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Given the robust finding that people in higher income groups tend to experience better
physical health, there is interest in identifying mechanisms underlying this gradient. Using a

nationwide sample of 719 twin pairs from the National Survey of Midlife Development in the
United States, we investigated the possibility that gene-environment interaction underlies the
income-health gradient. We observed that genetic variance associated with 2 measures of
physical health, number of chronic illnesses and body mass index, each declined significantly

with increasing income. This interaction effect could not be removed by adjusting income for
the presence of health insurance coverage and education, suggesting that the interaction is not
simply a result of differences in levels of those characteristics with income.

KEY WORDS: Environmental influences; genetic influences; income; physical health; twin study.

People in higher income groups tend to have better
physical health. This relationship is well established
throughout history, across geographical boundaries,
and for almost every disease and condition (Adler
et al., 1994; Antonovsky, 1967). Though it may seem
obvious that severe poverty might erode physical
health through the effects of poor nutrition, crowded
and dirty living conditions, and inadequate medical
care, the association exists across the income range.
Not only do those just above the poverty line have
better health than those in poverty, but those in the
highest income levels have better health than those
just below them (Marmot et al., 1991). In addition,
the relationship cannot be explained by lack of access
to health care, and it exists even in populations with
universal access to medical care (Adler and Snibbe,
2003). The effect is greatest for the poorest groups,
yet in the United States it has the greatest impact on
the middle classes because the largest numbers of

people are in those income ranges (Adler and Snibbe,
2003).

Adler et al. (1994) summarized findings to date
about the relationship between income and health,
and examined possible explanations for the basis of
the association. The first possibility they considered
was that the relationship results from common
underlying genetically based factors. They suggested
that, for example, physical size or intellectual capac-
ity could contribute directly to both income and
physical health, resulting in a spurious association
between the two effects. They dismissed this possi-
bility as unlikely, however, pointing out that the
association between job status and health persists
after adjustment for height and body mass index
(Marmot et al., 1991), and that intellectual capacity
does not appear to be reliably linked to health. In
addition, they noted that any genetic predispositions
involved would probably be important only when
environmental and behavioral factors impinged on
them.

Since then, most research on possible mecha-
nisms accounting for the relationship has focused on
another explanation suggested by Adler et al. (1994):
that income influences biological functions that in
turn affect health status. Generally, the process that
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subsequent research has begun to articulate (Adler
and Snibbe, 2003) centers around the increasing de-
mands and decreasing resources for dealing with
those demands associated with lower levels of in-
come. This results in greater exposure to stress at
lower income levels, as well as in greater psycholog-
ical response to that stress. As Gallo and Mathews
(2003) have suggested, the combination of greater
stress and stress reactivity among individuals of lower
income reduces reserve capacities for responding to
environmental challenges, and, over time, may make
them more vulnerable to disease. Identified sources of
greater stress and environmental challenge among
lower income groups include more physically risky
jobs, greater exposure to toxins, pathogens, noise,
crowding, conflict and crime, and decreased access to
social support, recreational facilities, health care, and
healthy food (Adler and Snibbe, 2003). Identified
sources of greater stress reactivity include lower levels
of perceived control and mastery (Lachman and
Weaver, 1998), reduced reasons for optimism
(Fiscella and Franks, 1997) and greater reasons for
hopelessness and hostility (Gump et al., 1999), in part
because of peoples’ perceptions of relative social
standing (Adler et al., 2000).

Though these associations seem plausible, they do
not explain the physiological mechanisms that link the
psychological experiences associated with low income
to the experience of physical health. McEwen (1998)
identified a combination of indicators of biological
disregulation he termed ‘‘allostatic load’’ resulting from
such stressors that over time may contribute directly to
disease. The indicators involved include systolic and
diastolic blood pressure, waist-to-hip ratio, HDL and
LDL cholesterol, blood glycosylated hemoglobin (an
indicator of glucose levels over the past 2�3 months),
and the hormones cortisol, dehydroepiandrosterone,
epinephrine, and norepinephrine. Allostatic load
among older adults appears to increase with decreasing
income, and to be associated with general physical and
cognitive decline, cardiac events, and mortality (e.g.,
Karlamangla et al., 2002; Singer and Ryff, 1999).

The indicators involved in allostatic load are
generally acknowledged to be under genetic influence
(e.g., Komaroff, 1999) as well, and this is also true of
many of the most common chronically debilitating
physical health conditions, including heart disease,
arthritis, many cancers, and diabetes. These are also
among the diseases for which the income-health
relationship is strongest (Adler and Snibbe, 2003).
This highlights the fact that genetic influences are
likely involved in the process by which income

influences biological functions that in turn affect
health status. In turn, it suggests that, though Adler
et al. (1994) may have been correct to dismiss the
relatively straightforward possibility of common ge-
netic factors underlying the relationship between in-
come and physical health, the actual manner in which
genetic influences are involved is more complex.

Genetic influence on health is commonly
thought of in two basic ways. First, where specific
genes have been identified (e.g., in the cases of dia-
betes, sickle cell anemia, or breast cancer), the pres-
ence of those genes in an individual’s genotype and
the frequency of those genes within a population
subgroup are considered to confer increased liability
to illness. Second, most analytic models of quantita-
tive genetic processes that do not specify individual
genes are based on the assumption that genetic and
environmental factors operate independently and
thus add together to produce an overall risk of illness.
Both of these ways of thinking about genetic influ-
ence gloss over the possibility of gene-environment
interaction: that genes may moderate the pathogenic
influence of environmental stressors. When this is
true, the frequently discussed single heritability sta-
tistic is no longer adequate to describe the situation
for the entire population, as genetic effects depend on
the environments of the individuals within that pop-
ulation. For example, overall heritability of 50%
might conceal a situation in which, for half the
population with one set of environmental circum-
stances, the condition is completely genetically
determined, while for the other half with a different
set of environmental circumstances, the condition is
completely environmentally determined.

Data from humans and from studies of experi-
mental plants and animals not only corroborate the
possibility of such gene-environment interactions, but
also suggest their direction. Arabidopsis thaliana, a
flowering plant, shows greater genetic variance for
leaf number and flowering date in conditions of low
light (Stratton, 1998). More directly relevant, genes
for metabolic efficiency enabling adaptation to bio-
logically stressful environments play a primary role in
affecting lifespan and, by implication, health in both
humans and experimental animals (Parsons, 2003). In
Drosophila melanogaster (the common fruit fly), for
example, genetic variability for fitness, and especially
mortality, increases in situations of high biological
stress (Parsons, 2002). Genes for disease susceptibility
also show amplified effects in the presence of trig-
gering environmental risk factors (Tiret, 2002). For
example, possession of a specific gene in certain rats is
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associated with significantly greater adiposity,
glucose intolerance, circulating leptin levels, and
blood pressure during high-fat-diet feeding, but not
during normal-diet feeding (Pauzova et al., 2003).
Similar effects have been observed with respect to
genes associated with diabetes in humans (Weiss
et al., 2002). It thus seems reasonable to propose that
a gene-environment interaction could underlie the
observed phenotypic relationship between income
and physical health. That is, we hypothesize that
genetic variance associated with physical health de-
creases with increasing levels of income. The purpose
of this study was to investigate this possibility in a
nationwide US sample of twins aged 25�74. As part
of this investigation, we also measured the extent to
which common genetic and environmental influences
contribute to both income and physical health, thus
testing for the existence of common genetic influences
whose possibility has been dismissed in the past
(Adler et al., 1994).

METHOD

Sample

The twin sample used in this study was gathered
as part of the MacArthur Foundation Survey of
Midlife Development in the United States (MIDUS).
Two research organizations, ICR/AUS Consultants
and Bruskin Associates, recruited twin pairs by
making telephone calls and asking respondents whe-
ther they or any of their immediate family members
were members of intact twin pairs. About 50,000
households, constituting a representative national
sample, were screened in this manner. The 14.8% of
respondents who reported the presence of a twin in
the family were then asked whether it would be
acceptable for the research team to contact the twins
to solicit their participation in the survey. The 60% of
respondents who gave such permission were referred
to the overall MIDUS recruitment process, with
comparable participation rates (see Kendler et al.,
2000, for additional details). The sample is highly
select when compared to the originally contacted
50,000 households, but few of these even had twins
among their relatives, and many of the ones that did
hesitated to provide contact information for relatives
outside their households to the research recruiters.
The resulting MIDUS twin sample has demographic
characteristics generally comparable to those of the
main MIDUS sample.

Both members of each twin pair participating in
the study met both overall study eligibility criteria
and criteria specific to the twin sample. These criteria
included (1) being at least first degree relatives of the
original contact or his or her spouse or partner, (2)
being between the ages of 25 and 74, (3) having a
residential telephone number, (4) living in the conti-
nental United States, (5) speaking English, and (6)
being mentally and physically able to complete the
interview and questionnaires. The base MIDUS twin
sample resulting from this process consists of 998
pairs.

Zygosity for each twin pair was determined
using self-report questions regarding information
such as similarity of eye and hair color and degree to
which others were confused as to their identity during
childhood. Such techniques are generally more than
90% accurate (Christensen et al., 2003; Lykken et al.,
1990), though some pairs in this sample were not
considered classifiable on the basis of the self-reports.
We made use of the 719 same-sex pairs for which we
had income, health, and zygosity data for the current
study, resulting in 172 monozygotic (MZ) male pairs,
195 MZ female pairs, 138 dizygotic (DZ) male pairs,
and 214 DZ female pairs. We thus excluded 262
opposite-sex pairs and 17 pairs with missing or
indeterminate zygosity information from the full
MIDUS twin sample of 998 pairs. We excluded the
opposite-sex pairs because the sample was too small
to test for sex differences in expression of the genetic
influences on the variables under study. Table I
shows demographic information for the sample we
used for this study.

Measure of Income

The self-administered mailed questionnaire
booklets that were part of the MIDUS survey in-
cluded several questions regarding income. To an-
swer these questions, participants indicated into
which of 36 income categories their own personal
income, their spouse’s or partner’s income, their in-
come from Social Security retirement benefits, their
income from government assistance programs, and
the income from all other sources fell. A total
household income composite was computed based on
the income reported from these five sources. The in-
come distribution for the sample used is summarized
in Table II. Our sample was slightly more wealthy
than the country as a whole, but about 30% had in-
come below the national median at the time the
survey was conducted, and very low incomes were
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substantively represented. The relative sparcity of
participants living in poverty had the effect of making
it more difficult to detect the hypothesized relation-
ships. To make the income distribution more normal,
we log-transformed the income variable. We made
use of household income rather than own personal

income because we believed that household income
more accurately represented the social milieu in
which the participants lived.

Measures of Physical Health Problems

The MIDUS self-administered questionnaire
booklets also included several questions regarding
physical health. We elected to make use of two indi-
cators of overall health in order to assess the degree to
which the gene-environment interaction effect that we
hypothesized could be replicated within our sample.
Participants indicated whether or not they had been
treated for each of 29 chronic health problems in the
past 12 months. The health problems included asth-
ma, high blood pressure, diabetes, thyroid disease,
migraine headaches, tuberculosis, hay fever, arthritis,
stomach problems, multiple sclerosis, stroke, hernia,
gall bladder trouble, chronic sleeping problems, and
ulcer. Only 3.3% of the twins lived together, so the
co-twins of participants with infectious chronic con-
ditions such as tuberculosis were not likely to be at

Table II. Frequency distribution of income

Income level N %

$0-$10,000 74 5.1

$10,001�$20,000 124 8.6

$20,001�$35,000 247 17.2

$35,001�$50,000 353 24.5

$50,001�$75,000 350 24.3

$75,001�$100,000 131 9.1

$100,000�$150,000 85 5.9

$150,000+ 74 5.1

Total 1438 100.0

Mean $57,347

Median 47,097

National mean $44,938

National median 34,076

Note: National data are from the 1995 Current Population Survey.

Table I. Sample demographic information

Category Percent

Sex

Male 43.1

Female 56.9

Race

White 81.2

Black/African American 3.7

Others 1.7

Not reported 13.5

Age

25�34 23.2

35�44 28.6

45�54 26.5

55�64 13.7

65�74 7.9

Education

Under 12 years 9.8

12 years 31.2

Over 12 years 55.1

Not reported 3.8

Marital status

Married 68.8

Not married 27.0

Not reported 4.2

Insurance coverage

Yes 79.8

No 20.2

Table III. Frequency distributions of physical conditions

Physical condition N %

Chronic Illnesses

0 501 34.8

1 300 20.9

2 230 16.0

3 156 10.8

4 80 5.6

5 60 4.2

6 47 3.3

7 23 1.6

8 17 1.2

9 10 0.7

10+ 14 1.0

Mean 1.9

Median 1.0

Standard deviation 2.2

Body mass index

20 or less 88 6.1

20+ to 23 243 16.9

23+ to 25 210 14.6

25+ to 27 231 16.1

27+ to 29 171 11.9

29+ to 31 112 7.8

31+ to 33 67 4.7

33+ 116 8.1

Missing 200 13.9

Mean 26.2

Median 25.6

Standard deviation 5.1
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unduly elevated risk. We summed positive responses to
form a total score. To make the variable more normal,
it was log-transformed. Participants also indicated
current height and weight. We used this to compute
body mass index (BMI; kg/m2). The distributions of
these variables are summarized in Table III. There
were 200 participants who did not report height and/
or weight, making it impossible to compute BMI. As
we modeled the raw data, however, this loss was not as
critical as it might have been because we still could
make use of these participants’ data on number of
chronic illnesses and income.

Our rationale for the use of BMI as a measure of
physical health problems was as follows. Though not
necessarily an indicator of current physical health,
excessive weight is a well-known risk factor for the
development of a number of physical health problems
including diabetes, high blood pressure, heart disease,
certain kinds of cancer, and stroke (Komaroff, 1999).
BMI above 25 is generally considered to be over-
weight; above 30 is generally considered obese, and
health risks increase with increasingly excessive
weight. Within normal ranges, health risks associated
with greater BMI are not well agreed upon, nor are
the existence and nature of health risks associated
with low BMI. Still, given the problem of obesity in
the United States in general and the fact that 56% of
our sample could be considered overweight, it seemed
a simple and relatively objective measure of overall
health. In particular, only 6.1% of our sample had
BMI’s less than 20, and low BMI would generally not
be expected to contribute to poor health until it
dropped below at least 18. Thus there was little risk
of systematic reversals in the relationship between
BMI and health problems in our sample. The corre-
lation between the number of chronic illnesses and
BMI was 0.17, (p<0.001). The relatively low corre-
lation was probably at least partly because the
chronic illness measure did not include treatment for
heart disease (it also did not include cancer). The two
measures thus tapped two aspects of physical health,
and neither one assessed it completely. The im-
perfections in our measurements had the effect of
making it more difficult to detect the hypothesized
relationships.

Measures of Insurance Coverage and Education

In completing the MIDUS questionnaire book-
lets, participants indicated whether or not they had
health insurance coverage from various sources,
including private insurance, insurance through a cur-

rent or former employer of either the participant or
spouse, insurance through a union, medicare and
Medicaid, and insurance plans formilitary personnel or
veterans. We collapsed these responses into a single
variable reflecting presence or absence of health insur-
ance coverage from any source. Participants also indi-
cated their attained level of education, choosing from
categories ranging from less than high school education
to attainment of graduate/professional degrees.

Analytical Approach

Age adjustment. Because the co-twins in our
sample are the same age and sex, age and sex effects
act to increase twin similarity (McGue and Bouchard,
1984). To correct for this in the analysis of genetic
and environmental influences on the twin data, we
regressed out the effects of age, age2, sex, and sex x
age on each variable prior to fitting our biometric
models. Prior to making this adjustment, we re-
gressed numbers of chronic illnesses and BMI on sex,
income, and the interaction of sex and income. The
interaction terms were not significant.

Biometric modeling. The standard univariate
quantitative genetic model is based on the under-
standing that the observed (phenotypic) variance
(Vp) in a trait is a linear function of genetic (A2) and
shared (C2) and non-shared (E2) environmental var-
iance, respectively. Genetic variance reflects variation
in genotypes transmitted directly from parents to
offspring that result in phenotypic variance in the
trait. Shared environmental variance (e.g. variation in
neighborhoods) reflects variation in environments
that affects all children growing up within a family to
the same degree and differentiates among families.
Such effects may clearly extend beyond childhood.
Non-shared environmental variance (e.g. differential
parental treatment) reflects variation in environments
that has different effects on individual family mem-
bers. Error variance is also included with non-shared
environmental variance because the nonshared envi-
ronmental variance terms are the residuals after the
effects of additive genetic and shared environmental
influences have been estimated. Symbolically,

Vp ¼ A2 þ C2 þ E2: ð1Þ

. Under this model, each of the variance compo-
nents is independent of the others. To investigate the
possibility that genetic variance associated with
physical health might decline with increasing levels of
income, we needed a model in which the variance
components themselves vary as a continuous function
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of income. That is, rather than modeling physical
health problems using the simple linear equation
shown above, we made use of variance component
models for gene-environment interaction described
by Purcell (2002) to express the variance associated
with each of the three components as a linear inter-
action with income, leading to the equation

Vp ¼ðAþ ba � IncomeÞ2 þ ðCþ bc � IncomeÞ2

þ ðEþ be � IncomeÞ2:
ð2Þ

In this equation, genetic variance A2 from Equation
(1) is expressed as ðA þ ba �̂ IncomeÞ2, C2 is ex-
pressed as ðC þ bc � IncomeÞ2, E2 is expressed as
ðE þ be � IncomeÞ2. The b’s are parameter estimates
that allow the variance components to differ across
income levels. Thus, for example, if genetic variance
(A2) at the mean level is 0.5 and ba is )0.1, then
people with incomes 1 standard deviation above the
mean would have genetic variance of
0.37ð

ffiffiffiffiffiffiffiffiffi

0:50
p

� 0:1Þ2, or while those with incomes 1
standard deviation below the mean would have ge-
netic variance of 0.65. The model for one twin is
illustrated in Figure 1.

There are two things that are important to note
about this model. First, the value of Income generally

differed for twins within a pair because we made use
of adult household income, and, unless the twins
actually lived together at the time of the MIDUS
survey, most would differ. In fact, only 15 pairs
within the sample reported the same income. The
model incorporates the individual data for each
member of each pair directly, in the same way that it
incorporates individual scores on the physical health
and BMI measures. Second, though previous
researchers (e.g., Adler et al., 1994) have dismissed it,
the possibility remains that genes are involved in the
relationship between physical health problems and
income not through gene-environment interaction (or
genetic control of sensitivity through the environ-
ment), but through gene-environment correlation (or
the genetic control of exposure to different environ-
ments). The model can be adapted to allow for the
measurement of gene-environment correlation of this
form. The adaptations allow for gene-environment
correlation by explicitly reflecting the possibility that
each component of variance (each linear term that is
squared in the equation above) can be further
decomposed into genetic and shared and nonshared
environmental components common to income and
physical health, and similar components unique to
physical health. The resulting model thus provides

Fig. 1. Partial path diagram of the gene-environment interaction model for one twin. C refers to effects common to both income and health,

and I refers to income.
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estimates of the genetic and environmental variance
common to both income and physical health and the
extent to which these vary with income, and the
genetic and environmental variance unique to physi-
cal health and the extent to which these vary with
income. In the presence of gene-environment inter-
action, the gene-environment correlation will vary as
a function of income. Its genetic component can be
expressed as

rG ¼ðAC þ baC � IncomeÞ=ððAC þ baC � IncomeÞ2

þ ðAH þ baH � IncomeÞ2Þ1=2; ð3Þ

where the subscripts C and H refer to the components
of variance common to the moderator and physical
health and unique to physical health, respectively.
The shared and nonshared environmental compo-
nents can be expressed analogously.

Throughout, we conducted our analyses of twin
data using maximum likelihood estimation of the
structural equation model fit to raw data as opera-
tionalized in the computer program Mx (Neale et al.,
1999). We assessed model fit using the likelihood ratio
comparison of 2 likelihood statistics, which is distrib-
uted as v2 and Akaike’s Information Criterion (AIC;
Akaike, 1983). AIC is defined as the )2*log-likelihood
value for the model, plus 2 times the number of
parameters.Models having smaller AIC’s are preferred.

To address the possibility that any gene-envi-
ronment interaction we observed merely reflected
differences in access to care, use of care, or broad
understanding of the importance of care, we con-
ducted our analyses using income, income adjusted
for the presence or absence of insurance coverage,
and income adjusted for both insurance coverage and
level of education.

RESULTS

Preparatory Analyses

Prior to carrying out our biometric analyses, we
verified that the expected phenotypic relationships
existed in our sample. That is, when income was
stratified into 3 groups consisting of those below 0.5
standard deviations below the mean, those within
0.5 standard deviations of the mean, and those above
0.5 standard deviations above the mean, the group
means increased monotonically with decreasing
income for both number of chronic illnesses
and BMI. Analysis of variance showed that the
mean differences were significant (F=19.25, df=2,

1911, p< 0.001, group means [and variances] for
standardized age- and sex-corrected variables 0.28
[1.22] for low income, )0.05 [0.95] for mid-range,
)0.08 [0.87] for high income for number of chronic
illnesses; F=13.67, df =2, 1693, p<0.001 for BMI,
group means [and variances] for standardized age-
and sex-corrected variables 0.19 [1.20] for low
income, 0.02 [1.01] for mid-range, )0.23 [0.65] for
high income). This provided evidence for the de-
creasing phenotypic variance in physical health with
increasing income.

MZ and DZ double-entered Pearson twin cor-
relations are shown in Table IV. Such correlations on
double-entered data closely approximate the intra-
class correlation that measures the proportion of
variance common to the members of the twin pairs.
Comparison of such correlations can be used infor-
mally to assess the presence of genetic and environ-
mental influences, but they only provide very
approximate estimates of the extent of such estimates.
Additive genetic influences reflecting the independent
influence of multiple genes are indicated when the
MZ correlation exceeds the DZ correlation, and
shared environmental influences are indicated when
the DZ correlation is more than half the MZ corre-
lation. Nonadditive genetic influences reflecting
dominance and other polygenic epistatic effects are
indicated when the MZ correlation is more than twice
the DZ correlation. As described above, however,
such correlations provide information only about
overall average levels of genetic and environmental
influence in situations involving gene-environment
interaction. We present them here because they do

Table IV. Double-entered Pearson twin correlations of the

physical health, income, insurance, and education variables

Variable MZ DZ

Chronic illnesses 0.42 0.14

Top 50% on income 0.39 0.04

Bottom 50% on income 0.44 0.20

Body mass index 0.74 0.41

Top 50% on income 0.63 0.36

Bottom 50% on income 0.81 0.45

Income 0.38 0.13

Insurance 0.48 0.33

Education 0.68 0.54

Note: MZ is monozygotic; DZ is dizygotic. Standard errors for the

full sample correlations ranged from 0.05 to 0.06. Except for

Insurance, variables were age- and sex-corrected, and Income and

Chronic illnesses were log transformed. Insurance correlations were

tetrachoric.
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provide this baseline information. All were significant
and all showed substantial evidence of genetic con-
tribution at an overall level. The table also shows the
MZ and DZ correlations for the top and bottom
halves of the sample stratified by income. These
correlations reflect standardized covariance; thus
they cannot clearly demonstrate the hypothesized
relations because those relations are based on the
presumption that neither variance nor covariance is
constant across income levels. This was the reason
for the implementation of the model described
above.

Biometric models are not identified when both
additive and nonadditive genetic influences and
shared and non-shared environmental influences are
modeled at once; one of the parameters must be
dropped. As number of chronic illnesses showed no
evidence of shared environmental influence and did
show evidence of nonadditive genetic influences, we
fit models including parameters reflecting additive
and nonadditive genetic and nonshared environ-

mental influences to these data. As BMI showed no
evidence of nonadditive genetic influences but did
show some evidence of shared environmental influ-
ence, we fit models including parameters reflecting
additive genetic and shared and nonshared environ-
mental influences to these data.

Biometric Modeling

The model-fitting statistics for the gene-envi-
ronment interaction models we applied are shown in
Table V. For each measure of physical health prob-
lems and for each of income, income adjusted for the
presence of insurance coverage, and income adjusted
for both insurance coverage and years of education,
we estimated two base models for use in developing
the likelihood ratio test statistics to evaluate the sig-
nificance of the interaction parameters. The first base
model included estimates of the three possible inter-
action parameters: additive (and, for chronic ill-
nesses, nonadditive) genetic, shared (for BMI) and

Table V. Model-fitting statistics for the gene-environment interaction models of chronic illnesses and body mass index moderated by income

and corrected for other variables as indicated

Moderation variable )2LL df LRT LRT df p AIC

Number of chronic illnesses

Income

Freely estimated GxE 6640.2 4021 6674.2

Interaction constrained to 0 6654.7 4027 14.5 6 0.025 6676.7

Best-fitting model 6,643.0 4,026 2.8 5 0.731 6,667.0

Income corrected for insurance

Freely estimated GxE 7,213.7 4,021 7,247.7

Interaction constrained to 0 7,227.1 4,027 13.4 6 0.037 7,249.1

Best-fitting model 7,217.7 4,026 4.0 5 0.549 7,241.7

Income corrected for insurance and education

Freely estimated GxE 7,247.5 4,003 7,281.5

Interaction constrained to 0 7,257.0 4,009 9.5 6 0.147 7,279.0

Best-fitting model 7,249.2 4,008 1.7 5 0.889 7,273.2

Body mass index

Income

Freely estimated GxE 5,956.6 3,882 5,990.6

Interaction constrained to0 6,002.4 3,888 45.8 6 <0.001 6,024.4

Best-fitting model 5,964.4 3,886 7.8 4 0.099 5,990.4

Income corrected for insurance

Freely estimated GxE 6,538.4 3,882 6,572.4

Interaction constrained to 0 6,587.7 3,888 49.3 6 <0.001 6,609.7

Best-fitting model 6,546.3 3,886 7.94 0.095 6,572.3

Income corrected for insurance and education

Freely estimated GxE 6,579.8 3,864 6,613.8

Interaction constrained to 0 6,614.3 3,870 34.5 6 <0.001 6,636.3

Best-fitting model 6,585.8 3,868 6.0 4 0.199 6,611.8

Note: )2LL is )2*log likelihood of data; LRT is likelihood ratio test to freely estimated GxE model; df is degrees of freedom; AIC is Akaike

Information Criterion. In all cases, the best-fitting model had included a moderating effect on common genetic influences. For BMI, there was

also a moderating effect on unique genetic influences.
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non-shared environmental influences, as well as main
effect on the mean. The second base model con-
strained all of these interaction parameters to 0. We
then estimated each combination of parameters and
constraints. The statistics for the two base models
and the best-fitting models resulting from this
procedure are shown in the table for each measure of
physical health problems.

For numbers of chronic illnesses, a model with
both additive genetic and nonshared environmental
interaction terms constrained to 0 fit best. This is the
model labeled ‘‘Best fitting’’ in the table. The non-
additive genetic interaction term could not be so
constrained without significant deterioration in fit, as
shown in the table by comparing both the change in
v2 between the best-fitting model and the model with
the interaction constrained to 0 and the AIC’s. This
remained the case when income was controlled for
the presence of health insurance coverage alone, but
when income was controlled for both the presence of
health insurance coverage and level of education the
change in v2 was no longer significant, though the
AIC still indicated that this model was best-fitting

and the confidence interval indicated that the inter-
action term was significant. For BMI, the model with
both shared and nonshared environmental interac-
tion terms constrained to 0 fit best, and this is the
model labeled ‘‘Best fitting’’ in the table. Again, the
genetic interaction and main effect terms could not be
so constrained, and this time the full effect remained
after controlling income for the presence of health
insurance coverage and level of education. The param-
eters estimated in the best-fitting models, along with
their 95% confidence intervals, are shown in Table VI.

Figures 2 and 3 present graphical descriptions of
the relationships implied by these parameters among
the sources of variance associated with the physical
health variables and income after adjustment for both
insurance coverage and level of education. Note that
the graphs show that, because genetic variance de-
creases with increasing income and the other sources
of variance remain constant, phenotypic variance
decreases with increasing income as well. The graphs
also show that, for people with income 1 standard
deviation above the mean, for example, genetic var-
iance associated with numbers of chronic illnesses

Table VI. Parameter estimates from best-fitting gene-environment interaction models of chronic illnesses and Body Mass Index moderated by

income corrected for health insurance and education

Chronic illnesses Body mass index

Parameter estimate 95% Confidence interval Parameter estimate 95% Confidence interval

aI 0.28 ()0.34, 0.52) 0.50 (0.39, 0.58)

cI or dI 0.45 (0.10,.60) 0.00 ()0.24, 0.24)
eI 0.76 (0.71,.82) 0.78 (0.73, 0.84)

aC )0.45 ()0.65, 0.00) )0.25 ()0.42, )0.08)
cC or dC 0.12 ()0.27, 0.54) 0.00 ()0.42, 0.42)
eC )0.08 ()0.16, 0.00) 0.00 ()0.06, 0.06)
aH 0.00 ()0.56, 0.56) 0.82 (0.69, 0.88)

cH or dH )0.46 ()0.70, )0.06) 0.00 ()0.41, 0.41)
eH 0.75 (.70,.80) 0.46 (.43,.50)

baC 0.00 fixed )0.07 ()0.11, )0.02)
bcC or bdC 0.00 fixed 0.00 fixed

beC 0.00 fixed 0.00 fixed

baH 0.00 fixed )0.12 ()0.18, )0.06)
bcH or bdH 0.11 (0.03)0.27) 0.00 fixed

beH 0.00 fixed 0.00 fixed

ra at )2sdI )0.16 ()0.47, )0.05) )0.11 ()0.35, 0.11)
ra at 0sdI )0.33 ()0.64, )0.22) )0.30 ()0.52, )0.06)
ra at 2sdI )0.69 ()1.00, )0.58) )0.55 ()0.79, )0.32)
rc N/A N/A 0.00 N/A

re 0.14 ()0.28, 0.01) 0.00 ()0.13, 0.13)

Note: ra at )2sdI refers to genetic correlation between income (corrected for insurance and education) and the appropriate physical health

measure at 2 standard deviations below the mean for corrected income. The entries following can be interpreted analogously. As discussed in

the text, we modeled nonadditive genetic influences (D) for chronic illnesses and shared environmental influences (C) for BMI. For chronic

illnesses, the genetic correlation includes both additive and nonadditive genetic influences. enetic.
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(adjusted for health insurance coverage and educa-
tion) was about 0.33, while for those with income 1
standard deviation below the mean, genetic variance
associated with numbers of chronic illnesses (adjusted
for health insurance coverage and education) was
about 1.7 times greater, or 0.55.

Table VI also shows the genetic and envi-
ronmental correlations between income and chronic
illnesses, and income and BMI. Because it was unique
genetic variance in physical health that decreased

with increasing income (see Equation (3) above), the
genetic correlations increased with income. The pat-
terns of correlations for the two measures of physical
health were very similar. For both, the genetic cor-
relations with income were small at 2 standard devi-
ations below the mean (and insignificant for BMI),
but at 2 standard deviations above the mean the
correlations were both significant and substantial
()0.69 for numbers of chronic illnesses and )0.55 for
BMI). The environmental correlations were not sig-
nificant.

DISCUSSION

In this study, we investigated the extent to which
a gene-environment interaction underlies the rela-
tionship between income and physical health prob-
lems. We found evidence for such an interaction in
two measures of physical health problems, numbers
of chronic illnesses and BMI, in a nationwide US
twin sample ranging in age from 25 to 74. Our results
suggested that genetic variance associated with
physical health problems decreases with increasing
income. As others have observed about the gradient
at the phenotypic level, (Adler and Snibbe, 2003), the
gene-environment interaction effect was not the result
of simple access to insurance coverage, nor was it the
result of the direct effects of level of education.

This study had several limitations. First, all of
our measures were based on self-report, and are thus
subject to the well-known limitations of such mea-
sures. People may have only limited understanding of
the health treatments they receive and they may have
health conditions of which they are unaware and for
which they have not been treated. They may be
motivated to present themselves either favorably or
unfavorably for any of a variety of reasons, a factor
we might expect to operate especially strongly for the
height and weight measurements used to calculate
BMI. At the same time, self-reports of measures such
as those we used are economical and straightforward
to collect, and generally found to be substantively
correlated with physicians’ assessments (Idler et al.,
1999; Jylha, 1994; Krause and Jay, 1994). Follow-up
studies could help to clarify the extent of this limi-
tation by, for example, both collecting self-ratings of
health and carrying out home visits to assess physical
health problems more directly, though this would, of
course, involve considerable additional expense.
Another approach would be to collect self-ratings
of health in countries such as Canada that have

Fig. 2. Variance in log of number of chronic illnesses as a function

of log of income corrected for insurance and education, by source

of variance.

Fig. 3. Variance in body mass index as a function of log of income

corrected for insurance and education, by source of variance.
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population-based medical records associated with
their universal health insurance coverage that can be
accessed without self-report.

Second, neither of our physical health problem
measures completely captured overall physical health
problems. The chronic illness measure did not include
cancer and heart disease. It also did nothing to assess
the degree to which the conditions that were included,
some of which were relatively minor, debilitated the
participant or could be expected to threaten normal
lifespan. High BMI, though a risk factor for many
serious physical health problems, is not necessarily an
indication of current poor health status, and low
BMI can sometimes be an indication of poor health.
Fourth, our sample had somewhat higher income and
was somewhat better educated than the general
population and lacked variability particularly at the
lower levels of health and income. Most of these
limitations, however, should have reduced our ability
to detect interaction effects. The fact that we were
able to do so probably attests to the strength of the
associations.

Third, it is important that this study be repli-
cated, especially in larger samples. This sample was
big enough to detect an effect predicted by theory and
observed in other organisms, but more complex ef-
fects may also exist. For example, though we found
no indication of significant sex differences, there is
the possibility that there were sex differences in the
interaction effects that, in our modestly sized sample,
would be relatively difficult to detect.

The relationship between income and physical
health has long presented a tantalizing puzzle to
researchers and policymakers alike. Researchers have
begun to articulate a process centered around
increasing demands and decreasing resources for
dealing with those demands associated with lower
levels of income (Gallo and Mathews, 2003) to ex-
plain the relationship, but the underlying physiolog-
ical mechanisms by which this process might
associate income and physical health have remained
unclear. The results we present here, though they
require replication in other samples, potentially shed
light on some of those mechanisms. First, they pro-
vide some evidence for the existence of common ge-
netic influences on income and physical health, a
possibility that has been largely dismissed in the past
(Adler et al., 1994). Second, for both numbers of
chronic illnesses and BMI, total variance and genetic
variance were smaller and mean levels were lower
among those with higher income. The stress theory of
aging (Parsons, 2003) holds that genes for metabolic

efficiency enabling adaptation to stressful environ-
ments play a primary role in affecting lifespan and, by
implication, health. Genetic interactions similar to
those we observed in this study for human physical
health problems have been documented in Drosophila
melanogaster for longevity in situations of varying
degrees of biological stress (Parsons, 2002). The stress
theory of aging suggests that, for humans in the
environment of evolutionary adaptation, increased
longevity resulted from primary selection for resil-
ience under stress, and an individual’s relative fitness
(i.e. health) would have been similar throughout the
lifespan. In more benign conditions such as those for
laboratory animals or humans in the developed world
today, a greater proportion of the population can
survive to older ages, but this trend is counteracted
by reduction in the degree of selection for resilience
under stress. The results of this study seem highly
consistent with this theory.

The observation of decreasing genetic variance
in physical health problems with increasing income,
even after adjustment for presence of insurance cov-
erage and education, helps to explain how the genetic
influence on physical health problems is involved in
its relationship with income. It does not, however,
explain how increased income may act to compress
the genetic variance. What is it about income that
results in changes in genetic variance? Whatever it is,
it is important to note that it appears to transcend
specific disease categories. We examined two candi-
dates in this study: health insurance coverage and
education. The fact that they failed to explain the
decreasing variance makes it especially likely that
psychological variables may be involved. We suggest
that this may be a fruitful area for future research.
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