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Recent substantive research on biometric analyses of twin and family data has used both a
biometric path analysis model (PAM) and a biometric variance components model (VCM).

Methodological research on these same topics have suggested benefits of using linear struc-
tural equation model algorithms (SEMA) as well as mixed effect multilevel algorithms
(MEMA). To better understand the potential similarities and differences among these
approaches we first highlight the algebraic equivalence between the standard biometric PAM

and the corresponding biometric VCM models for family data. Second, we demonstrate how
several SEMA programs based on either the PAM or VCM approach produce equivalent esti-
mates for all phenotypic and biometric parameters. Third, we show how the biometric VCM

approach (but not the PAM approach) can be easily programmed using current MEMA pro-
grams (e.g., SAS PROC MIXED). We then expand the scope of these different approaches to
include measured covariates, observed variable interactions and multiple relatives within each

family. MEMA software is compared to SEMA software for programming complex models,
including the flexibility of data input, treatment of missing data, inclusion of covariates, and
ease of accommodating varying numbers of observations (per family or individual).

KEY WORDS: Multilevel mixed-effect models; multivariate twin and family data analysis; structural
equation model algorithms.

MIXED-EFFECTS VARIANCE COMPONENTS

MODELS (VCMS) FOR BIOMETRIC FAMILY

ANALYSES

One fundamental goal of data analysis in behavioral
genetics is to partition observed scores into biomet-
ric components of variation. Classical research on
this topic demonstrated how the same models can
be represented in several different ways. Fisher
(1918, 1925) described a least squares method to
obtain ‘‘factors of correlations’’ or a ‘‘variance
components model.’’ At about the same time,

Wright (1918, 1921) proposed a ‘‘path analysis
model’’ (PAM) as a way to decompose the pattern
of influences among a set of correlations. The VCM
approach was extended by Cattell (1953, 1960)
when he proposed a comprehensive series of equa-
tions for family data termed ‘‘Multiple Abstract
Variance Analysis’’ (MAVA). In subsequent work,
Jinks and Fulker (1970) showed how simple ver-
sions of the MAVA models could be fitted using
VCM based expected mean squares, and Loehlin
(1965, 1978) demonstrated how all of these models
could be equivalently and clearly represented using
the PAM approach. The overview by Li (1968) also
makes this equivalence clear:

‘‘It has been shown that Fisher, in 1918, clearly
developed the concept that a correlation
between two distant variables is made up of sev-
eral factors, each factor corresponding to a step
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from one variable to the next. Furthermore,
these factors are precisely the path coefficients
defined by Wright for the respective situations.
Fisher expressed a number of correlations either
as a simple product of a chain of factors or as a
sum of products, all expressible in the form of a
path diagram developed by Wright. In view of
these similarities, we conclude that Fisher and
Wright were not too far apart in their basic
methodology or thinking, although their mathe-
matical languages are very different. It is unfor-
tunate for geneticists like us with less than
adequate mathematical training that Fisher did
not bother to draw some small diagrams to elu-
cidate his formulas. . .’’ (Li, 1968, p. 482).

Contemporary computer programs for maxi-
mum likelihood estimation (MLE) were initially
developed for VCM by Bock and Bargmann (1966),
Eaves and Gale (1974) and Eaves et al. (1978) and
for latent PAM by Martin and Eaves (1977). In
subsequent work, McArdle et al. (McArdle, 1986;
McArdle et al., 1980; McArdle and Goldsmith,
1990) showed how the available structural equation
modeling (SEM) programs (e.g., LISREL) could be
used to carry out BG analyses of the PAM or VCM
type even though they were not intended for this
purpose. This LISREL approach became very pop-
ular (e.g. Boomsma and Molenaar, 1987; Neale and
Cardon, 1992), but the Mx program (Neale et al.,
2002) has been widely used for complex BG analy-
ses, and the recent Mplus program (Muthén and
Muthén, 2004) was shown to be useful for advanced
BG applications (Prescott, 2004). In almost all
cases, these models are fitted using a SEMA-based
mean and covariance structure approach, and the
PAM approach is often emphasized.

A great deal of the recent statistical literature
uses mixed-effects multi-level (MEMA) models (e.g.,
Bryk and Raudenbush, 1992; Goldstein, 1995;
McArdle and Hamagami, 1996). In these contexts,
the MEMA calculation can be seen as a VCM-type
approach with the added potential of a restricted
structure on the means (i.e., as in repeated measures
ANOVA). A recent Behavior Genetics article by
Guo and Wang (2002) describes some interesting
BG-type applications of MEMA, including model-
ing with multivariable family data (using the PROC
MIXED procedure from the SAS Institute, 1999).
Although Guo and Wang showed how to create
MLE for complex correlations (with associated
standard errors and tests of fit), they did not directly

calculate biometric estimates. Instead, the decompo-
sition of genetic and environmental variance com-
ponents were conducted externally using a separate
least-squares algorithm (p. 40). The article con-
cluded by suggesting, ‘‘An important issue that
needs to be dealt with is specific hypothesis testing
regarding h2 and c2, heritability and shared environ-
mental influences, respectively. Rather than esti-
mated directly by the mixed model, these two
quantities are calculated on the basis of several
model estimated parameters. Conventional straight-
forward hypothesis testing, therefore, is unavail-
able.’’ (Guo and Wang, 2002, p. 42).

In this presentation we respond to the key BG
issue raised by Guo and Wang, and we attempt to
bridge any remaining gaps between the PAM and
VCM approaches for traditional BG problems using
either SEMA or MEMA software. The key differ-
ence highlighted here is that the PAM approach uses
fixed ‘‘design of correlations’’ with estimated coeffi-
cients whereas the VCM approach uses a fixed ‘‘design
of coefficients’’ with estimated variances. Given
appropriate adjustment for these differences we dem-
onstrate that the PAM and VCM approaches can
yield identical information and inferences. These
results also show how MEMA models, using the
VCM approach with means can permit simultaneous
estimation of the biometric parameters using avail-
able software (e.g., SAS MIXED). The general
approach presented here offers several alternative
ways researchers can choose to use BG models and
programs, and different options will be useful for
more complex problems.

In the section that follows we present the com-
mon biometric PAM model based on organizing
relationships among pairs of relatives in terms of
latent variables in different groups. Next we present
the classical VCM approach and focus on one ver-
sion of this approach which separates all compo-
nents into orthogonal common and specific
contributions. We show it is easy to estimate this
using both standard SEMA programs and software
(e.g. Mplus or Mx) and mixed effects models (e.g.,
SAS MIXED and NLMIXED here). For the pur-
poses of demonstration, we generate several simula-
tion examples from known populations for MZ and
DZ twin pairs, and we also and deal with some fea-
tures of incomplete and binary data. In subsequent
sections we extend this model to include multiple
variables and multiple relatives. These examples are
intended to demonstrate how simple and extended
BG multivariate analyses can be practical, efficient
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and appropriate using any of several forms of widely
available SEMA or MEMA computer software.

THE PAM FOR BIOMETRIC DATA

To define some basic terms and establish nota-
tion we first present the PAM that is widely used in
BG research. We can write the observed score (Yn)
for any person (n ¼ 1 to N) as

Yn ¼ lþ Dn or Yn ¼ lþ rdn, ð1Þ

where we separate the mean (l) and deviation score
(Dn), and then rescale the deviation into unit vari-
ance (E{d, d} ¼ 1) so the coefficient (r) represents
the standard deviation of the scores. In traditional
biometric theory we often extend the model to
include different families (f ¼ 1 to F) and different
individuals (i ¼ 1 to If) within the family

Yf ;i ¼ lþ Ai þ Sf þ Ei or

Yf ;i ¼ lþ raai þ rssf þ reei
ð2Þ

to represent independent sources of the deviations
that are additive genetic (A), non-genetic but shared
by family members (S), and non-genetic factors spe-
cific to the individual (E). (Note: We use the term S
rather than C because we use C to define ‘‘common’’
components in many subsequent models). These devi-
ations can also be written with unobserved scores
scaled to unit variance (E{a,a} ¼ E{s,s} ¼
E{e,e} ¼ 1) so the coefficients (rj) represent the stan-
dard deviation of each component. In the simplest
version of biometric theory we assume these compo-
nents are all uncorrelated. More complex versions of
this model include components to represent non-
additivity (e.g., dominance deviations), examine cor-
relations among these components (e.g., |E{A,
E}|>0), and consider interactions among compo-
nents (e.g., A by E).

In most biometric analyses we use the collec-
tion of data from family members to provide unique
estimates of the unknown parameters of equation
(2). We assume the pair of relatives (i ¼ 1 and 2)
comes from an independent set of families and
assume: (1) independent environment deviations E
for pairs are uncorrelated, (2) shared family devia-
tions S for pairs are perfectly correlated, and (3)
additive genetic deviations for pairs are correlated
to the extent of the genetic relationship. These
assumptions can be expressed as a SEM written for
a pair of persons within the same family as

Yf ;1 ¼ lþ raaf 1 þ rssf þ reef 1

Yf ;2 ¼ lþ raaf 2 þ rssf þ reef 2; and

Efa1; a2g ¼ ra;

ð3Þ

where the genetic correlation is assigned for the
group (e.g., for MZ pairs, ra ¼ 1, whereas for DZ
pairs, ra ¼½).

The standard model for a pair of relatives is
drawn as a latent variable path diagram in
Figure 1a. Although the general structure of this
path diagram is familiar to BG researchers, it is
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Fig. 1. Alternative specifications for a univariate model for a pair

of relatives. All parameters that are not labeled are fixed at 1. (a)

Standard SEM specification for twins. ra(mz) ¼ 1 and ra(dz) ¼ 0.5.

(b) SEM representation of an orthogonal variance component

specification. Weights are defined by the application (e.g.,

for twins, wac(mz) ¼ 1, wac(dz) ¼ sqrt(0.5), wau(mz) ¼ 0, wau(dz) ¼
sqrt(0.5) ). (c) SEM reduced-form representation of variance com-

ponents.
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useful to point out that in this particular diagram:
(1) All paths that are not explicitly labeled are equal
to unity; (2) the variance terms are represented as
standard deviations on paths, (3) the means (rela-
tions to the constant 1) are included and are equal
over all pairs, (4) the variances (two-headed arrows
on a variable) are fixed at 1, and (5) the covariances
(two-headed arrows connecting two variables) may
differ for different groups of relatives.

This representation of pairs of scores within a
family generates, in the usual way, equal means and
variances for members of each group, but unequal
covariances between groups. These structural expec-
tations can be obtained directly from the path dia-
gram in Figure 1a for MZ and DZ groups. It is
well known that, by simple substitution of the un-
correlated scores, the equal variances are written as

r2
mz ¼ EfDmz;i;Dmz;ig ¼ r2

a þ r2
s þ r2

e and

r2
dz ¼ EfDdz;i;Ddz;ig ¼ r2

a þ r2
s þ r2

e ;
ð4Þ

and the unequal covariances among relatives within
each group are written as

rmz;1;2 ¼ EfDmz;1;Dmz;2g ¼ r2
a þ r2

s and

rdz;1;2 ¼ EfDdz;1;Ddz;2g ¼ 1=2r2
a þ r2

s :
ð5Þ

This form of the PAM model implicitly restricts the
associated variances (r2) to be non-negative (i.e.,
for any value of r the r2 ‡ 0). We return to some
implications of this restriction subsequently.

A VCM FOR BIOMETRIC DATA

Some useful features emerge when we restrict our
expression of any BG model so ‘‘the paths are fixed
values for each person.’’ We can rewrite equation (3)
for a pair of persons within the same family as

Yf ;1 ¼ lþ Af 1 þ Sf þ Ef 1; with

Af 1 ¼ wacACf þ wauAUf 1; and

Yf ;2 ¼ lþ Af 2 þ Sf þ Ef 2; with

Af 2 ¼ wacACf þ wauAUf 2;

ð6Þ

where the additive genetic deviation is separated
into two deviation scores: (1) ACf is common for
members of the same family, and (2) AUfi is unique
to the individual. In this form the weights (W) are
fixed at values which indicate the proportion of the

additive genetic deviation shared between relatives.
This general VCM model is drawn following equa-
tion (6) as a nested or higher-order latent variable
path diagram in Figure 1b.

A concept that is central to our treatment is
how two correlated factors can be re-parameterized
as a single shared factor and two unique factors.
Figure 1b is useful because it shows the basic the-
ory of the separation of the additive genetic vari-
ability for individuals 1 and 2 (A1 and A2) into two
parts – the part that is common to both members of
the pair (AC) and the part that is unique to each
individual (AU1 and AU2). In theory, this separa-
tion of additive genetic deviations into common
and unique components reflects the result of trans-
mission of parental alleles to offspring. In practice,
each of these two new components is assigned the
same genetic variance (ra

2), we assume these two
scores are uncorrelated (E{AC, AU} ¼ 0), and the
weights (W) are separated into those which are
common to the family (wac) and specific to the indi-
vidual (wau). In this formulation, the typical addi-
tive genetic correlation (ra) is not included and
there are no resulting covariance terms.

It is useful to note that the previous model (6)
and Figure 1b can equivalently be written in
reduced form as

Yf ;1 ¼ lþ wacACf þ wauAUf 1 þ Sf þ Ef 1; and

Yf ;2 ¼ lþ wacACf þ wauAUf 2 þ Sf þ Ef 2;
ð7Þ

and drawn as Figure 1c. Although equations (6)
and (7) are formally equivalent, the reduced form is
sometime preferable for use by specific computer
programs (i.e., SAS MIXED).

In this classic VCM representation, the paths
are all fixed weights defined by the application. To
insure these weights have no impact on the estima-
tion of the variance terms, they are typically scaled
so the sum of squares is unity (w2

ac + w2
au ¼ 1). As

one typical BG example, two individuals in any MZ
pair are assumed to share the same genotypes and
the same common family environment. This means
we can simplify the model for an MZ pair by fixing
wac ¼ 1 and 0, and rewrite equation (6) as

Yf ;1 ¼ lþ Af 1 þ Sf þ Ef 1; with

Af 1 ¼ 1ACf þ 0AUf 1; and

Yf ;2 ¼ lþ Af 2 þ Sf þ Ef 2; with

Af 2 ¼ 1ACf þ 0AUf 2

ð8Þ
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so both the AC and the S latent scores have the
identical subscript f, the AU scores are nullified by
the zero weights, and the E scores are specific to
the individual. In contrast, the assumption of no
assortative mating implies that members of DZ
pairs share ½ of their genotypes (due to segrega-
tion of alleles), and this implication can be repre-
sented as fixed weights (of wac ¼

ffiffiffiffiffiffiffiffi

1=2
p

and
wau ¼

ffiffiffiffiffiffiffiffi

1=2
p

) so the same model for DZ twins is
written as

Yf ;1 ¼ lþ Af 1 þ Sf þ Ef 1; with

Af 1 ¼
ffiffiffiffiffiffiffiffi

1=2
p

ACf þ AUf 1; and

Yf ;2 ¼ lþ Af 2 þ Sf þ Ef 2; with

Af 2 ¼
ffiffiffiffiffiffiffiffi

1=2
p

ACf þ AUf 2:

ð9Þ

In this model the AC and S scores have subscript f,
indicating they are common among all members of
the family, but there are now both AU and E scores
which are unique to the individual. Notice that the
weights for the additive deviations have changed
from the PAM version presented in equation (3),
but the additive genetic parameters (ra

2) are
repeated across all AC and AU components, and
the partitioning of the scores for the DZ pairs
allows the separation of both common and specific
genetic components.

An analogous approach could be used to esti-
mate genetic dominance. Two new latent scores, Di

can be added for each individual, decomposed into
common DC and unique DUi, with both assigned
equal variance (i.e., rd

2). The analysis of MZ–DZ
twins would require corresponding weights of 1 and
0 in MZ pairs and weights of

ffiffiffiffiffiffiffiffi

1=4
p

and
ffiffiffiffiffiffiffiffi

3=4
p

and
for DC and unique DUi respectively.

The VCM approach of equation (6) represents
all of the parameters of the PAM model of equation
(3) and generates the same covariance expectations
as in equations (4) and (5). In simple terms, the PC
free paths and fixed covariances have been reparam-
eterized by the VCM fixed weights on the paths and
free variances. In applications with more complex
family configurations, alternative weighting schemes
can be used to define orthogonal variance compo-
nents (described later). It is also useful to note that
this VCM approach, in contrast to the more com-
mon PAM approach, more closely resembles stan-
dard uses of MEMA statistical software, and we
turn to these issues next.

PROGRAMMING THE PAM AND VCM

BIOMETRIC MODELS

The SEMA software which allow MLE of the
mean and variance components with multiple
groups can be used to estimate the parameters of
both the PAM and VCM approaches (e.g., AMOS,
Arbuckle and Wothke, 1999; LISREL, Joreskog
and Sorbom, 1999; Mplus, Mx). In general, we do
not expect any differences in the results of these
SEMA programs for the same model fitted to the
same data. Of course, the data setup may vary
depending upon the use of various options, such as
double-entry of twin scores. Also, the model results
may vary slightly depending upon the choice of
numerical algorithm used, the convergence criteria,
the estimation technique used for standard errors,
and any additional boundary constraints on the
parameters. To examine these practical issues we
present some basic simulation results.

We first defined a population where l ¼ 0,
ra

2 ¼ 50, rs
2 ¼ 10, and re

2 ¼ 40, and simulated 10
sets of data from Nmz ¼ 1001 and Ndz ¼ 1001 pairs
of twins. It may be useful to note that we used the
VCM model to generate the family data. That is,
and in general, we do not directly simulate data
from a specific pattern of correlations as in equation
(3), but these correlations arise from a regression
model or a higher-order common factor model such
as equation (6). An example of the resulting sum-
mary statistics is listed in Table Ia for one simulated
dataset. We then fit models to all sets of simulated
data using four methods:

1. SEMA-PAM: In a first SEMA path analysis
we use a fixed set of correlations over two groups
to provide estimates of one mean (l) and three
standard deviations (ra, rs, and re). The estimated
components (Table Ib) are consistent with the sam-
ple statistics shown in Table Ia. Squaring the
parameter estimates produces variance components
of ra

2 ¼ 4.60, rs
2 ¼ 1.51, re

2 ¼ 3.84, with a total
score variance of 9.95, and resulting proportions of
variance of ra

2 ¼ 46%, rs
2 ¼ 15%, and re

2 ¼ 39%.
The identical estimates were obtained using both
the Mplus and Mx programs.

2. SEMA-VCM: The second set of programs
was written using equation (6) with fixed parameters
(weights W) and equality assumptions (ra

2) both
within pairs (twins 1 and 2) and across the two
zygosity groups. The MLE parameters for the com-
plete data are listed in Table Ib. The SEMA-VCM
approach adequately recovers all of the parameters
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of the VCM biometric model in the same way as
the previous SEMA-PAM. This is not a surprising
result because the simulation model was equivalent
to the estimation model.

3. MEMA-VCM: A series of mixed effects anal-
yses were carried out using standard mixed effects
software (SAS PROC MIXED). In the current ver-
sion of this program, the MODEL statement and
various RANDOM statements can be used to spec-
ify alternative models for sources of family resem-
blance. The basic MEMA-VCM programming
devices used here follow the reduced form of equa-
tion (7), except that, due to the way SAS PROC
MIXED reads the data, they are organized at the
individual (rather than family) level. Therefore, each
individual has parameters representing each of the
specific components. In the case of families of size
two, we rewrite the additive genetic score for any
person as

Af ;i ¼ waACf þ wu1AU1i þ wu2AU2i, ð10Þ

so this component is separated into a genetic score
that is common across the family (ACf) plus two

Table I. Summary Statistics for Simulated Twin Data (N = 1001

for each Group)

MZ Pairs DZ Pairs

Twin 1 Twin 2 Twin 1 Twin 2

(a) Complete data

N 1001 1001 1001 1001

Means )0.08 )0.08 )0.14 )0.01
SD 2.99 3.08 3.28 3.22

Correlations 0.592 0.400

(b) Random drop out

N 753 774 785 799

Means )0.07 )0.08 )0.07 )0.06
SD 3.02 3.12 3.31 3.24

Correlations 0.623

(Npr = 583)

0.363

(Npr = 620)

0.610 (MAR) 0.362 (MAR)

(c) Genetic selection

N 760 755 733 752

Means 0.66 0.73 0.84 0.92

SD 2.76 2.81 2.92 2.81

Correlations 0.502

(Npr = 703)

0.293

(Npr = 603)

0.515 (MAR) 0.297 (MAR)

MAR estimates are MAR from Mplus output.

Table II. Estimated Parameters (MLE) of Univariate Biometric Models using Four Alternative Programs (based on Simulated Data of

Table I)

ML estimates (z values) Variance as Percentages

l ra
2 rs

2 re
2 za za za ra

2 rs
2 re

2

(a) Population Values

0 5 1 4 (0) (0) (0.0) 50.0 10.0 40.0

(b) Complete Cases

SEMA-PAM )0.078 2.142 1.232 1.962 (15.0) (5.8) (44.0) 46.2 15.2 38.6

SEMA-VCM )0.078 4.60 1.51 3.84 (7.6) (2.9) (22.0) 46.2 15.2 38.6

MIXED-VCM )0.078 4.60 1.51 3.84 (7.6) (2.9) (22.0) 46.2 15.2 38.6

NLMIXED-VCM )0.078 4.60 1.51 3.84 (7.6) (2.9) (22.0) 46.2 15.2 38.6

(c) Random drop out: complete pairs only

SEMA-PAM )0.043 2.432 0.822 1.932 (14.0) (1.9) (35.0) 57.3 6.5 36.2

VCM programs )0.043 5.90 0.68 3.73 (7.2) (1.0) (17.0) 57.3 6.5 36.2

(d) Random drop out: all available data

SEMA-PAM )0.074 2.402 0.782 1.932 (14.0) (1.8) (34.0) 57.1 6.1 36.8

VCM programs )0.074 5.76 0.61 3.71 (7.3) (0.9) (17.0) 57.1 6.1 36.8

(e) Genetic selection: complete pairs only

SEMA-PAM 0.998 1.932 0.612 1.952 (11.0) (1.2) (38.0) 47.0 4.8 48.2

VCM programs 0.998 3.71 0.38 3.80 (5.3) (0.6) (19.0) 47.0 4.8 48.2

(f) Genetic selection: all available data

SEMA-PAM 0.727 1.922 0.722 1.962 (11.0) (1.8) (38.0) 45.7 6.5 47.7

VCM programs 0.727 3.67 0.52 3.83 (5.3) (0.9) (19.0) 45.7 6.5 47.7

z = parameter/standard error.
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independent set of additive genetic scores (AU1i and
AU2i) which are unique to an individual in the pair
but weighted so equation (10) reduces to (7) (i.e.,
wu2 is 0 for person 1 and wu2 is 0 for person 2). The
required setup programming is presented in detail in
Appendix 1, the PROC MIXED code required is
described in detail in Appendix (2), and the numeri-
cal results are presented in Table II. The results
from MIXED are exactly identical to those
obtained with the SEMA-VCM programs or using
the traditional SEMA-PAM approach.

4. NLMIXED-VCM: An alternative way to run
mixed effects models in SAS is to use a non-linear
mixed model regression approach available in SAS
PROC NLMIXED. The basic model setup is the
same as equation (6), the input is extremely flexible
and does not require the reduced form (i.e., equa-
tion (6) rather than (7)), and the MLE is based on
a more general numerical algorithm. The
NLMIXED input script is listed in Appendix 4, and
the numerical results are identical to the others in
Table II. This simply shows that this more flexible
program can be used to obtain the same results as
all other SEMA and MEMA programs.

Numerical results across programs were also
identical for many different values in the simulated
datasets. That is, we also compared the parameter
estimates obtained using Mplus-VCM and PROC
MIXED for several values of ra

2 and rs
2 (ranging

from 0.0 to 0.6). In all cases, all four methods result
in identical estimates for the parameter estimates,
the standardized proportions of variance (squaring
the SEMA-PAM estimates produces the SEMA-
VCM estimates), and the likelihood ratio tests of
alternative hypothesis (i.e., the A+E, S+E and E
Only models). The only notable difference between
approaches is that the SEMA-PAM approach
applies a lower bound of zero for the variance esti-
mates, whereas this was not made a requirement of
the SEMA-VCM or MEMA-VCM approaches
(although it is possible).

Differences in estimates between the PAM and
VCM approaches are expected only for cases where
estimates reach boundaries (e.g., negative variance
terms due to model misspecification or zero popula-
tion values). As pointed out by a reviewer, ‘‘there
can be times when these different approaches can
result in extremely different results, and these tend
to be the cases in which the model has been mis-
specified. For example, dealing with the four epis-
tastic components (A·A, A·D, D·A and D·D)
then adopting a PAM vs. a VCM approach can

give very different results if the model is ‘‘mis-speci-
fied’’ (i.e. there is D·D epistasis, but the model does
not allow for it). In some cases, VCMs can there-
fore be significantly negative, whereas the PAM
coefficients would be constrained to be positive.’’
These differences can be indexed by a corresponding
discrepancy in fit. In these circumstances the VCM
approach may be preferred (using either SEMA or
MEMA software) because these analyses may
permit the researcher better clues about model mis-
specification.

VARIATIONS ON THE BASIC TWIN MODEL

To investigate the potential for practical differ-
ences between SEMA and MEMA programs, we
also considered two cases that require more com-
plex numerical evaluations of model likelihoods –
(a) Missing Data and (b) Binary Outcomes.

The first comparison of estimation based on
raw data can be illustrated by considering results
based on two types of ‘‘dropout:’’ (1) Dropout that
is random with respect to the biometric structure
(operationalized as missing values for individuals
with low scores; i.e., a z-score £ )0.7) where the
selection results in only 60% of pairs with complete
data, but has little effect on the score statistics
(Table Ib). (2) Non-Random dropout data (missing
values for individuals with low ‘‘genetic scores’’)
produced higher score means, reduced variation,
and smaller pair correlations than obtained using
the original scores (Table Ic). No new computer
programs were needed to evaluate the programs
because the SEMA and MEMA software used here
allow direct entry of raw data with codes for incom-
plete data. The different models and algorithms pro-
duce identical estimates for the analyses based on
these more complex datasets (Table IIc–f]). Most of
the ‘‘MLE correction’’ available from using the
incomplete data occurs for the estimates of the vari-
ance and means (compare Table IId to IIc and IIb).
Including the incomplete pair information from the
twins without observed cotwins (Table IIf) produces
MLE adjusted estimates of the mean and total vari-
ance but still shows the bias expected from this
selection process. In principle, these results demon-
strate that all the models and algorithms studied
here can treat the incomplete data problem in the
same way (i.e., MLE based on Missing at Random
assumptions).

The second type of problem we studied was
based on the biometric decomposition of data where
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the outcome is a binary variable (0 or 1). Simulated
data were generated based on a model where con-
tinuous normal deviates were created to follow a
standard twin model, but then the continuous out-
come was categorized into two classes based on a
normal threshold (i.e., s ¼ 1.0). This was created
for several different biometric models and different
threshold values (for details, see Prescott, 2004).
SEMA computer software to handle this kind of
estimation problem has been available for many
years, and we used the Mplus program with a
Probit estimation (as in Prescott, 2004). There are
many MEMA programs that could be used for this
problem (e.g., using a GLIMMX macro with
MIXED). For simplicity of presentation we used a
new VCM variation on the SAS NLMIXED. The
additional scripts presented in Appendix 4 include
the same biometric decomposition as before
(Appendix 3) but add a Logit or Probit score model
based on a Bernoulli error distribution (i.e., BIN-
ARY; see Powers and Xie, 2000). Our results
showed the numerical computations for binary out-
comes were rapid using the Mplus-PAM and
Mplus-VCM but were decidedly slower using the
NLMIXED-VCM scripts. In contrast to the contin-
uous variable cases, the estimates for binary
outcomes were not completely equivalent. While
either approach should be able to yield accurate
biometric results for equivalent models, the exact
equality needs to be verified with future research.

INCLUDING MULTIPLE VARIABLES IN

VCMS

A new set of problems for the PAM and VCM
comparison emerge when we consider the inclusion
of another measured variable X as in the path dia-
grams of Figure 2. Most of these models are easy to
fit in the SEMA-PAM approach, but some present
an interesting challenge for the representation of the
MEMA-VCM approach. The models presented in
this section are described but the results are not
described (see Appendix 5 scripts).

As the first model, let us consider adding X as
a covariate to the equation for Y. In a first biomet-
ric model we write

Yf; i ¼ b0 þ b1Xi þ Zf; i and Zf; i ¼ Azfi þ Szf þ Ezfi;

ð11Þ

where the b are regression coefficients with unob-
served residual Z, and the three biometric latent

variables (Az, Sz, Ez) are unique to Y given X (i.e.,
Az ¼ A|X). This model is easily fitted in SEMA pro-
grams by adding the X variable to the diagram (see
Figure 2a). Although the inclusion of variable Z is
not needed in the model fitting, it serves to repre-
sent the concepts clearly and it gives a natural label
and interpretation for the biometric components. It
can also be fitted in MEMA programs by adding a
variable X only to the fixed part of the model (i.e.,
the MODEL statement in MIXED).

In an alternative bivariate model we can con-
sider the biometric structure of both Y and X. The
basic starting point for this model is written as

Yf ;i ¼ ly þ Ayfi þ Syf þ Eyfi and Xf ;i

¼ lx þ Axfi þ Sxf þ Exfi:
ð12Þ

where each variable has a biometric structure. This
model does not yet define the covariance between Y
and X, and there are several alternatives that can be
used. One popular way is depicted in the path dia-
gram of Figure 2b. This model assumes we rewrite
the model for Y to include a regression on the X
latent variables as

Yf ;i ¼ ly þ baAxfi þ bsSxf þ beExfiþAzfi þ Szf þEzfi:

ð13Þ

In this model, the covariance of Y and X is used in
the form of a regression (b) where three additional
biometric terms (ba, bs, be) are used to decompose
the Y variance. This model is easily fitted in SEMA
programs by adding several other latent variables to
the diagram as in Figure 2b (from McArdle et al.,
1980, 1998), and the use of standard deviations as
path coefficients provides the boundary restrictions
of any ‘‘Cholesky’’ decomposition (i.e., no negative
variance terms).

The MEMA programs, by current definition,
only handle one outcome variable, but in this model
there are two (Y and X). In previous MEMA
research it has been shown that this type of
bivariate model can be programmed in MEMA pro-
grams by adding a new set of ‘‘dummy weights’’
(i.e., 0,1) to separate the Y from the X as part of
the outcome variable (e.g., see Goldstein, 1995;
McArdle et al., 2002). This means that the key
problem with the VCM representation of the
covariance in regression terms is that it appears to
require estimates based on ‘‘free paths’’ (i.e., ba). As
demonstrated earlier, in MEMA models the random
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Fig. 2. Alternative models for including a measured variable X. Models are shown for one person. (a) Adding X as a covariate. (b) A

popular model for the biometric regression of Y on X. The model shown is the reduced form in which the residual Z is not drawn but is

implied and A is not decomposed into AC and AU. (c) A biometric covariance model for Y and X. The biometric covariances are repre-

sented as common biometric variances. XU and YU are the unique portions of X and Y after the covariance YXC has been removed. (d)

SEMA-VCM representation of an observed variable interaction between X and the biometric components of Y.
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variables refer to the fixed weights (or loadings) and
the MEMA approach does not (currently) offer a
way to introduce random latent variables into the
fixed part of the model (i.e., see Appendices 1 and
2).

One new solution to this problem is found by
rewriting the biometric model as

Yf ;i ¼ ly þ Cyxf ;i þ Uyf ;i; and

Xf; i ¼ lx þ Cyxf ;i þ Uxf ;i; with

Cyxf ;i ¼ Acyxfi þ Scyxf þ Ecyxfi;

Uyf ;i ¼ Auyfi þ Suyf þ Euyfi; and

Uxf ;i ¼ Auxfi þ Suxf þ Euxfi:

ð14Þ

At a first level, we separate the Y and X scores into
common (Cyx) and unique (Uy, Ux) scores, and
then, at a second level, we introduce a set of latent
variables (Acyx, Scy, Ecyx) which are common to
both Y and X, a set of latent variables (Auy, Suy,
Euy) which are unique to Y, and a set (Aux, Sux,-
Eux) which are unique to X. As before, if we add a
third level of latent variables, we can separate the A
terms into AC and AU terms, and then we can then
assume all the latent components with variance
terms are orthogonal to one another. This approach
is depicted as a path diagram in Figure 2c, and here
it is clear that the biometric decomposition of the
covariance of Y and X is represented as a new set
of orthogonal variances. Due to this atypical repre-
sentation of ‘‘covariances as variances,’’ we will
need to allow these new ‘‘variance terms’’ (rayx

2,
rsyx

2, reyx
2) to take on negative values (as discussed

earlier).
In this common variance representation Y is

not considered as an outcome of X. Nevertheless,
this representation yields the same biometric param-
eters as the regression approach (rayx

2 ¼ ba), and
the total variance of any variable can still be repre-
sented in terms of the sum of the common and
unique variance (i.e., rax

2 ¼ racyx
2 + raux

2). The
model of Figure 2c can be fitted using any SEMA
program by imposing the appropriate constraints
across groups. A script for a SAS MIXED program
for this kind of biometric model is presented in
Appendix 5 where we explicitly include options so
the covariance parameter can be negative.

The need for the addition of an interaction into
biometric variance models has been considered by
many other researchers (Cattell, 1963, 1982; Fulker,
1970; Hendersen, 1975; Mather and Jinks, 1977;

Loehlin, 1978; Jinks and Martin et al., 1987;
Purcell and Sham, 2002; Eaves and Erkanli, 2003).
Some recent research has considered models written
in a form similar to

Yf ;i ¼ b0 þ b1Xf ;i þ Afi þ Sf þ Efi þ Xf ;iAfi; ð15Þ

so the final term represents an ‘‘interaction’’ of
observed X and unobserved A. This model is not easy
to represent in a standard SEMA path diagram
because the XA variable is not strictly latent or mani-
fest. However, an MLE version of this strategy was
initially programmed for SEMA using ‘‘definition
variables’’ by Neale et al. (2002). In a similar way,
this kind of variable has been included in a VCM dia-
gram by introducing the ‘‘individual measured value
as a path’’ as in Figure 2d here. Although this dia-
gram represents only a restricted form of a general
interaction model (i.e., no covariance of A and XA),
it is mainly intended to offer a basic framework for
further more complex modeling analyses.

In contrast, the traditional MEMA-VCM
approach somewhat automatically handles this fixed
value by simply using multiplicative weights
(wn * Xn). In the specific case of equation (15) we
could simply write

Yf ;i ¼ b0 þ b1Xf ;i þ Afi þ Sf þ Efi þ Xf ;iAfi; with

Ai ¼ wac ACf þ wau AUfi; and

Xf ;iAi ¼ ðXf ;iwacÞXACf þ ðXf ;iwauÞXAUfi:

ð16Þ

In this model there are two additional fixed weights
(X*wac, X*wau) whose value depends on both the
genetic relatedness of the relative pair and the indi-
vidual’s observed score on X, as well as two addi-
tional unobserved deviation scores (XAC, XAU)
restricted to have the same variance (rxa

2). An
example of this kind of restricted interaction model
is represented in the MEMA -VCM script of
Appendix 5. A more general representation of an
interaction model is

Yf ;i ¼ b0 þ b1Xf ;i þ Afi þ Sf þ Efi

þ Xf ;iðAfi þ Sf þ EfiÞ; or
Yf ;i ¼ b0 þ b1Xf ;i þ Afi þ Sf þ Efi þ Xf ;i Af

þ Xf ;iSf þ Xf ;iEfi or

Yf ;i ¼ b0 þ b1Xf ;i þ Afi þ Sf þ Efi

þ XAf ;i þ XSf ;i þ XEf ;i;

ð17Þ
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where three additional latent variables (XA, XS, XE)
represent the variation associated with the interac-
tion of observed X. The path diagram of Figure 2d
shows this model as a higher-order VCM model with
a final level of uncorrelated variance components.

One typical application used by twin researchers
is a test for sex differences in means and biometric
components, and the model of Figure 2d can be
used for this purpose. For example, if X were coded
as 1 for males and 0 for females, the test that b1 ¼ 0
is a direct test that males have the same means as
females, and the size of the interaction components
(rxa

2, rxs
2 and rxe

2) provide tests of sex differences
in the biometric components. One advantage of this
approach over the scalar sex-limitation PAM model
(i.e., that includes an additional source of genetic
variance in only one sex) is that the VCM approach
does not require the user to decide in advance which
sex is expected to have the greater variance. For
example, if males have lower genetic variance than
females (but were thought to have higher), using the
VCM approach (with the coding X ¼ 1 if male) will
(appropriately) produce a negative value for rxa

2 in
the VCM approach, but merely result in 0 estimates
of the male-specific genetic path in the PAM
approach. Alternative effect codes (e.g., X ¼ [1, )1]
or X ¼ [ ½ , )½ ]) can be used to obtain direct

estimates of pooled group averages and differences
in means and variances.

EXTENSIONS TO INCLUDE MULTIPLE

RELATIVES

In the PAM approach, the twin model is typi-
cally expanded to include additional relatives by
adding sets of latent variables (A, S, E) and specify-
ing the expected correlations (or transmission paths)
among the latent variables for all the relatives.
SEMA programs offer MLE with variable family
structures and missing data (e.g., Mx, Mplus), but
the code setup time and the numerical estimation
time is often prohibitive for large problems. In the
VCM approach used here, additional persons can
be included in the model by introducing into the
data set fixed weights rather than more latent vari-
ables. Of course, these extensions also require addi-
tional pre-processing of the raw data (beyond
Appendix 1), and the required setup work can be
extensive. Nevertheless, so the researcher has a
chance to compare these approaches, we now illus-
trate the flexibility of the VCM approach with sev-
eral examples (see Appendix 6 for SAS MIXED
details).

Table IIIa shows the weights needed for the
standard two-group twin model (or five-group

Table III. Design Matrices for Programming Twin Models as Variance Component Models

Individual Genetic variance components Shared environment

(a) Standard two-group twin design AC AU1 AU2

MZ1 1 0 0

MZ2 1 0 0

DZ1
ffiffiffiffiffiffiffiffi

1=2
p ffiffiffiffiffiffiffiffi

1=2
p

0

DZ2
ffiffiffiffiffiffiffiffi

1=2
p

0
ffiffiffiffiffiffiffiffi

1=2
p

(b) Adoption design AC AU1 AU2 AU3 AU4 AU5

Bio Sib (1)
ffiffiffiffiffiffiffiffi

1=2
p ffiffiffiffiffiffiffiffi

1=2
p

0 0 0 0

Bio Sib (2)
ffiffiffiffiffiffiffiffi

1=2
p

0
ffiffiffiffiffiffiffiffi

1=2
p

0 0 0

Bio Sib (3)
ffiffiffiffiffiffiffiffi

1=2
p

0 0
ffiffiffiffiffiffiffiffi

1=2
p

0 0

Adop Sib (4) 0 0 0 0 1 0

Adop Sib (5) 0 0 0 0 0 1

(c) Twin-sibling design AC AM AU1 AU2 AU3 AU4 S ST SU1 SU2

MZ Twin 1
ffiffiffiffiffiffiffiffi

1=2
p ffiffiffiffiffiffiffiffi

1=2
p

0 0 0 0 1 1 0 0

MZ Twin 2
ffiffiffiffiffiffiffiffi

1=2
p ffiffiffiffiffiffiffiffi

1=2
p

0 0 0 0 1 1 0 0

DZ Twin 1
ffiffiffiffiffiffiffiffi

1=2
p

0
ffiffiffiffiffiffiffiffi

1=2
p

0 0 0 1 1 0 0

DZ Twin 2
ffiffiffiffiffiffiffiffi

1=2
p

0 0
ffiffiffiffiffiffiffiffi

1=2
p

0 0 1 1 0 0

Biol Sib1
ffiffiffiffiffiffiffiffi

1=2
p

0 0 0
ffiffiffiffiffiffiffiffi

1=2
p

0 1 0 1 0

Biol Sib2
ffiffiffiffiffiffiffiffi

1=2
p

0 0 0 0
ffiffiffiffiffiffiffiffi

1=2
p

1 0 0 1

Note: Individual-specific (E) component weights not shown.
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without sex differences). These correspond to the
weights shown in Figure 1c. The same design matrix
and program input could be used to estimate a five-
group twin model (if one were not interested in test-
ing for sex effects) and to include triplets who are
MZ (but not DZ – see below). A five-group model
with sex differences could be estimated by adding
common and sex-specific genetic components, or by
the method described earlier (Figure 2d).

In principle, adding family members to the
model is straight-forward. For each person added
there are two necessary changes to the dataset:
assigning the appropriate weights for the new family
member on the common and unique genetic compo-
nents and adding weights of zero for the other fam-
ily members for the new unique component. There
is one required change to the MEMA model – add-
ing the new unique genetic component as a random
effect. The genetic components which are added are
specified to have the same variance as all the other
genetic components in the model (ra

2). The two
basic requirements of the design matrix are: (1) the
sum of the squares of the genetic weights for an
individual (i.e., all those shown in the same row of
Table III) must equal 1, and (2) the correlation of
two individuals for each component (i.e., the col-
umns in Table III) is equal to the product of the
weights for those individuals.

Table IIIb lists the weights for a study design
with biological and/or adopted siblings. The weights
for the first two biological siblings are identical to
those for DZ twins 1 and 2 in Table IIIa. To add a
third biological sibling to this model requires that
they be assigned the appropriate weight for the

common genetic component (wac ¼
ffiffiffiffiffiffiffiffi

1=2
p

) and that
another weight variable (e.g., wau3) be added for all
individuals in the data set to represent the unique
genetic variance for the third person. The other rel-
atives in the family would be assigned a 0 value for
this weight and the third sibling would be assigned
wau3 ¼

ffiffiffiffiffiffiffiffi

1=2
p

. Analogous changes could be made to
expand the model to include additional biological
siblings. Adoptive siblings are added to the model
by assigning them wac ¼ 0 (because they are geneti-
cally uncorrelated with all other family members)
and adding to the dataset another weight variable
(e.g., wau4) which would receive a value of 1 for the
adoptee and 0 for all other family members.

If siblings labeled 4 and 5 in Table IIIa were
related (e.g., they are full siblings of each other, but
step-siblings of siblings 1–3), this would be coded

by creating a second common genetic factor (e.g.,
AC2) for which siblings 4 and 5 have weights of
ffiffiffiffiffiffiffiffi

1=2
p

and changing their weights for the unique
genetic factors (AU4 and AU5) to be

ffiffiffiffiffiffiffiffi

1=2
p

. The
other family members would be assigned zero
weights for all these components.

Applying the correlation principle to Table IIIa
shows why the basic model input cannot be used
for triplets (except when all three are monozygotic).
The problem is more than just the need to add spe-
cific AU components for the additional family mem-
bers. For example, if the weights shown were
applied to a triplet set which included both MZ and
DZ pairings (i.e., two individuals arose from one
zygote and the third from another), this weighting
would predict that the DZ triplet has a genetic cor-
relation of 0.71 (i.e., 1 *

ffiffiffiffiffiffiffiffi

1=2
p

) with his or her co-
triplets, rather than the expected value of 0.50. The
same problems would arise for a standard twin-sib-
ling design.

Table IIIc is a display of weights which could
be used for a twin-sibling design and would accom-
modate any combination of MZ twins, DZ twins,
all triplet types and biological siblings within the
same family. Here, all the siblings have a weight of
ffiffiffiffiffiffiffiffi

1=2
p

on the common genetic component (AC) so
the expected genetic correlation for the DZ and bio-
logical siblings with each other and with their MZ
twin siblings is 0.50. However, there is another com-
ponent (AM) specific to the MZ pair which allows
their remaining genetic variance to be correlated
and results in the correct expectation of 1.0 for their
genetic correlation (see Appendix 6).

The design of the twin-sibling model allows
testing for a ‘‘special twin environment’’, where
twins have greater environmental similarity than
siblings of different ages. A weighting scheme to
accomplish this is shown in the far right portion of
Table IIIc. All siblings receive a weight of 1 on the
S component, which has variance rs

2. A second
component, ST, representing the twin environment
has weights of 1 for twins and 0 for non-twins, and
variance rst

2. To allow the non-twin siblings to have
the same total variance as the twins (as expected),
we include residual parameters for each non-twin
sibling (SU1, SU2) also assigned variance rst

2, and
these are assigned weights of 1 for non-twins and 0
for twins. Unlike the case for the genetic variance
components (where rac

2 ¼ rau
2), we do not have an

a priori hypothesis about the relative magnitude of
the S and ST variances. Thus, the sum of the
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shared environment weights in any row are not
scaled so that they sum to 1 (as for the genetic com-
ponents) and we will need to calculate the total
shared environment variance as the sum of the S
and ST components. The resulting MLE will repre-
sent the shared environmental variance specific to
twin siblings.

A variety of other extensions to these sibling
models are possible. Additional components could
be used to code for other degrees of genetic related-
ness (half-siblings, cousins) and other environmental
mechanisms such as sibling competition, sex-specific
effects, reared-apart twins, and different environ-
ments for step-siblings reared together or apart.

DISCUSSION

The main purpose of this paper is to show the
complete overlap between the concepts of VCM
and PAM biometric models as implemented in
SEMA and MEMA computer programs. The
SEMA-PAM approach is based on the inclusion of
multiple variables with fixed correlations among
specific relatives. However, the same parameter esti-
mates can be obtained in SEMA-VCM using fixed
weights and orthogonal variance components. This
is useful because the available MEMA programs
are based solely on the VCM approach. Although
the MEMA programs are not always simple to use,
they are efficient in both statistical and practical
ways, and they have become popular in many areas
of behavioral science. These choices between models
and algorithms may be important when dealing
with more complex multivariate factor analysis, lon-
gitudinal applications, and extended family designs,
especially analyses dealing with unbalanced and
incomplete data (e.g., Loehlin, 1979; Maes et al.,
1997; McArdle and Prescott, 1996).

In practice, the choice among computer pro-
grams will be based on tradeoffs between program
features and prior knowledge of the required pro-
gram coding. Since the evaluation of these tradeoffs
was not our main focus, we only presented results
from a limited set of readily available software. The
SEMA-PAM and SEMA-VCM models presented
here were fit to the data using both Mplus and Mx,
but we expect other SEMA programs to behave in
an identical fashion. In contrast, given the proper
weights, the MEMA-VCM approach can be made
to be straight-forward and the program input can
be simpler than the corresponding SEMA scripts.
Other programs for MEMA models can or will
soon permit the biometric variance constraints we
imposed using SAS MIXED. Programs such as
MLM (Goldstein, 1995), HLM (Bryk and Rauden-
bush, 1992), Splus or R (Pinheiro and Bates, 2000),
WinBUGS (Eaves and Erkanli, 2003), and the
newer GLLAMM (Skrondal and Rabe-Hesketh,
2004) will all be realistic alternatives for the SAS
MIXED code presented here. It is also likely that
MEMA packages can or will offer more general
estimation functions, so the biometric models with
categorical outcomes will also be easy to use (e.g.,
Prescott, 2004; Skrondal and Rabe-Hesketh, 2004).

The comparison of these techniques can be
extended in other ways not discussed here, including
the addition of correlations or interactions among
the latent components. In practice, unique solutions
for these and other biometric models currently
depend on the structure and size of the family data
available and the resulting limits on biometric infer-
ences (McArdle, 1996). Future work comparing
these models and programs may offer insights on
how to identify and interpret the parameters of the
more complex but appealing biometric models.
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APPENDIX: COMPUTER SCRIPTS FOR BIOMETRIC ANALYSIS WITH SAS MIXED

1. SAS script to Create Appropriate Weights for each Pair Type

2. SAS MIXED scripts to estimate VCMs

After this pre-processing of the scores (above) we can estimate the full ACE model parameters by running the
standard PROC MIXED software using multiple RANDOM statements. An example is given in the following
code and explanation:
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Step 1: Before running PROC MIXED we assign the weights Wn ¼ [wac,wau1,wau2]: (a) for both MZ
members as Wn ¼ [1, 0, 0], (b) for the first DZ member (n ¼ 1) as W ¼ [

ffiffi

1
2

q

;
ffiffi

1
2

q

, 0], and (c) for the second
DZ member (n ¼ 2) as W ¼ [

ffiffi

1
2

q

, 0,
ffiffi

1
2

q

].
Step 2: The individuals’ scores within a family are reorganized into a relational database with each record

containing (a) family ID (famid ¼ f to F), (b) twin ID (twin ¼ 1 or 2), and (c) the three weights (W).
Step 3: PROC MIXED requires estimation using either METHOD ¼ML or METHOD ¼ REML, and

the CLASS statement must include the family ID (famid ¼ f to F).
Step 4: The MODEL statement must include only the dependent variable (Yn) (even if multivariate or

repeated measures are included; see McArdle and Hamagami, 2003). The statement ‘‘MODEL Y ¼ / SOLU-
TION;’’ is sufficient in most cases to estimate the mean (l) and the individual specific environment or error
term (re

2), i.e., the E Only Model.
Step 5: The common family variance (rS

2) and specific environment (re
2) terms (the CE model) are esti-

mated by adding the statement: ‘‘RANDOM INTERCEPT/SUBJECT ¼ famid TYPE ¼ VC;’’ to the
MODEL statement above.

Step 6: A second RANDOM statement is used to estimate the additive genetic variance (ra
2). Since the

model has fixed weights for the common variance (wac) and the two individual unique terms (wau) we need to
use a device which assures that the variance terms assigned to each weight are ‘‘equal and uncorrelated.’’ One
way to accomplish this with the current version of PROC MIXED is to write ‘‘RANDOM W1 W2 W3/SUB-
JECT ¼ famid TYPE ¼ TOEP(1);’’ This particular use of a Toeplitz matrix with a single band results in a sin-
gle diagonal matrix with equal elements for the additive genetic variance.

Step 7: The full model (A+S+E) is estimated using the MODEL statement and both RANDOM state-
ments (i.e., combining steps 4 and 5), and some of the results are listed below:
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Step 8: Alternative models can be fitted by commenting out the input lines or by fixing a parameter at a spe-
cific value. For example, a model of additive genetic and individual-specific components (i.e., the A+E model)
can be estimated using the MODEL statement and only the second RANDOM statement. It is convenient to
simply comment out the needed lines by placing /* before and */ after the statements to be ignored as follows:
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3. SAS NLMIXED scripts to estimate VCMs

The following NLMIXED code is quite flexible, permitting free-form notation and several levels of
higher-order equations. This code easily converged when used on the simulated data and provided confidence
intervals for the variance percentages.
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4. SAS NLMIXED scripts to estimate binary outcomes with variance components

The following NLMIXED code is used to deal with a binary outcome with twin data. This code converged
when used on the simulated data and provided confidence intervals for the variance percentages.
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5. SAS MIXED scripts for the Bivariate-Biometric models

The following MIXED codes are quite flexible, and the uses of this code are described in the text. This code
was also used on the simulated data.
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6. SAS MIXED script changes for the Multiple Relatives models

The SAS PROC MIXED setup permits inclusion of variable pedigree sizes without extensive reconfiguring of
the data structure. The only alteration needed for the SAS PROC MIXED program code is to add the names
of the new weight variables to the RANDOM statement which codes for the genetic effects. To run the exam-
ple shown in Table III(b), the command used in the twin model:

becomes

This code handles families with sib-ships of 1 to 5 in size, with any combination of biological and adopted off-
spring.

A twin sibling design can be estimated by introducing another component (AM) specific to the MZ pair
which allows their remaining genetic variance to be correlated and results in the correct expectation of 1.0 for
their genetic correlation (see Table III(c)). This would be estimated in PROC MIXED by substituting this line
for the genetic components line:

A special twin environmental component ST, orthogonal to the family environmental component S, can
be estimated by adding the following line to the PROC MIXED input:
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