation, and to allow the variance components and Vp to

increase to whatever their equilibrium values were. The

equilibrium values for each variance component (from the

20th generation) are shown in Table 2; values in paren-

theses are the start values if different than the equilibrium

values. Thus, the equilibrium variance components did not

sum to unity for five of the models.

We simulated three different modes of assortative mating

(see rows 5–8, Table 2). Phenotypic homogamy (also called

‘‘primary phenotypic assortment’’) occurs when ‘like mates

with like’ based on the manifest phenotype. For example, if

tall people choose other tall people because they are tall,

this would classify as phenotypic homogamy. This is the

most commonly modeled type of assortative mating in the

behavioral genetics and evolutionary genetics literatures.

Table 2 Simulated variance parameters associated with 10 different scenarios

Scenario VA VD VF VS VT VA9A VA9Age r (spouse) A.M. type

ADE .50 .20 0 0 0 0 0 0 N/A

ASE .50 0 0 .20 0 0 0 0 N/A

ADSE .40 .15 0 .15 0 0 0 0 N/A

ADFE .40 .15 .20 (.15) 0 0 0 0 0 N/A

ADFE ? assortative mating .49 (.40) .15 .36 (.15) 0 0 0 0 .30 Phenotypic homogamy

ADFE ? assortative mating .42 (.40) .15 .27 (.15) 0 0 0 0 .30 Social homogamy

ADFE ? assortative mating .51 (.40) .15 .34 (.15) 0 0 0 0 .30 Genetic homogamy

ADFSTE ? assortative mating .35 (.30) .10 .18 (.10) .10 .10 0 0 .30 Phenotypic homogamy

ASE ? A 9 A epistasis .40 0 0 .15 0 .15 0 0 N/A

ASE ? A 9 Age Int. .40 0 0 .15 0 0 .15 0 N/A

Numbers in parentheses are variance parameters at the first generation, which may change by the final (here 20th) generation if vertical

transmission or assortative mating occurs (see text)

VE .30 for all scenarios; A.M. assortative mating
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Social homogamy refers to mate similarity arising from

similar environmental backgrounds. For example, if people

marry within religions and choice of religion is not heri-

table, than any similarity between spouses due to religion

(e.g., similar views on abortion) would be due to social

homogamy rather than primary phenotypic assortment.

A third possibility, genetic homogamy, occurs if mates

choose each other based on the heritable aspect of their

phenotypes rather than on their manifest phenotypes

(Fisher 1918; Thiessen and Gregg 1980). Although seem-

ingly implausible, there are two ways this might occur. The

first is if people attempt to control for the effects of the

environment when making mate choices (e.g., ‘‘He/she is

really smart given the environment they come from’’). The

second is if people base mate choice on some third variable

(e.g., overall mate value) that is related to the phenotype of

interest purely genetically. This would be an extreme form of

‘good genes’ theories of human mate choice (Miller and Todd

1998). Consider, for example, assortative mating for intelli-

gence. If people choose mates solely based on mate value

(e.g., the first principal component of traits such as health,

athleticism, height, facial attractiveness, bodily attractiveness,

intelligence, and so forth), and if the inter-relationship

between these mate value components is genetic in nature,

then similarity between spouses on intelligence would be due

to genetic homogamy. Our point is not to argue that genetic

homogamy is or is not a likely mode of mate similarity, but

rather to note that it is a viable option that should be tested

empirically. Of the four twin-family designs discussed here,

only the Cascade can model genetic and social homogamy.

We also simulated two scenarios that include parameters

that could not be estimated in any model (rows 9–10,

Table 2). These two scenarios allowed us to test the sen-

sitivity to assumptions for all designs, including the Stealth

and Cascade.

Model fitting with Mx

The authors wrote Mx scripts for the CTD (137 lines of code),

the NTFD (189 lines of code), and the Cascade design (2,717

lines of code); the script for the Stealth design (2,780 lines

of code) was written by H. Maes (Maes et al. 2009). These

scripts are available at http://www.matthewckeller.com/html/

cascade.html. An advantage of the Stealth script, not yet

instantiated in the Cascade script, is that it is set up to fit

multivariate data. The advantage of the Cascade design, and

its original purpose, is the additional flexibility in modeling

assortative mating and vertical transmission.

For each simulated dataset run using the NTFD, Stealth,

and Cascade scripts, both a full and reduced model were fit

(no reduced models were necessary for the CTD). The full

NTFD model estimated V̂A, V̂D, V̂T, V̂E, and either V̂F (if

familial effects existed in the scenario) or V̂S (if sibling

effects existed).2 The full Stealth and Cascade models

estimated V̂A, V̂D, V̂F, V̂S, V̂T, and, V̂E, (note that CV̂ðA;FÞ
is technically a non-linear constraint and is not freely

estimated; see Keller et al. 2009). The reduced NTFD,

Stealth, and Cascade models estimated only those variance

parameters that were truly non-zero in the given scenario.

The fitting of both full and reduced models was done to

demonstrate the effects of the common practice of drop-

ping non-significant predictors. For example, under the

ADE scenario (top row, Table 2), V̂A, V̂D, V̂F, V̂S, V̂T, and

V̂E were estimated in the full Stealth and Cascade models

but only V̂A, V̂D, and V̂E were estimated in the reduced

models; V̂F, V̂S, and V̂T were dropped (set equal to 0). Our

strategy therefore assumed that no type-I errors occurred in

choosing the reduced models. While not optimal, creating

a program that tested the significance of each estimate

individually and dropped non-significant ones would have

added enormous complexity and computing time onto a

project that already stretched both of these limits. More-

over, estimates would have been incorrectly retained only

*5% of the time (the type-I error rate), and therefore this

strategy introduced only minor and probably negligible

inaccuracy into our reduced model results.

Finding the bias, precision, and accuracy of parameter

estimates

We compared the parameters estimated from Mx for each

design to the true parameters from GeneEvolve for each

simulation run. This allowed us to empirically determine

the bias, precision, and accuracy of the parameter esti-

mates, as well as their distributional shapes and covari-

ances (Casela and Berger 1990). The bias of a statistic is

generally defined as EðV̂� � V�Þ, the expected (i.e., mean)

difference between the estimated parameter, V̂�, and the

true parameter, V�. An alternative is to use the median

difference rather than the expected difference, MðV̂� � V�Þ,
which is less influenced by outlier estimates. We chose this

latter measure of bias because several outlier V̂�’s in our

data are probably artifactual due to the automated way

the models were run. Although we discarded estimates

from models that gave a ‘‘Code Red’’ (IFAIL = 6) in Mx,

which occurs when constraints cannot be satisfied and is

symptomatic of poorly performing estimation, inspection

of Mx output led us to conclude that occasionally (*2–8%

of the time, depending on the scenario), Mx poorly recre-

ated the expected covariance matrix and gave bad estimates

even when no ‘‘Code Red’’ occurred. Such estimates are

2 Strictly speaking, CV̂ðA;FÞ is a nonlinear constraint and is not

freely estimated in ETFDs. It is determined by, and helps to

determine, estimated parameters by constraining their inter-relation-

ships in a way that keeps the entire model internally consistent.
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artifactual in the present context because they likely could

have been averted in most real life modeling contexts by

providing different start values, dropping parameters, or by

taking other remedial measures to improve the fit.

The precision of estimates measures the spread of the

estimates around their center, and is typically measured by

the standard deviation or variance of the parameter esti-

mates, e.g.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n�1

P

n

i¼1

V̂�i � EðV̂�Þ
� �2

s

. An alternative which

we use for the same reasons mentioned above—namely,

that we wish to downweight outliers that are likely to be

artifactual—is the median absolute deviation, or MAD,

which is equal to M V̂�i �MðV̂�Þ
�

�

�

�

� �

.

The accuracy of a statistic combines information on

both bias and precision to gauge how far away from the

true value an estimate typically is. Thus, an estimate can be

precise but nevertheless inaccurate if it is biased, or can be

unbiased but inaccurate if it is imprecise. As with preci-

sion, accuracy is often measured using the variance or

standard deviation, except that estimates are judged by how

far away they are from the value of the true parameter

rather than the values of the mean estimates, e.g.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n�1

P

n

i¼1

V̂�i � EðV�Þ
� �2

s

. In this situation, accuracy2 =

bias2 ? precision2 using the first of each of the definitions

above. In the present study, we use the median absolute

error, M V̂�i � V�
�

�

�

�

� �

, to measure accuracy so as to lessen

the impact of outliers.

Results

Bias, precision, and accuracy of parameter estimates

The distributions of four of the parameter estimates for

each of the ten scenarios described in Table 2 are shown in

Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13. These figures do

not show V̂T, V̂E, or CV̂ðA;FÞ because these estimates tend

to be of less interest. These figures also place CTD esti-

mates of V̂C into the column reserved for V̂F or V̂S,

whichever is appropriate given the scenario. As noted

above, no reduced CTD models needed to be fit, and so

reduced CTD estimates are not shown.

Results for the ADE and ASE scenarios, which did not

violate assumptions in any of the four designs, are shown

in Figs. 4 and 5. A few things should be noted. First,

when assumptions of the CTD are not violated (i.e., VC in

the ADE scenario and VD in the ASE scenario), estimates

from the CTD are unbiased and have decent precision.

Second, the reduced models from the three ETFDs are

also unbiased, and they have greater precision than the

CTD estimates. Reduced ETFD estimates are more pre-

cise because they are based on much more information

(covariance observations) than the CTD estimates. Third,

the full models for the three ETFDs show varying

degrees of bias and poorer precision than the other

models. The bias in the ETFD full models occurs for the

same fundamental reason that bias exists in Cholesky

models (Carey 2005): variance estimates are forced to be

non-negative. By chance, the ETFD full models pick up

Fig. 4 ADE scenario

384 Behav Genet (2010) 40:377–393

123



slight evidence for non-zero variance parameters that, in

truth, are actually zero (e.g., VF and VS in the ADE

scenario). If the evidence suggests that these estimates

are positive, ETFD models estimate them freely, but if

negative, these estimates hit the zero boundary. This

imbalance pulls the other estimated parameters (e.g., V̂A

and V̂D in the ADE scenario) in only one direction,

causing bias. This source of bias, though minor, could be

removed if the ETFD models allowed variance estimates

to be negative. The lack of precision in full ETFDs, on

the other hand, cannot be so easily rectified, but rather is

a natural consequence of attempting to estimate so many

more parameters in ETFDs, especially in the Stealth and

Cascade designs.

Figures 6, 7, and 8 show results for three scenarios in

which CTD assumptions are violated because both shared

environmental and non-additive genetic effects influence a

trait simultaneously and, in the final scenario, because

Fig. 6 ADSE scenario

Fig. 5 ASE scenario
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assortative mating exists. However, these scenarios do not

violate assumptions for any ETFD. The CTD estimates are

highly biased in the expected directions (Grayson 1989;

Keller and Coventry 2005), with additive genetic effects

being overestimated by about 50% in these examples and

non-additive genetic effects ignored because, for reasons of

identifiability, they could not be estimated. Shared envi-

ronmental effects are underestimated by the CTD in the

ADSE scenario, but are overestimated in the ADFE and

ADFE & Primary Assortative Mating scenarios. This over-

estimation is also predictable, and occurs because of the

substantial CV(A, F) that is induced by vertical transmission,

which mimics shared environment in the CTD (Eaves et al.

1989). As expected, the reduced ETFD models do not show

bias whereas the full ETFD models show slight biases for the

same reason discussed above. The Stealth and Cascade

estimates are quite accurate in these scenarios, typically

being within .05 points of the true parameters. NTFD

Fig. 8 ADFE & primary

phenotypic mating (r = .3)

scenario

Fig. 7 ADFE scenario
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estimates are less accurate when both V̂A and V̂F are esti-

mated simultaneously; this is due to the very high correlation

between these two estimates (see below).

Figure 9 shows results for a complicated scenario in

which VA, VD, VF, VS, VT, VE, and CV(A, F) all contribute to

phenotypic variance in the context of primary phenotypic

assortative mating. Here, the NTFD assumption that either

VF, or VS is zero is violated, causing estimates that, although

precise, are quite biased. Because all parameters were

retained in the reduced model, the results for the full and

reduced ETFD models are identical. All Stealth and Cas-

cade estimates are unbiased; however, V̂A shows a fairly

high degree of imprecision due to the correlation between

V̂A and V̂D, and between V̂A and V̂F (see next section).

Figures 10 and 11 show results for scenarios identical to

that depicted in Fig. 8 except that spousal similarity is due

to social homogamy (Fig. 10) or genetic homogamy

(Fig. 11). Thus, these two scenarios violate assumptions

Fig. 10 ADFE & social

homogamy (r = .3) scenario

Fig. 9 ADFSTE & primary

phenotypic mating (r = .3)

scenario
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for every design except for the Cascade, and as expected,

all designs other than the Cascade produce estimates that

are biased to varying degrees. In particular, if spousal

similarity is due to social homogamy rather than primary

phenotypic assortment, the Stealth overestimates VD and VF

and underestimates VA. On the other hand, if spousal

similarity is due to genetic homogamy rather than primary

phenotypic assortment, the Stealth overestimates VD and VF

underestimates VA. At least in the context of the specific

parameter values simulated in these two scenarios, mod-

eling assortative mating incorrectly using the Stealth is

worse if social homogamy is the true cause of spousal

similarity than if genetic homogamy is the true cause of

spousal similarity.

Figures 12 and 13 show results for scenarios in which

assumptions were violated in every design. When genetic

non-additivity is due to additive-by-additive epistasis

rather than dominance (Fig. 12), ETFD models tend to

Fig. 12 ASE & A 9 A

epistasis (var = .15) scenario

Fig. 11 ADFE & genetic

homogamy (r = .3) scenario
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overstimate VA and slightly underestimate VS. However,

the overall level of genetic variation (VA ? VD ? VA9A)

tends to be only slightly underestimated. Moreover, if V̂D is

considered a broad estimate of non-additive genetic vari-

ance rather than an estimate of dominance variance only,

estimates of non-additive genetic variation are only slightly

underestimated.

Non-scalar gene-by-age interactions (Fig. 13) can be

conceptualized as different genes ‘turning on’ at different

ages, and as opposed to scalar gene-by-age interactions,

tend to decrease genetic covariation between relatives as a

function of the age difference between them. Because

siblings and twins tend to be close in age to one another, it

is sensible that non-scalar gene-by-age interactions lead to

overestimation of VT (not shown) and VS and underesti-

mation of VA in ETFDs. Another interesting ramification

of such non-scalar gene-by-age interactions is that they

can lead to negative vertical transmission pathways in

ETFDs (creating positive V̂F but decreasing similarity

between parents and offspring), a not uncommon obser-

vation in empirical ETFD studies. In the CTD, on the other

hand, non-scalar gene-by-age interactions cause overesti-

mations of VA. Although we are aware of no models that

have been written to do so, ETFDs should be able to model

non-scalar gene-by-age interactions due to the wide vari-

ation in ages within families used in ETFDs. For example,

in Mx, age differences between each pair of family

members could be calculated from definitional variables,

and these age differences could be used to moderate the

expected additive genetic covariances between relative

types.

Relationships between parameter estimates

The information required to estimate parameters is often

partially redundant. For example, both VA and VF cause

within-family similarity that drops off as a function of how

distant a relative pair is, and so V̂A and V̂F tend to be

negatively related: as one estimate increases and explains

a given pattern of observed covariances, there is less

information ‘left over’ for the other estimate to explain.

Figure 14 shows that V̂A and V̂F, and V̂A and V̂D use par-

tially redundant information in the Cascade design and so

are highly negatively related. V̂D and V̂F are positively

related, but only in models that also estimate V̂A: as V̂A

increases, both V̂D and V̂F decrease. V̂S, on the other hand,

is nearly independent of V̂A, V̂D and V̂F in the Cascade.

Information to estimate V̂S comes primarily from the

comparison between twin and sibling covariances versus

parent–offspring covariances, and thus does not use infor-

mation that overlaps with any of the other estimates.

A linear regression model predicting V̂A in the Cas-

cade from V̂D and V̂F under the scenario depicted in

Fig. 9 has an r2 = .969, which translates to a variance

inflation factor of 1
1�r2 ¼ 32:6. Thus, the variance of V̂A in

the Cascade model is 32.6 times higher, and the standard

error of V̂A is 5.7 times higher, than in models in which

both V̂D and V̂F are dropped. Similarly, the standard errors

of V̂D and V̂F are 4.4 and 4.8 times higher, respectively,

than they are in models in which they are estimated alone.

Similar findings occur for the other two ETFD models.

This effect can be seen in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, and 13, which show that the distributions of parameter

Fig. 13 ASE & A 9 Age

Interaction (var = .15) scenario
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estimates for ETFD full models are consistently more

spread out than the distributions of parameter estimates

for reduced models.

Information for estimating parameters in ETFDs

It is useful to have a sense of how observed covariance

estimates translate into estimated parameters. In the CTD,

it is obvious that the difference between CV̂ðMZ;MZÞ and

CV̂ðDZ;DZÞ provides all the information needed to esti-

mate V̂A and V̂C (in ACE models) or V̂A and V̂D (in ADE

models). However, it becomes increasingly difficult to

discern how observed covariance estimates influence esti-

mated parameters in increasingly complex ETFDs. For

example, which covariance estimates help differentiate V̂A

from V̂F in the Stealth or Cascade? What information

allows differentiation of social homogamy from primary

phenotypic assortment in the Cascade model?

Unfortunately, there are no simple answers to these types

of questions in ETFDs. A huge number of partially

redundant bits of information help estimate the unknown

parameters in ETFDs, and the effect of this information

depends on the model being fit (e.g., how assortative

mating is modeled) as well as on the values of the other

simultaneously estimated parameters (e.g., the degree of

vertical transmission alters how observed covariances

affect V̂A).

Despite these difficulties, Table 3 provides some insight

into how observed covariances are used to estimate

parameters in the Cascade and Stealth models. The table is

not exhaustive; for certain parameters (especially V̂A and

V̂F), nearly every covariance estimate plays some role in

their estimation. Rather, Table 3 lists some of the most

consistent sources of information across models used in

estimating the five variance parameters that cause familial

resemblance. CV̂ðMZ:avuncularÞ refers to the covariance

Fig. 14 Parameter correlations from a Cascade model estimating parameters under an ADFSTE & primary phenotypic mating (r = .3) scenario

Table 3 A small subset of the

sources of information for

estimating parameters in the

Cascade and Stealth models

Parameter Increases as a function of…

V̂A CV̂ðMZÞ � CV̂ðDZÞ; CV̂ðMZ:avuncularÞ � CV̂ðDZ:avuncularÞ; CV̂ðMZ:cousÞ � CV̂ðDZ:cousÞ
V̂D CV̂ðMZÞ � CV̂ðDZÞ; CV̂ðDZÞ � CV̂ðParent;OffspringÞ
V̂S CV̂ðDZÞ � CV̂ðMZÞ; CV̂ðDZÞ � CV̂ðParent;OffspringÞ; CV̂ðDZÞ � CV̂ðMZ:avuncularÞ
V̂F CV̂ðParent;OffspringÞ � CVðMZ:avuncularÞ; CV̂ðDZ:cousÞ � CV̂ðMZ:cousÞ
V̂T CV̂ðDZÞ � CV̂ðSibÞ
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between the children of one MZ twin and the other

(avuncular) MZ co-twin, whereas CV̂ðMZ:cousÞ refers to

the covariance between cousins whose parents are MZ

co-twins. With respect to assortative mating in the Cascade

model, in-laws are particularly helpful for differentiating

social from phenotypic homogamy. For example, under

social homogamy, there is no expected difference between

MZ in-law correlations and DZ in-law correlations,

whereas under phenotypic homogamy, in-law relationships

should differ by zygosity status.

Discussion

Our results show that ETFDs work as designed. They are

generally unbiased when assumptions are met, and unlike

the CTD, they are not overly sensitive to violations of

assumptions so long as V̂D is interpreted broadly, as an

estimate of genetic non-additivity in general (including

gene-by-age interaction effects) rather than as dominance

in particular. Our results also highlight that the key trade-

off in using ETFDs is one of complexity versus accuracy.

By attempting to estimate a large number of parameters,

many of which use overlapping information, the precision

of ETFD estimates suffers (see the full ETFD model esti-

mates in Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, and 13 and

parameter covariances in Fig. 14). The ETFD estimates in

Fig. 8, for example, are much less precise than those from

the CTD. Nevertheless, ETFD estimates tend to be unbi-

ased under a much wider range of scenarios than CTD

estimates, and because of this, are almost universally more

accurate than are CTD estimates. This improved accuracy

can be quantified by empirical researchers using ETFDs by

comparing a goodness of fit index of an ETFD only esti-

mating a few parameters (e.g., V̂A, V̂D, and V̂E) versus an

ETFD estimating all parameters. The difference between

these two fit indices provides an idea of how important

using an ETFD is over a simpler model (e.g., the CTD)

given the phenotype in question.

The trend of increasing accuracy with increasing com-

plexity repeats itself within the ETFD models: Stealth

estimates are accurate across a wider range of scenarios

than are NTFD estimates (Fig. 6), and Cascade estimates

are accurate across a wider range of scenarios than are

Stealth estimates (Figs. 10, 11). For example, the mean

accuracy values (lower being more accurate) across the ten

scenarios for V̂A were .140 for the CTD, .069 for the

NTFD, .049 for the Stealth, and .045 for the Cascade. As

expected, the Cascade and Stealth results were virtually

identical except in cases where assumptions regarding

mating in the Stealth were violated.

Nevertheless, the question remains: given the increased

difficulty in fitting the models and collecting the requisite

data, is it worth it to use ETFDs? Our results cannot pro-

vide an answer to this question, but they do provide

guidance. For all the problems associated with the CTD,

the combined CTD parameters of V̂A þ V̂D do provide

decent estimates of broad sense heritability. If a research-

er’s goal is primarily to understand broad sense heritability,

or to understand broad sense genetic covariances in a

multivariate setting, the CTD is adequate, and using

ETFDs is probably not worth the hassle unless extended

family data already exists. To the degree that any genetic

non-additivity or spousal similarity exists, however, CTD

models can wildly under- or over-estimate shared envi-

ronmental effects (see Figs. 7, 8, 9, 10, and 11). Thus,

if one’s interest is in characterizing the effects of the

environment in any way—including arguing that shared

environmental effects are small—the CTD is a singularly

bad method. Similarly, if one’s interest is in understanding

the relative importance of additive versus non-additive

genetic variation, the CTD provides little help. In these

latter situations, researchers should seriously consider the

use of ETFDs. These conclusions are not merely based on

the simulation results of this paper. Coventry and Keller

(2005) compared the parameter estimates of every avail-

able Stealth model run up to that time to the estimates that

would have been obtained using the CTD on the same data

and phenotype. Consistent with prediction, they found that

CTD results gave predictably distorted pictures of the

makeup of genetic variation and the makeup and impor-

tance of the common environment.

For researchers who already have the data needed to fit the

Stealth or Cascade models, our results suggest the Cascade

model should be used over existing ETFD models. However,

an argument could be made from our results that the NTFD

represents a good compromise between the accuracy of the

Cascade and the simplicity of the CTD. NTFD estimates

tended to be less precise and slightly more biased than

Cascade estimates, but these differences were minor com-

pared to the difference between the ETFD estimates as a

group and the CTD estimates. Of course, the major limitation

of the NTFD is that the source of shared environmental

effects (due to sibling effects or vertical transmission from

parents) cannot be discerned, and when both shared envi-

ronmental sources are present, estimated parameters will be

biased. In a separate piece (Medland and Keller 2009), we

discuss which relative types provide the most power for

detecting different parameters in the Cascade, which should

be of service to investigators interested in collecting new

data for any ETFD (see also Heath et al. 1985).

Hill et al. (2008) recently argued that most genetic

variance in most traits is additive in nature. If VD� 0 for

most traits, then CTD estimates of VA and VC should be

accurate in the absence of assortative mating and vertical

transmission, and thus ETFDs would often be overkill.
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While we agree with Hill et al.’s (2008) conclusion that

genetic variation is likely to be mostly additive in nature

for most traits, we disagree with potential conclusions

drawn from this paper (e.g., Wahlberg 2009) that non-

additive genetic variance is typically small and insignifi-

cant. A meta-analysis of results from the Stealth design

(Coventry and Keller 2005) found that typically V̂D [[ 0

and, on average across 38 phenotypes, V̂D was nearly as

large as V̂A, being a full 75% of V̂A. These Stealth results

showing evidence for substantial non-additive genetic

variance are much more convincing than Hill et al.’s

(2008) twin-only analysis, in which correlations of mono-

zygotic and dizygotic twins were compared across 86

phenotypes: as we have shown (Figs. 4, 5, 6, 7, 8, 9, 10, 11,

12, and 13), the relative magnitude of VA versus VD cannot

be accurately ascertained using twins alone. Moreover,

because natural selection erodes additive genetic variation

much faster than non-additive genetic variance, theory

suggests that traits related to Darwinian fitness should have

relatively high degrees of non-additive genetic variation

(Haldane 1932; Wright 1929), and indeed empirical

reviews show that non-additive genetic variance in non-

human animals is similar in magnitude to additive genetic

variance among fitness-related traits (Crnokrak and Roff

1995). Thus, without empirical investigation, we think it

would be premature to take solace in the hope that non-

additive genetic variance is low enough for most traits for

CTD estimates to be generally unbiased.

There are several limitations with the current approach

to understanding the bias, precision, and accuracy of

parameter estimates from twin-family designs. First, as

mentioned above, our procedure for automating model

fitting meant that the results from reduced ETFD models

were optimistic. However, as we argued in the ‘‘Methods’’

section, this probably produced a negligible degree of bias

in our results. A more important source of bias in our

results, which worked in the opposite direction, is that a

human could not guide each fitting process interactively

due to the automated way models were fit. A non-negli-

gible number (2% to 8% depending on the scenario) of

model runs produced outlier estimates, poorly reproduced

the observed covariance matrices, and probably failed to

find the true maximum likelihood estimates. An experi-

enced modeler could have detected these situations and

taken remedial measures, such as changing start values, to

improve the fit of the model. This suggests that the ETFD

results presented in this paper appear less precise than they

will be when fit interactively on real data.

Another limitation to the current approach was that we

investigated only a very small portion of the space of

possible parameters that might exist in the real world. For

example, we did not investigate alternative modes of ver-

tical transmission or spousal similarity due to convergence,

both of which can be modeled in the Cascade. We also did

not investigate any number of alternative scenarios that

might occur and cause bias in all the models investi-

gated here, such as mixed models of assortative mating

(Reynolds et al. 2000), additional types of gene–environ-

ment interactions and correlations, higher-order epistasis,

in utero effects, and special MZ-twin environments. This

latter issue is particularly important. At the heart of all twin

models, including ETFDs, is the comparison between MZ

and DZ twins. If some non-genetic factor such as in utero

effects increases MZ twin resemblance, all models

described in this paper will overestimate V̂A and especially

V̂D. Furthermore, for simplicity, we did not investigate sex-

specific estimates in this paper, which would have had

similar biases but lower precision than those presented

here. Given this, none but the largest sex-specific effects

are likely to be detectable with even the largest available

extended twin family datasets. A final limitation to our

study is that only univariate models were investigated.

Although univariate parameter estimates are interesting in

their own rights, ETFD models become more interesting in

a multivariate context. For example, parental warmth may

be negatively associated with adolescent depression in

children (Operario et al. 2006), but the reasons for this

association are unclear. ETFD models can discern whether

this association is due to the same genes affecting both

warmth and depression risk or to parental warmth being

culturally transmitted to offspring in the form of lower

depression risk. Our paper did not assess the parameter

characteristics in such multivariate models, although there

is no reason to believe that the quality of multivariate

parameter estimates would be substantially different than

univariate ones. Despite these limitations, the current paper

represents the fullest exploration to date of how different

real world scenarios affect estimates from twin-family

designs.

We have argued that the most commonly used design in

behavioral genetics, the CTD, is inadequate for under-

standing the relative magnitude of shared environmental

effects or the ratio of additive to non-additive genetic

variation. Our results demonstrate that, irrespective of

power or sample size, estimates of these two quantities

from CTDs cannot be interpreted with any degree of con-

fidence unless strong assumptions—no assortative mating,

no gene-environment covariance, and that either non-

additive genetic variance or shared environmental variance

is zero—have been verified. ETFDs, on the other hand,

provide unbiased and fairly accurate estimates of this

information. More complex ETFDs, such as the Cascade,

are unbiased under an even wider range of scenarios and

provide additional details on the makeup of shared envi-

ronmental effects that may itself be of interest. The prin-

cipal reasons why ETFDs are rarely used in behavioral

392 Behav Genet (2010) 40:377–393
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genetics is that they are more difficult to use and that little

extended twin family data exists suitable for their use. We

hope that the current paper clarifies the rationale for using

ETFDs and encourages researchers to collect extended

twin family data when circumstances warrant their use.
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