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Abstract
Recent updates of pan-European seismic hazard and risk maps adopted the partially non-
ergodic Kotha et  al. (Bull Earthq Eng 18:4091–4125, 2020) ground-motion model. This 
model was regressed from the Engineering Strong Motion dataset, containing ground-
motion data of M

W
≥ 3 events mostly from Italy, Turkey, Greece, and in smaller fractions 

from rest of the active shallow crustal tectonic regions of Europe. Through mixed-effects 
regressions, the non-ergodic model partially resolved the spatial variability of attenuation 
characteristics across most of seismically active Europe, but not in France due to the then 
lack of a regional dataset. With the availability of a manually processed dataset from Résif 
network, and a computationally viable Bayesian inferencing algorithm, this study aims 
to extend the non-ergodic applicability of the model to M

W
< 3 earthquakes, attenuating 

regions, tectonic localities, and sites located in France. In process, a few important deci-
sions had to be made concerning the updating methodology, and the interpretation of spa-
tial variability of attenuation—specifically, that of the tectonic localities producing earth-
quakes. The methodology and results are discussed, emphasising the need to revise the 
current ground-motion regionalisation approach, and to tailor the updating procedure to be 
application specific. This study anticipates and supports a shift from frequentist to Bayes-
ian approach of ground-motion modelling, in order to maintain continuity of knowledge 
regressed from various ground-motion datasets.

Keywords  Ground-motion model · Seismic hazard · Seismic risk · Response spectra · 
Bayesian regressions

1  Introduction

The European Seismic Hazard Maps of 2020 (ESHM20) have adopted new strategies in 
developing harmonised hazard assessments across the geological and tectonically diverse 
environments of Euro-Mediterranean region (Danciu et  al. 2021). Among these is the 
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shift towards a more data-driven representation of ground-motion epistemic uncertain-
ties (Weatherill et  al. 2023a, b), as a variation of the ‘scaled backbone’ ground-motion 
model (GMM) logic-tree approach of Bommer (2012) and Douglas (2018). The back-
bone approach ensures transparency on the level of uncertainty implied by the GMM, a 
clearer description of logic-tree branch weights, and the flexibility to make the logic-tree 
specific for a given region. One of the main challenges of regionally scaling and adapting 
the ESHM20 backbone GMM logic-tree is to ensure that its calibration captures the appro-
priate level of ground-motion epistemic uncertainty (e.g., Kowsari et al. 2023); which is 
particularly difficult for regions with limited ground-motion data, and hence is the interest 
of this study.

The ESHM20 GMM logic-tree for active shallow crustal earthquakes (Weatherill, Kotha 
and Cotton 2020) is an application driven implementation of the Kotha et al. (2020a, b) 
and Kotha et al. (2022) GMMs. Together, these GMMs together will be referred to as K20 
from hereon. The K20 models were regressed from the Engineering Strong Motion (ESM) 
dataset developed and validated by Lanzano et al. (2018) and Bindi et al. (2018). The ESM 
dataset featured ground-motions recorded in several seismically active Euro-Mediterranean 
regions hypothesised to exhibit strong spatial variability of attenuation characteristics. To 
quantify the spatial (or regional) variability of ground-motion attenuation characteristics, 
K20 relied on geology and tectonics based regionalisation models of Basili et al. (2019) 
and Danciu et al. (2021).

Figure  1 shows a partially non-ergodic region-specific application of K20 GMM 
as a logic-tree with two branching levels: level 1 to account for variability and uncer-
tainty in far-source attenuation ( > 80km) depending on the receiving site location, 
and level 2 to account for variability and uncertainty in at-source attenuation ( ∼ 1km) 
depending on the event location. Note that, at-source attenuation introduced in this 
study is an alternative interpretation/hypothesis on the tectonic-locality random-effects 
group elaborated in K20 development (see Kotha et al. 2022), and will be detailed in 
later sections. The two branching levels adjust specific coefficients of K20 to predict 
Gaussian distributions of ground-motions best representing the site and event location 
dependent attenuation characteristics in a region. In level 1 of the logic-tree shown in 
Fig. 1, �c3,r is the adjustment to the ‘apparent anelastic attenuation’ coefficient ( c3 in 
K20) specific to the region r hosting the site, and SE(�c3,r) is the uncertainty on �c3,r . 
In level 2, �L2Ll is the adjustment to the ‘offset/bias/intercept’ coefficient ( e1 in K20) 
specific to the tectonic locality l hosting the event, and SE(�L2Ll) is the uncertainty on 
�L2Ll . To ensure that the resulting ground-motions follow a Gaussian distribution, one 
may set � = 1.732 with branch weights W1,j = 0.167, 0.666, 0.167 for j = 1, 2, 3 (Miller 
III and Rice 1983)—similar to those in ESHM20 GMM logic-tree. The logic-tree is 
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Fig. 1   Partially non-ergodic region-specific GMM logic-tree proposed in Kotha et al. (2020a, b)
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cast as such so that [ �c3,r , SE(�c3,r) ], [ �L2Ll , SE(�L2Ll) ], � , and the branch weights can 
be modified and adapted to new regions when and where new ground-motion datasets 
beyond ESM become available.

In K20, �c3,r and �L2Ll were treated as statistical estimates, while Kotha et  al. 
(2022) evaluated the physical meaning of these random-effects and their spatial vari-
abilities. Subsequently, it was argued that the regionally-adaptable scaled GMM logic-
tree reflects, for example, weaker far-source attenuation in Pyrenees compared to 
French Alps, weaker far-source attenuation in French Alps compared to Apennines in 
Italy, weaker far-source attenuation towards east of Apennines compared to the west 
of Apennines in central Italy, etc. However, ESM contained very few ground-motion 
records from France (~ 300) compared to Italy (~ 10,000), while several densely popu-
lated regions in France (e.g., Parisian basin) are still barely sampled from lack of seis-
mic activity. Since �c3,r and �L2Ll were inestimable for most regions in France, the 
ESHM20 backbone GMM logic-tree could only use the pan-European averages with 
large uncertainties in these regions; resulting in hazard estimates with large uncertain-
ties as well. As a follow-up to ESHM20, this study explores a methodology to update, 
in a Bayesian framework, the existing K20 GMM using a new dataset of ground-
motions recorded in France—the Résif (1996–2019) dataset by Traversa et al. (2020), 
recently extended to include data until end of 2021 by Buscetti et  al., (in-prep.). As 
such, this study is an intermediary step towards updating the K20 GMM and adapting 
the Fig. 1 backbone logic-tree to France.

A modest updating procedure would be to compare the ground-motion distributions 
from the GMM logic-tree against the new data from a region, and iteratively—and 
exclusively—modify the �c3,r , �L2Ll , or other GMM coefficients. There are at least 
three problems that deter such a simplified approach: (1) GMM fixed-effect coeffi-
cients are often correlated—this challenges exclusively adjusting any coefficient while 
leaving the rest unchanged; (2) the new dataset may have sampled [MW ,RJB] ranges 
beyond the GMM’s applicability—this may require evaluating first and then recalibrat-
ing the GMM to extend its usability; (3) the new dataset may have sampled [MW ,RJB] 
scenarios well within GMM’s applicability, but the event-, path-, and site-effects, and 
their combinations may be rather peculiar—this may lead to misattributing, for exam-
ple, systematically strong site-effects as event- and path-effects. In combination, these 
three issues may render iterative estimation of physically meaningful �c3,r and �L2Ll 
rather challenging, and possibly unreliable. Incidentally, this was the case with the 
Résif dataset of French ground-motions. It is impossible to guess via residual analyses, 
for example, if the French earthquakes are systematically stronger, if the French site 
amplifications are stronger, or if the French regional crust attenuates ground-motions 
rather weakly compared to the pan-European average of K20. Therefore, this study 
explores an approach to overcome these issues by shifting from classical or frequen-
tist mixed-effects regressions to Bayesian mixed-effects GMM regressions (Samaniego 
2010).

Essentially, this study first recasts the K20 GMM in a Bayesian framework. Follow-
ing an implementation and evaluation of the new regression approach, the K20 model 
is updated using the French dataset. The changes to K20 GMM, the relevant technical 
issues in Bayesian updating, and the apparent causes for the most remarkable changes 
in the GMM are discussed. This study does not propose an application-ready update to 
ESHM20 logic-tree for France, but is intended as a reference to any future attempts to 
scale and adapt the K20 GMM to new regions.
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2 � Datasets

The pan-European dataset (ESM, yellow markers and histograms in Fig. 2) was used in 
conjunction with the regionalisation model of Basili et al. (2019) and tectonic localisation 
model of Danciu et  al. (2021) in deriving the K20 GMMs. Details on each of these are 
available in their respective publications, and will be skipped here. The data selection pro-
cedure for the robust linear mixed-effects regression (RLMM; robustlmm by Koller 2016) 
of K20 is also described in Kotha et al. (2020a, b). The companion dataset from France by 
Traversa et al. (2020) contains ground-motion data recorded by Résif network (Résif, blue 
markers and histograms in Fig. 2). The key features of the datasets relevant to this study 
are:

(1)	 The pan-European ESM dataset contains ground-motion recordings made over the 
period 1969–2016, while the Résif dataset used here covers the period 1996–2021.

(2)	 Prior to data selection procedure based on usable frequency range with good signal-to-
noise ratio, while ESM contains data from 3 < MW < 8 events, Résif dataset contains 
data from a largely disjoint range 2 < MW < 5 . This means that, the new data is well 
beyond the applicability range of K20, particularly towards lower MW.

(3)	 The preferred MW of events in ESM dataset are those from the EMEC catalogue 
(Grünthal and Wahlström 2012) revised by Weatherill and Lammers (GeoForschung-
sZentrum, GFZ Potsdam) during ESHM20 development. The MW estimates of Résif 
events are derived predominantly from the SIHEX-BCSF-RENASS catalogue (Cara 
et al. 2015) and from conversions from local-magnitude estimates. In this study, the 

Fig. 2   Comparison of ESM (yellow) and Résif (blue) ground-motion datasets
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MW provided in the Résif dataset are preferred even if EMEC values are available for 
some of the events.

(4)	 Résif dataset contains data from broadband seismometers, structure-related, and bore-
hole sensors as well. There are 98 stations common to both the datasets. These stations 
are retained in the analyses, because many of them have recorded several small MW 
events in Résif dataset that were absent in ESM. Only data from the sea-bottom station 
“FR.ASEAF” was removed from the analyses.

(5)	 Laurendeau, Clément and Scotti (2022) identified 11 events common to both ESM 
and Résif datasets. Associated to these events, there are 270 records common to both 
the datasets. Following the data selection procedure described in Kotha et al. (2020a, 
b), K20 GMM was derived using 18,222 records in ESM. Following an identical data 
selection procedure, 15,586 Résif records were available for the Bayesian update in this 
study. As shown in Fig. 3, the number of usable records in Résif dataset decreases rap-
idly towards longer periods due to limited usable frequency range with signal-to-ratio 
≥ 3 (details in Traversa et al. 2020). At short periods, the relatively small fraction of 
common records did not alter the key outcomes of this study. At long periods, removing 
these common records further reduced the available Résif records. Therefore, in this 
study, the common events, stations, and their associated ground-motion records are all 
retained in the analyses.

(6)	 The Résif ground-motion data is regionalised with the same models as the ESM dataset 
in Kotha et al. (2020a, b). As in, ground-motion records are assigned into different 
attenuating regions based on site locations, and into different tectonic localities based 
on event locations. Regions that were very poorly sampled in ESM are now populated 
with several tens of recordings in a few cases (Fig. 4).

Fig. 3   Comparison of number of 
usable records passing the low-
pass and high-pass filter criteria 
in ESM and Résif datasets
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3 � Method

The published K20 GMM was derived using a robust linear mixed-effects regression 
(RLMM) algorithm of the robustlmm package in R (R-Core-Team 2000; RStudio-Team 
2022). The robust regressions were necessary to identify and down-weight possible out-
lier ESM data from biasing the fixed-effects median and random-effect variances of the 
mixed-effects K20 GMM. Although RLMM regressions could provide the maximum-
likelihood estimates of GMM fixed-effects coefficients and random-effects variances (or 
standard-deviations), they do not inform on uncertainties of these quantities. Uncertain-
ties are joint distributions of GMM mixed-effects estimates that could allow a modeller 
understand which components are relatively better constrained, and which ranges of the 
dataset may require better sampling. In addition, the customary practice has been to 
derive a completely new maximum-likelihood based GMM every few years when new 
datasets become available; while ignoring the knowledge regressed from existing data-
sets via GMMs. With ground-motion datasets growing exponentially large every year, 
this practice could soon become computationally intense, and the number of GMMs 
may become too numerous and incongruent to choose from (see Douglas and Edwards 
2016).

Bayesian approach to ground-motion modelling overcomes most of the above issues. A 
Bayesian regression yields joint distributions of the mixed-effects parameters of a GMM. 
These joint distributions help in assessing the strengths and weaknesses of the GMM; but 
more importantly, instead of performing a new regression on a new and extended data-
set, these joint distributions of mixed-effects can be used as informative priors in develop-
ing a new GMM or updating an existing GMM. Several authors have argued for the need 
and advantages of Bayesian approach in ground-motion modelling (e.g., Kowsari et  al. 
2020, 2019; Stafford 2019; Kuehn and Scherbaum 2016; Arroyo and Ordaz 2010; Wang 
and Takada 2009). Moreover, with the recent developments in approximate Bayesian infer-
encing using Integrated Nested Laplace Approximation (INLA; Rue et al. 2009), Bayes-
ian GMM regressions have become computationally much more viable (e.g. Kuehn 2021; 
Gómez-Rubio 2020). Therefore, in this study, the first step is to recast the ESM based 
frequentist K20 GMM in a Bayesian framework (Samaniego 2010), and then perform a 

Fig. 4   Distribution of Résif ground-motion data among the attenuation regions (right panel) of Basili et al. 
(2019) and tectonic localities (left panel) of Danciu et al. (2021)
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Bayesian update using the Résif dataset using the R-INLA package (Lindgren and Rue 
2015).

3.1 � Bayesian inference of K20 GMM from ESM dataset

The functional form of K20 GMM is shown in Eqs. (1–4). The purpose of its fixed-effects 
( e1, b1, b2, b3, c1, c2, c3 ), random-effects ( Δc3,r,ΔL2Ll,ΔB

0
e,l
,ΔS2Ss ), and residuals ( E ) are 

explained in Kotha et al. (2020a, b), Kotha et al. (2022), Kotha et al. (2022), and will be 
skipped here.

The exact same subset of ESM dataset used in deriving the K20 model is used in this 
study. Through Eqs.  (1–4), and at all periods T = 0.01–8  s, the Mref = 4.5 , hD = 4, 8, 
12 km depending on hypocentral depths, Rref = 30 km , and Mh = 5.7 are a priori values, 
and remain unaltered in this study. The robust estimates of K20 GMM fixed-effects pub-
lished in Kotha et al. (2022) are used as means of the log-gamma informative priors with 
a precision of 0.1. The robust standard-deviations of random-effect groups ∆c3,r = Ɲ(0, 
τc3), ∆L2Ll = Ɲ(0, τL2L), ΔB0

e,l
 = Ɲ(0, τ0), and ΔS2S  = Ɲ(0, ϕS2S) were published and 

detailed in Kotha et  al. (2022). The informative priors of these quantities in the Bayes-
ian regression are input as typical log-gamma distributions with 1∕�2

L2L
,1∕�2

0
 , and 1∕�2

S2S
 as 

scale parameters and 1 as the rate parameter. Following a few trials, the rate parameter of 
log-gamma distribution with scale parameter 1 ∕�2

c3
 is changed to 0.5 (instead of 1) to bring 

the INLA estimates of �c3 closer to its RLMM counterpart. With these settings, the GMM 
is regressed using the inla function of R-INLA package. 

Kotha et al. (2020a, b) derived two sets of K20 mixed-effects estimates: robust approach 
(RLMM) where random-effects and residuals follow a Huber loss distribution (Huber 
1992), and a classical approach (LME) where random-effects and residuals follow a Gauss-
ian distribution (lme4 by Bates et al. 2015). At the time of this study, the inla function of 
R-INLA package failed to converge for any error distribution (e.g., student-t) other than the 
Gaussian. Consequently, the INLA mixed-effects estimates cannot be expected to coincide 
with RLMM estimates, but perhaps be closer to LME estimates.

Figure 5 shows the fixed-effects ( e1, b1, b2, b3, c1, c2, c3 ) estimates from multiple regres-
sions: the black solid lines are robust RLMM estimates, the black dashed lines are the 
ordinary-least square LME estimates, and the yellow curves are the joint distributions 
estimated in the Bayesian regression of K20 GMM (assuming Gaussian errors). The blue 
curves are those from the Bayesian update of K20 with Résif dataset, and will be discussed 
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in the Results section. Figure 5 indicates that the RLMM, LME, INLA fixed-effects esti-
mates from ESM dataset are in reasonably good agreement, with the maximum likelihood 
estimates of LME (dashed lines) falling closer to the medians of INLA joint distributions 
(yellow curves) than those of RLMM (solid lines). This confirms that, at least the fixed-
effects estimates from INLA can be used as reliable priors in the subsequent Bayesian 
update. In addition, although not shown here, the fixed-effects variance–covariance matri-
ces were almost identical; which means, the within-model epistemic uncertainty ( �� , Atik 
and Youngs 2014) from RLMM and INLA can be used interchangeably.

Figure 6 is similar to Fig. 5 but shows instead the residual and random-effects stand-
ard-deviations ( �0, �c3, �0,�S2S, �L2L ) from RLMM (solid black lines), LME (dashed black 
lines), and INLA (yellow curves) approaches to inferring K20 from ESM. The difference 
in RLMM and LME standard-deviations are clearer in Fig. 6, where the former are often 

Fig. 5   Joint distributions of Kotha et  al. (2020a, b) GMM fixed-effects coefficients at T = 0.01, 0.1, 1s 
(top—to—bottom). The black solid lines are robust (RLMM) estimates, the black dashed lines are classical 
(LME) estimates, the yellow curves are the joint distributions estimated in the Bayesian (INLA) regression 
of K20 GMM with ESM, and the blue curves are the joint distributions from the Bayesian (INLA) update 
of K20 using Résif dataset

Fig. 6   Joint distributions of Kotha et  al. (2020a, b) GMM random-effects standard-deviations at 
T = 0.01, 0.1, 1s (top-to-bottom). The black solid lines are robust (RLMM) estimates, the black dashed 
lines are classical (LME) estimates, the yellow curves are the joint distributions estimated in the Bayesian 
(INLA) regression of K20 GMM with ESM, and the blue curves are the joint distributions from the Bayes-
ian (INLA) update of K20 using Résif dataset
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smaller than the latter as a consequence of down-weighting outlier data from their esti-
mations. The INLA estimates of �0 and �S2S match remarkably well with LME estimates 
while being very different from RLMM estimates, indicating possibly a large number of 
outlier records and sites in ESM dataset—those the LME is unable to identify. Such differ-
ences can be expected between different regression algorithms due to the various underly-
ing assumptions and approximations (also remarked in Stafford 2019). For the purpose of 
this study, however, they are considered reasonably similar and interchangeable. The INLA 
mixed-effects joint distributions obtained for ESM dataset will be used as informative pri-
ors in Bayesian update of K20 using Résif dataset.

3.2 � Bayesian update of K20 GMM with Résif dataset

The data selection procedure described in the Datasets section resulted in 15,586 records 
in Résif dataset available for the Bayesian update at T = 0.01s ; which falls to 10,450 at 
T = 1s , and 3558 at T = 2s. The marginal distributions of K20 mixed-effects—the yellow 
curves in Figs. 5 and 6—can be used as informative priors in the Bayesian update using 
Résif dataset.

Initial attempts with the inla function allowed simply updating the K20 mixed-effects 
with the natural-log of ground-motion values in Résif dataset as likelihoods. Following the 
INLA package update (version 23.04.24) the regressions have become unstable and pro-
duced nonsensical GMM coefficients. To remedy this, the Bayesian update is performed on 
the Residuals obtained by subtracting K20 fixed-effects (median, Eqs. 2–4) prediction from 
natural-log of Résif ground-motions ( ln(GM) ), as in Eq.  (5). Accordingly, the priors for 
the fixed-effects are those shown in Fig. 5 but instead centred on zero, because the fixed-
effects trends are already removed from the Résif data via Eq. (5). Therefore, the Residuals 
regressed in Eq. (6) produce � estimates of the fixed-effects. The � estimates are then added 
to the K20 median of priors of fixed-effects to obtain their conjugate posteriors.

Through several trials it is understood that the Bayesian updates (of GMMs) are rather 
sensitive to the priors and the restrains placed on them. The effect of restrains, i.e., to allow 
random-effects parameter to be updated or to remain fixed, will be shown in the Discus-
sion section. Only the trial considered to be producing the most defensible GMM update 
is discussed here. These restrains were placed on specific fixed-effects; meaning, certain 
coefficients among ( e1, b1, b2, b3, c1, c2, c3 ) were restrained from being updated:

•	 e1 is the offset, bias or intercept of the GMM median (Eq. 1). This fixed-effects coeffi-
cient is indispensable in a GMM regression, but has no strict physical meaning. A posi-
tive �e1 (Eq. 6) following the update would shift the GMM median to higher values for 
all [MW ,RJB] combinations—both ergodic and non-ergodic predictions. This can be con-
sidered indefensible because the Résif dataset does not have the same [MW ,RJB] range as 
ESM, and the updated coefficients should (preferably) not effect predictions beyond the [
MW ,RJB

]
 range of the new dataset.In addition, the  �L2Ll values are added to e1 to obtain 

partially non-ergodic predictions via the GMM logic-tree (level 2 in Fig. 1). Since, the 
K20 estimate of e1 is a pan-European average, modifying e1 may render the ESM estimates 

(5)Residuals = ln(GM) −
(
e1 + fR,g

(
MW ,RJB

)
+ fR,a

(
RJB

)
+ fM

(
MW

))

(6)
Residuals = �e1 + �b1 + �b2 + �b3 + �c1 + �c2 + �c3 + Δc3,r + ΔL2Ll + ΔB0

e,l
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of �L2Ll incompatible with K20. In order to be able to compare �L2Ll of the new Résif 
tectonic localities (in left panel of Fig. 4) to those estimated using ESM, it was deemed 
necessary to restrain e1 from updating. Therefore, e1 is not updated by fixing �e1 = 0 in Eq. 
(6).

•	 b1, b2 fixed-effects coefficients control the scaling of ground-motions with MW (Eq.  4) 
for events with MW ≤ Mh = 5.7 . Since Résif dataset contains data from events with 
2 < MW < 5 , it is necessary to allow b1, b2 to be updated. It is important to note that, e1 
is positively correlated to b1, b2 (discussed in Kotha et al. 2022). Therefore, constraining 
�e1 = 0 or not strongly effects the update of b1, b2 . In this study, �b1, �b2 in Eq. (6) are 
allowed to take non-zero values.

•	 b3 fixed-effects coefficient controls the scaling of ground-motions with MW (Eq.  5) for 
events with MW > Mh = 5.7 . Although b3 is allowed to be updated, the [MW ,RJB] range of 
the Résif dataset should not affect it. In this study, �b3 in Eq. (6) is allowed to obtain non-
zero values.

•	 c1, c2 fixed-effects coefficients control the linear-decay of ground-motions with RJB and 
[MW ,RJB] , respectively. Equation (2) models the geometric attenuation of ground-motions 
via weakly correlated c1, c2 (discussed in Kotha et  al. 2022). Bindi and Kotha (2020) 
observed that geometric spreading could be region-specific due to regional differences 
in near-surface crustal structure, and seismogenic depths. Since the hypocentral depth of 
small events are often poorly constrained, there was no concrete reason to restrict these 
coefficients from updating. Therefore,  �c1, �c2 are allowed to obtain non-zero values.

•	 c3 fixed-effects coefficient controls the exponential-decay of ground-motions with RJB . 
Equation (3) models the so-called ‘apparent anelastic’ attenuation of ground-motions at 
far-source distances. This parameter is regionalised via �c3,r in Eq. (3). The c3 estimated 
from ESM are the pan-European averages, to which region-specific �c3,r values can be 
added (level 1 in Fig. 1) to obtain region-specific predictions. �c3,r values are estimated for 
new Résif regions beyond the ESM coverage (Fig. 4). In this study, similar to argument 
made against updating e1 , in order to main the compatibility of ESM based c3 and �c3,r 
values, and to evaluate �c3,r values of new Résif regions against those from ESM,  c3 is not 
allowed to change during the Bayesian update by constraining  �c3 = 0 in Eq. (6).

•	 The marginals of all random-effects groups Δc3,r = Ɲ(0,τc3), ΔL2Ll = Ɲ(0,τL2L), ΔB0
e,l

  
= Ɲ(0,τ0), and ΔS2S  = Ɲ(0,ϕS2S) are restricted from being updated. The random-effect 
values of the levels within each group—say, the δc3,r  of a region r in Δc3,r = Ɲ(0,τc3) 
group—are estimated with respect to their group variance. In doing so, for example, the 
δc3,r values of regions common to both datasets are not updated but re-estimated using the 
new Résif data; and are compared to their ESM based estimates in Supplementary Figures. 
This has been decided after several trials, but there is no clear reason as to whether they 
should be or not. The only justification is that, allowing one or more of these parameters 
to update led to instabilities in regression across the spectral period range. This study dis-
cusses the results of the trial where none of the random-effects are allowed to update, but 
this issue will be revisited in the Discussion section.

4 � Results

Bayesian inference of K20 from ESM and subsequent update using Résif data were 
performed for RotD50 combination of horizontal spectral accelerations at periods 
T = 0.01 − 8s , PGA and PGV  . Figure  7 compares the fixed-effects (left panel) and 
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random-effects (right panel) values inferred from ESM (dashed lines) and updated using 
Résif (solid lines) datasets.

4.1 � Fixed‑effects

Figure 5 and the left panel of Fig. 7 show the behaviour of the fixed-effects coefficients fol-
lowing the Bayesian update. Coefficients e1 and c3 are restricted from updating, so there is 
not much to discuss except for a remark that: �L2Ll and �c3,r values estimated from ESM—
for regions not present in Résif—will remain usable even after the update. Regarding the 
other coefficients:

•	 b1, b2 fixed-effects coefficients exhibit the largest changes. The blue curves in Fig.  5 
suggest that both these coefficients have lower uncertainty following the update, as indi-
cated by the posteriors (blue curves) narrower than the priors (yellow curves). Figure 7 
suggests that at short-periods both coefficients have updated values (solid lines) smaller 
than those of K20 (dashed lines); although the changes are less significant for b1 . The 
effect of these changes in GMM median predictions can be observed in Fig. 8. In the 
lower panels of Fig. 8 showing the scaling of spectral accelerations at T = 0.01, 0.1, 1s 
(left-to-right) with MW , the faded lines correspond to ESM based K20 predictions, 
overlain by solid lines from updated predictions. The updated predictions are lower 
than K20 predictions at MW ≤ 4 at all distance ranges. However, the smallest events 
considered hazard relevant in most PSHA studies, even in low seismicity regions, are of 
MW ≥ 4.5 . Therefore, changes in b2 shown here do not affect the ESHM20.

A more interesting aspect of this update is that b2 values are now close-to-zero as 
opposed to being positive in K20. While discussing the purpose of various fixed-effects 
coefficients, Kotha et  al. (2022) acknowledged that while empirically b2 takes positive 
values in K20, theoretically it should take non-positive values as proposed by Fukushima 
(1996) and Douglas and Jousset (2011). Kotha et  al. (2022) argued that the uncertainty 
on b2 and K20 predictions at MW ≤ 4 is large due to sparse calibration data in ESM, and 
the errors in MW of small events. Although errors in MW of small French events persist in 

Fig. 7   Comparison of ESM (dashed lines) inferred and Résif (solid lines) updated GMM fixed-effects coef-
ficients (left panel), random-effects and residual standard-deviations (right panel)
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Résif, the 10,000 + records from MW ≤ 4 have worked in favour of reducing the uncer-
tainty in b2 values.

•	 b3 fixed-effects coefficient controls the scaling of ground-motions at MW > 5.7 . Since 
the [MW ,RJB] range of Résif dataset falls short, b3 has remained the same.

•	 c1, c2 fixed-effect coefficients controlling the geometric attenuation exhibit only mar-
ginal changes in their median values (Fig. 5 and left panel of Fig. 7) but have lower 
uncertainties than in K20. The update has mostly unnoticeable impact on predictions at 
near-source distances (e.g., ≤ 30 km).

In summary, the only remarkable changes following the update are the lower uncertain-
ties on the fixed-effects coefficients that were allowed to be updated, and b2 values that bet-
ter confirm with analytical expectations. The impact on median predictions is largely unno-
ticeable, and may even be irrelevant to most PSHA studies. However, prospective PSHA 
studies in low-moderate seismicity regions such as France, Germany, United Kingdom, 
and regions effected by local induced seismicity composed of small events, this Bayesian 
update of K20 may be more appropriate with its improved predictions at MW ≤ 4.

As a side note, a trial regression where e1 was allowed to update had increased its value 
( 𝛿e1 > 0 ) at short-periods, which traded-off with a stronger decrease in b2 on to negative 
values. This increase in e1 combined with decrease in b2 rendered only minor changes 
in predictions in the range 3.5 < MW < 4.5 , but led to an increase in GMM median 

Fig. 8   Comparison of ESM inferred (faded lines) and Résif updated (strong lines) scaling of spectral accel-
erations at T = 0.01s, 0.1s, 1s (left-to-right columns) with distance metric RJB (top panels) and with MW 
(bottom panels). The curves are colour coded according to the hypocentral depth-bin of the event, and the 
curves’ line-type changes with attenuation region—details in Kotha et al. (2020a, b, 2022)
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predictions by up to 50% at MW > 5.7 . Since that would be an update difficult to substanti-
ate, the decision to restrain e1 from updating was considered more defensible. Similarly, 
allowing c3 to update also increased its values. However, the updated (less negative) c3 in 
combination with ESM based �c3,r values would have suggested anelastic amplification at 
far-source distances in a few ESM regions. Therefore, not allowing c3 to update was con-
sidered appropriate. It is important to note again that, the restrains chosen in this study are 
appropriate for this dataset, but may need revision for other datasets.

4.2 � Random‑effects

Figure  6 and the right panel of Fig.  7 show the behaviour of the random-effects stand-
ard-deviations following the Bayesian update. Since all the random-effect variances are 
restricted from updating, neither of these plots show curves corresponding to the Résif 
update—except �0 . The random-effects (variability) components of a mixed-effects GMM 
are as important as the fixed-effects (median) component. Higher random-effects stand-
ard-deviations, if treated as aleatory variabilities, contribute to the total ground-motion 
aleatory variability ( � in Fig. 7)—which in-turn yield conservative hazard estimates with 
extreme ground-motions becoming more likely (e.g., Bommer and Abrahamson 2006). 
When instead treated as epistemic uncertainties, the random-effects standard-deviations 
can be discounted from the total ground-motion variability, and used in GMM logic-tree. 
For example, Weatherill, Kotha and Cotton (2020) used �c3 and �L2L to define the attenua-
tion uncertainties in the ESHM20 shallow crustal GMM logic-tree. Since neither of �c3 and 
�L2L is changed in this update, the ESHM20 logic-tree is not impacted.

In this study, as important as the random-effects groups’ standard-deviations 
( �c3, �0,�S2S, �L2L ) themselves, are the random-effects values ( �c3,r , �B0

e,l
, �S2Ss, �L2Ll ) of 

the levels within the groups. For instance, �c3 is a quantification of spatial variability of 
far-source attenuation in ESM ground-motion data, when regionalised using Basili et  al. 
(2019). The group in this case is ‘far-source attenuation regions’, and the levels are the 
‘far-source attenuating regions’ within Basili et al. (2019) regionalisation model. When �c3 
is the (group) standard-deviation, Δc3,r = Ɲ(0,τc3) is the Gaussian random-variable with 
unique �c3,r values for each (level) region r . Figure 1 is a logic-tree using region-specific 
�c3,r  and �L2Ll values from Kotha et al. (2020a, b), and is different from that of Weatherill, 
Kotha and Cotton (2020) using �c3 and �L2L values. Similarly, ΔS2Ss = Ɲ(0,ϕS2S) can be 
used to make site-specific hazard and risk assessments as demonstrated in, e.g., Kotha et al. 
(2017), and Kohrangi, Kotha and Bazzurro (2020), respectively.

It is important to note also that, the random-effects level values ( �c3,r , �B0
e,l
, �S2Ss, 

�L2Ll ) are estimated from the group standard-deviations ( �c3, �0,�S2S, �L2L ), respectively. 
This means that, the ( �c3,r , �B0

e,l
, �S2Ss, �L2Ll ) and their standard-errors (e.g., the SE in 

Fig. 1) are sensitive to ( �c3, �0,�S2S, �L2L ) values being updated or not. The methods to esti-
mate �B0

e,l
 (or �Be ) and �S2Ss using �0 (or � ) and �S2S , respectively, were already presented 

in earlier studies (e.g., Abrahamson and Youngs 1992; Stafford 2014; Bradley 2015, etc.). 
In this study, ( �c3, �0,�S2S, �L2L ) are restrained from being updated. The following subsec-
tions discuss the ( �c3,r , �B0

e,l
, �S2Ss, �L2Ll ) estimated under these restrains.
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4.2.1 � Attenuation variability: 1c3,r = Ɲ(0,τc3)

Figure 9 shows the �c3,r values of the various far-source attenuation regions estimated using 
ESM (top panels) and Résif (bottom panels) datasets at spectral periods T = 0.01, 0.1, 1s 
(left-to-right). Clearly, the regions newly populated with Résif data (right panel of Fig. 4) 
now have region-specific �c3,r values; which were to be otherwise assigned the pan-Euro-
pean average c3 values with �c3,r = 0 in Eq. (3).

The ‘red regions’ in Fig. 9 are those with 𝛿c3,r > 0 values, and are supposed to exhibit 
weaker/slower far-source attenuation than the pan-European average with �c3,r = 0 . Par-
tially non-ergodic region-specific ground-motion predictions (from level 1 of Fig.  1) for 
these red regions would therefore be larger than those predicted for ‘white/grey’ and ‘blue’ 
regions, with pan-European average �c3,r = 0 and stronger/faster attenuation character-
istics with 𝛿c3,r < 0 , respectively. However, despite the surplus of Résif data in France, 
since the regionalisation model itself does not distinguish regions within France, there is 
not much to infer from these maps regarding the variability of far-source attenuation. The 
crustal tomography maps of Mayor et  al. (2018) image France as multiple regions with 
distinct intrinsic absorption Qi∕Qm characteristics in different frequency bands—except the 
Parisian basin with no data (0o–5o East and 47o–50oNorth). The Basili et al. (2019) model 
did not adopt the Mayor et al. (2018) findings in their regionalisation of France, because 
neither were specifically designed for GMM attenuation regionalisation.

Supplementing Fig. 9, Fig. S1 shows that the �c3,r values for some of the regions com-
mon to both ESM and Résif datasets are rather similar, and with lower uncertainty fol-
lowing the update. However, there are as well regions with very different values estimated 
from ESM and Résif datasets, e.g., Pyrenees (−5o–2oEast and 42o–45oNorth) and Corsica 
Sardinia (10oE and 38o–43oN). The latter contains only about a dozen ground-motion 

Fig. 9   Comparison of ESM inferred (top) and Résif inferred (bottom) region-to-region variability of appar-
ent far-source anelastic attenuation random-effects group Δc

3,r = Ɲ(0,τc3)
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records in Résif dataset and will be ignored for the time being. The Pyrenees region how-
ever, has a few 100 s of new Résif records that were absent in ESM, and now is assigned a 
less extreme positive �c3,r value. The tomography maps of Mayor et al. (2018) showed that 
the Pyrenees region has an intrinsic absorption Qi close to the French national average Qm , 
and lower than Brittany region to its north-west (−5o–0oE and 46o–50oN)—suggesting that 
attenuation in Pyrenees could be stronger (less positive �c3,r ) than in Brittany. However, 
none of these features could be captured with the current Basili et al. (2019) regionalisation 
model used in K20. Therefore, recognising the need for better refinement on regionalisa-
tion of France, this study will be followed-up by an evaluation and redesign of the region-
alisation models used in K20. Meanwhile, this update suggests that far-source attenuation 
in France is on average always weaker/slower than elsewhere in pan-European region cov-
ered by ESM, and especially, in comparison to the stronger/faster attenuation inferred for 
the highly active regions of Central Italy. Consequently, ergodic GMMs developed using 
ground-motions recorded primarily at stations located in Italy may severely under-predict 
far-source ground-motions observable in France.

4.2.2 � Tectonic variability: 1L2L
l
 = Ɲ(0,τL2L)

Figure 10 shows the �L2Ll values of the various tectonic localities estimated using ESM 
(top panels) and Résif (bottom panels) datasets at spectral periods T = 0.01, 0.1, 1s (left-
to-right). Similar to Fig. 9, the localities newly populated with Résif data (right panel of 
Fig. 4) now have locality-specific �L2Ll values; which were to be otherwise assigned aver-
age pan-European e1 values in Eq. (1).

Fig. 10   Comparison of ESM inferred (top) and Résif inferred (bottom) tectonic locality-to-locality variabil-
ity of at-source attenuation random-effects group ΔL2 = Ɲ(0,τL2L)
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The ‘red regions’ in Fig. 10 are those with 𝛿L2Ll > 0 values, and are supposed to exhibit 
lower at-source attenuation than the pan-European average with �L2Ll = 0 . Partially non-
ergodic locality-specific ground-motions (from level 2 of Fig.  1) for these red localities 
would therefore be larger than those predicted for ‘white/grey’ and ‘blue’ localities, with 
pan-European average with �L2Ll = 0 and stronger at-source attenuation characteristics 
with 𝛿L2Ll < 0 , respectively. Unlike the far-source attenuation regionalisation in Fig. 9, the 
at-source attenuation regionalisation in Fig.  10 appears to capture a greater spatial vari-
ability within France. For instance, tectonic localities in Fig. 10 are distinct for the Pyre-
nees (−5o–2oE and 42o–45oN), the Parisian basin (0o–5oE and 47o–50oN), and the Brittany 
regions (−5o–0oE and 46o–50oN)—the latter two were merged into one far-source attenua-
tion region in Fig. 9. In this study, it is important to reintroduce and clarify the meaning of 
at-source attenuation.

Both K20 and Kotha et al. (2022) adopted the tectonic localities of Danciu et al. (2021) 
(left panel of Fig. 4) to regionalise (or localise) ground-motion data and quantify source 
related attenuation characteristics in the ESM dataset. In those studies, the �L2L took larger 
values—indicating a greater regional variability—at short spectral periods ( T < 1s ) and 
high frequencies ( f > 1Hz ). However, random-effects and residual analyses showed that 
the ΔL2Ll = Ɲ(0,τL2L) were poorly correlated to any available physical parameters at that 
time. For instance, ΔL2Ll showed no correlation with Brune (1970) stress-drop estimated 
by Bindi and Kotha (2020) of events originating the tectonic localities. ΔL2Ll showed 
some negative correlation to Activity Index ( AIx ) of Chen et al. (2018), which in-turn is 
a fuzzy combination of 1 Hz coda Q, crustal shear-wave velocity at 175 km, and seismic 
moment rate density parameters. Meaning, tectonic localities with higher AIx had on-aver-
age lower δ L2Ll values (and the other way), but it was inconclusive which of the three 
Chen et al. (2018) crustal parameters are responsible for the correlation. Essentially, δ L2Ll 
was assigned no physical meaning in Kotha et al. (2022).

In this study, upon comparing the crustal tomography maps of Mayor et al. (2018) with 
the ΔL2Ll spatial variability in Fig.  10, it becomes evident that the regions with higher 
Qi∕Qm often coincide with tectonic localities with 𝛿L2Ll > 0 (e.g., the Brittany region), 
and those with lower Qi∕Qm coincide with tectonic localities with 𝛿L2Ll < 0 (e.g. the Pyr-
enees region). Note that a higher intrinsic absorption quality-factor Qi∕Qm implies lower 
attenuation. Based on this observation, this study hypothesises that the regional variabil-
ity of source-effects captured by ΔL2Ll = Ɲ(0,τL2L)—via the tectonic localities of Dan-
ciu et al. (2021)—could in fact be related to intrinsic absorption quality-factor Qi∕Qm at 
the earthquake source location and the Earth’s crust immediately around its hypocentre. 
Therefore, in this study, the tectonic localities random-effects group is hypothesised to be 
capturing the at-source attenuation characteristics. Based on this hypothesis, evidently, 
the earthquakes originating in the Brittany region with 𝛿L2Ll > 0 suffered weaker at-
source attenuation by virtue of the region’s lower intrinsic absorption as indicated by its 
higher Qi∕Qm . Supplementary to Fig. 10, Fig. S2 shows that the �L2Ll values for the tec-
tonic localities common to both ESM and Résif datasets are rather similar at short periods 
T < 1s , and with lower uncertainty following the update.

4.2.3 � Between‑event variability: 1B0
e,l

 = Ɲ(0,τ0)

Figure  11 shows the trend of �B0
e,l

 with MW of ESM events (yellow markers) and Résif 
events (blue markers) at spectral periods T = 0.01, 0.1, 1s (left-to-right). The �B0

e,l
 versus 

MW plots are customarily used to verify if the MW-scaling component of GMM (Eq.  4) 
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is appropriate for the dataset. Absence of any systematic trends confirm that the Bayes-
ian update efficiently removed MW-scaling from Résif ground-motion data. However, it 
appears that the scatter of �B0

e,l
 of MW < 4 Résif events is rather narrow, suggesting that the 

between-event variability of such small events is in fact lower than that of 4 < MW < 5.7 
events in ESM dataset. This observation is counter to the general consensus on heteroske-
dastic MW-dependent between-event variability �0

(
MW

)
 (e.g., Youngs et al. 1995).

K20 proposed a heteroskedastic model with a large �0
(
MW

)
 at MW < 5 , decreasing linear 

with MW and reaching about a 20% smaller �0
(
MW

)
 at MW ≥ 6.5 . The heteroskedastic model 

used in ESHM20 is a Weatherill, Kotha and Cotton (2020) adoption of the Al Atik (2015) pro-
posal. Figure 11 suggests that either of the above-mentioned heteroskedastic �0

(
MW

)
 models 

can be used with this Bayesian update. However, it is important to recall that the Bayesian 
update trial being discussed here is the one with all random-effects group variances restrained 
from changing, and that the �B0

e,l
 are estimated directly from the unchanged �0 . If the between-

event variability �0 is allowed to change, the consequent �B0
e,l

 of the Résif events will necessar-
ily change. This issue will be revisited in the Discussion section.

Supplementing Fig. 11, Fig. S3 compares �B0
e,l

  of the events identified by Laurendeau, 
Clément and Scotti (2022) as common to both datasets. While majority of events have sim-
ilar �B0

e,l
 values inferred from the two datasets, the events with largest differences in their 

MW sourced from EMEC in ESM and Si-HEX in Résif datasets also show the largest dif-
ferences in their �B0

e,l
  values. In addition, there appears also an inverse relation, wherein 

ESM inferred �B0
e,l

  values are larger than Résif inferred �B0
e,l

 when ESM assigned MW 
are lower than Résif assigned MW—although not strictly. Laurendeau and Kotha (2023) 
analysed in detail the impact of MW homogenisation/unification on the between-event vari-
ability of Kotha et al. (2022) Fourier GMM derived from ESM, and discussed the sources 
of such MW and �B0

e,l
 . discrepancies. Such analyses have not yet been performed on the 

K20 response spectra GMMs, and are among the planned activities to follow-up this study.

4.2.4 � Between‑station variability: 1S2S
s
 = Ɲ(0,ϕS2S)

Figure 12 shows the trend of �S2Ss versus Vs30 of ESM stations (yellow markersand Résif 
stations (blue markers) at spectral periods T = 0.01, 0.1, 1s (left-to-right). The plot offers 
not much insight except that the Résif stations with Vs30 > 800m∕s are more numerous. 
Figure 4 supplements Fig. 12 by comparing the �S2Ss of stations common to both datasets 
at spectral periods T = 0.01, 0.1, 1s (left-to-right). Most sites with �S2Ss values around the 
zero-median of Ɲ(0,ϕS2S) distributions appear to have similar values across datasets, while 
those at the extremes of the random-distributions are very different. Once again, note that 

Fig. 11   Comparison of �B0
e,l trends versus MW of ESM events (yellow) and Résif-RAP events (blue), at 

T = 0.01, 0.1, 1s (left-to-right)
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restraining ΦS2S from updating also effects the ΔS2Ss estimates. Although not shown here, 
in trials where ΦS2S is allowed to update, the between-dataset coherence of  �S2Ss of com-
mon stations noticeably improves. It is not clear yet whether s ΦS2S should be updated or 
not, but this issue is briefly revisited in the Discussion section.

4.3 � Residuals: E = Ɲ(0,ϕ0)

Figures  6 and 7 compare the standard-deviation of ‘left-over’ residuals �0 from ESM 
and Résif datasets. Despite all the random-effects and residual standard-deviations being 
restrained from updating, �0 becomes larger following the update. This is because, unlike 
with the random-fects where level-specific values are estimated from group variances, 
residual variance is estimated from record-specific residuals obtained after removing 
mixed-effects values from the ground-motion observations. The hypothesis in this study is 
that the random-effect and residual variances trade-off depending on whether their priors 
are restrained from updating or not. Here, the additional variability of Résif ground-motion 
data appears to be absorbed into the residuals and their larger standard-deviation �0.

Figure  13 visualises the MW − RJB dependence of Résif record-to-record variabil-
ity �0,M,R at T = 0.01, 0.1, 1  s. Here, �0,M,R is the standard-deviation of residuals in the 
900 evenly spaced MW − RJB bins defined solely for visualisation and discussion pur-
pose. The numerous MW − RJB bins with grey colour are those where �0,M,R is equal to 
the generic �0 for that specific period. Moderate deviations of �0,M,R from �0 appear at 
30 < RJB < 100 km , where the Résif dataset is densely sampled. Stronger deviations 
appear at 0 < RJB < 30 km , where the dataset is poorly sampled. However, at this resolu-
tion of MW − RJB binning, the deviations are rather irregular between adjacent cells, with 
steep changes in �0,M,R ; plus, choosing larger MW − RJB bins show similar trends with no 
additional insights. An MW − RJB dependent heteroskedastic �0,M,R is an option for this 
update, but perhaps after first evaluating their physical causes. Since both �0 and ΦS2S are 
restricted from updating, it is likely that the event- and site-dependent variabilities have 
been absorbed by the event- and site-specific residuals; which can be captured by period-
dependent event-specific residual standard-deviation Φ0,e and station-specific residual 
standard-deviation Φ0,s.

Figure 14 shows the event-specific residual variabilities �0,e at T = 0.01, 0.1, 1s; in top 
panels at event locations, and in bottom panels as histograms. The histograms suggest that 
a majority of events have �0,e  lower than the updated Résif �0 ; which means, the larger 
Résif �0 could have been biased by a few extreme �0,e values. Therefore, it is worth analys-
ing ground-motions of (these few) individual events for an explanation. An immediately 
noticeable feature in the maps (top panels) is that �0,e are systematically larger (in red) than 
�0 for events located at the Italy-France-Switzerland frontier [45oN, 7.5oE] compared to 

Fig. 12   Comparison of �S2Ss trends versus measured Vs30 of ESM stations (yellow) and Résif stations 
(blue) at T = 0.01, 0.1, 1s (left-to-right)
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elsewhere; especially compared to events more eastward in Italy [45oN, 10oE]. The Alpine 
region on the Italy-France-Switzerland frontier is geologically a very complex region, 
which can be hypothesised to have caused stronger azimuthal variability in propagation 
effects (e.g., Causse et al. 2021, Laurendeau et al. 2023). It could also be due to the anisot-
ropy in shear-wave radiation pattern of small, point-source approximal, MW < 3 events in 
this region (e.g., Dujardin et al. 2018, Kotha, Cotton and Bindi 2019, Trugman, Chu and 
Tsai 2021). The deterministic radiation pattern effects can be empirically modelled pro-
vided reliable event hypocentral depth and centroid-moment-tensor solutions are available, 
and the large �0,e can be resolved. However, the crustal heterogeneities around event loca-
tions may rapidly render the radiation patterns stochastic, making it impossible to resolve 
the large �0,e in this region. Another option is a regionally varying �0 , but only following 

Fig. 13   MW − RJB dependence of residual variability �
0,M,R at T = 0.01, 0.1, 1s (left-to-right columns). 

Note that the colour scale is centred (grey) on the �
0
 at that specific period

Fig. 14   Spatial distribution (top) and histogram (bottom) of event-specific residual variability �
0,e  at 

T = 0.01, 0.1, 1s (left-to-right). The map colour scales are centred on �
0
  (grey) at respective periods, with 

events of 𝜙
0,e > 𝜙

0
 coloured in red, and vice-versa for blue. The histograms are overlain with vertical lines 

at �
0
 of ESM (yellow) and of Résif (blue)
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an evaluation of its physical meaning. Moreover, such analyses are more sensible in the 
Fourier domain than with the response spectra here.

Figure 15 shows the station-specific residual variabilities �0,s at T = 0.01, 0.1, 1s; in top 
panels at station locations, and in bottom panels as histograms. The histograms suggest that 
a majority of stations have �0,s lower than the updated Résif �0 . As with the events, it is 
worth analysing ground-motions of individual stations for an explanation. The maps (top 
panels) show that a few stations in the Pyrenees region (−5o–2oE and 42o–45oN) show sys-
tematically larger �0,s (in red) compared to stations elsewhere in France. Site-responses can 
become extremely complex, especially at the numerous Résif stations located in basins and 
valley. Results from this study can help in selecting sites with large �0,s for site characteri-
sation missions (e.g., Hollender et al. 2021), to identify reference sites with small �0,s (e.g., 
Pilz, Cotton and Kotha 2020, Lanzano et al. 2020, Thompson et al. 2012), and to improve 
regional site-response maps (e.g., Weatherill et al. 2023a, b, Parker and Baltay 2022).

5 � Discussion

The parametric K20 ground-motion models were developed from the pan-European ESM 
dataset, quantifying various repeatable physical phenomena as mixed-effects. These mod-
els were intended to be evaluated, updated and adapted to new regions as and when new 
ground-motion datasets become available. Regression of a dataset is essentially a con-
densation of the knowledge it provides, into an interaction of a few predictable physi-
cal parameters. This condensed knowledge can be used as prior information that can be 
validated and updated with new data as likelihoods. Such an approach to ground-motion 
prediction is more aptly handled via a Bayesian framework. The aim of this study was to 
develop an approach and explore the feasibility of updating the pan-European K20 GMM 

Fig. 15   Spatial distribution (top) and histogram (bottom) of station-specific residual variability �
0,s  at 

T = 0.01, 0.1, 1s (left-to-right). The map colour scales are centred on �
0
 (grey) at respective periods, with 

stations of 𝜙
0,s > 𝜙

0
 coloured in red, and vice-versa for blue. The histograms are overlain with vertical lines 

at �
0
 of ESM (yellow) and of Résif (blue)
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in a Bayesian framework using a dataset of ground-motions recorded in France. In process, 
the first step was to recast the regression of ESM based K20 GMMs in a Bayesian frame-
work; in order to validate the knowledge gained from regression of ESM against Résif 
ground-motion data, and update as necessary.

The Bayesian linear mixed-effects regression of ESM dataset yielded a version of K20 
that can be used interchangeably with the published version. While the fixed-effects com-
ponents of the two versions produce identical median ground-motion predictions, the ran-
dom-effects and residual components (standard-deviations) are not identical. The published 
random-effects estimates were from a computationally intense robust regression that itera-
tively down-weight outlier data, but were not replicable with current capabilities of the 
INLA algorithm—although this may change in the near future. For the time being, the 
marginal distributions of mixed-effects inferred from ESM dataset were used as priors to 
update the K20 with Résif ground-motion data. In process, a few major assumptions had to 
be made.

There are events, stations, and associated ground-motion records common to both data-
sets. These were few in number, and were retained in the update process. The MW of events 
in ESM and Résif datasets are sourced from different catalogues, and are based on differ-
ent selection criteria. It is unreasonable to expect that newer datasets will share the same 
preferred MW selection criteria as ESM. Therefore, MW reported in Résif dataset were used 
as they are. Among the planned activities is a unification/homogenisation of MW across 
datasets, and advance this study into Fourier domain as well.

ESM dataset regression considered only the surface strong-motion sensors, while all 
Résif stations were used, irrespective of their installation conditions, to enhance the spa-
tial coverage. The resulting site-specific random-effects can be investigated if this selection 
criteria can be justified. In this study, there is no such detailed analysis because nothing 
remarkable was noticed. However, the outcomes from this study can be used to develop a 
more application-ready version of the GMM; with revised decisions on which sites should 
be retained in, for example, developing a companion empirical site-response model for 
France.

Multiple trial regressions were made with various restrains on the mixed-effects, allow-
ing them to be updated or not. Ultimately, a rather restrained approach was chosen wherein 
some of the fixed-effects known to be strongly correlated are locked to their prior values, 
allowing the others to absorb the possible differences in physical process across the two 
datasets. The first important outcome, in this approach, is a large correction to the quad-
ratic scaling of ground-motions with MW . While the model inferred from ESM suggested a 
counter-intuitive scaling towards small MW , the Résif update rectified it to a more analyti-
cally agreeable scaling. With this update, the K20 model becomes slightly more appropri-
ate for small MW ground-motion predictions, e.g., those likely to be critical in PSHA of 
regions with low-moderate tectonic and induced seismicity.

The second, equally important outcome, are the regional variabilities of at-source and 
far-source attenuations connected to event and station locations. The far-source attenuation 
variability is governed by station location, and can be used to adjust the ‘apparent anelas-
tic’ exponential decay of ground-motions with RJB to be specific to a far-source attenuating 
region hosting the station. The at-source attenuation variability is governed by the event 
location. In this study, the at-source attenuation is hypothesised as an intrinsic absorp-
tion–scattering process that occurs around the events’ hypocentres, and therefore, effects 
ground-motion predictions at all distances. ESM dataset had barely enough data to quan-
tify these well-known regional variabilities in attenuation within France. Résif dataset can 
tremendously increase the capability of K20 to make partially non-ergodic region-specific 
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ground-motions in France; and not-to-mention, site-specific predictions are now possible at 
several dozen new locations all over France.

The maps showing spatial variabilities of far-source and at-source attenuation are inter-
esting but offer little insight on the underlying physical processes. Particularly, the attenua-
tion regionalisation model used to quantify far-source attenuation variabilities are in urgent 
need of refinement. The model used to quantify at-source attenuation variabilities are at-
times consistent with crustal tomography maps available for France. This means that, the 
hypothesis on at-source attenuation may hold– but further investigation is necessary. These 
crustal tomography models will come handy in refining the regionalisation models.

Random-effects quantifying event- and site-specific ground-motion variabilities did not 
offer much insight into how French events and stations are systematically different from the 
pan-European sample in ESM. This could be partly because these random-effects priors 
were restrained from updating, and hence being validated with Résif data. These restrains 
however appear to have forced the ‘left-over’ residuals to accommodate the additional 
ground-motion variability. This brings to scrutiny the approach of restraining all random-
effects variabilities from updating.

Figure 16 shows partial results from three distinct Bayesian update trials: Trial 1 is one 
where all the random-effects group variances were unrestrained from updating; Trial 2 is 
where only the far-source and at-source attenuation random-effects were restrained from 
updating, leaving the rest unrestrained from updating; Trial 3 is the one presented in this 
study, with all random-effects variances being restrained to their prior ESM inferred val-
ues. The impact of these methodical assumptions is evident in the top panels of Fig. 16. 
Trial 1 suggested that the Résif updated far-source ( �c3 ) and at-source ( �L2L ) attenuation 
group variabilities coincide with those inferred from ESM, at short periods. At long peri-
ods, the updated values become negligibly small and unstable across periods. In turn, the 
random-effects values for their levels—estimated from their small group variances—were 
close to zero. Trial 1 outcome was considered unpromising, and needed a remedy—there-
fore, trial 2.

Instead of restraining the priors from updating at specific periods, trial 2 superseded 
trial 1 by simply restraining far-source ( �c3 ) and at-source ( �L2L ) attenuation group vari-
abilities from being updated at all spectral periods. The resulting outcomes on regional 
variabilities of far-source and at-source attenuations were similar to those from trial 3 pre-
sented in Figs. 9 and 10. This brings to emphasis the very large between-event group vari-
abilities ( �0 ) estimated in trial 2. The �B0

e,l
(T = 0s) versus MW plots under trial 1 and trial 

2 are quite similar; with the scatter at MW < 4 being as large as at 4 < MW < 5.5 . The MW

—dependent heteroskedastic models either of K20 or ESHM20 can be used as is with this 
update. The large �B0

e,l
(T = 0s) versus MW in trial 1 and 2 may be indicative of the well-

known uncertainties and regional variabilities in MW estimation procedures of Résif events. 
At the time of this study, there was no remedy for this issue. A similar analysis in Fourier 
domain may offer more insights on trial 2.

The usable Résif ground-motion data with good signal-to-noise ratio falls rapidly at 
T > 0.3s . The sudden changes in the dataset composition may have caused convergence 
issues, leading to the instabilities in random-effects standard-deviations around T = 1s ; 
otherwise, trial 2 would be as acceptable as the preferred trial 3 in this study—if not 
more. However, it is the �S2Ss(T = 0s) versus Vs30 plots from trial 2 that dissuaded from 
it being preferred over trial 3. This plot shows that the variability in site-response of 
Résif stations with Vs30 > 1800m∕s to be rather large. At the time of the study, the inex-
plicably high variability of high-frequency site-response has already been a key issue 
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in ground-motion analyses—and it was not clear if there is supposed to be an upper or 
lower limit to site-response variability ΦS2S . Bayesian frameworks are quite conveni-
ent in setting up prior constrains, which in this case is to use the ESM inferred knowl-
edge of ΦS2S to be undisputed and thus, not updated. With these assumptions regarding 
both �0 and ΦS2S , and other random-effects groups, trial 3 is presented as the preferred 

Fig. 16   Comparison of three trial regressions with selective restraining of ESM inferred prior random-
effects group variances from being updated with Résif data. In the top panel, ESM inferred estimates are in 
dashed lines, overlain with Résif estimates in solid lines. In the two middle rows,  �B0

e,l(T = 0s) versus MW 
and �S2Ss(T = 0s) versus Vs30 plots show ESM estimates in yellow and Résif estimates in blue. The bottom 
panels show ‘left-over’ residual variabilities estimated for several MW − RJB bins ( �

0,M,R ), with the colour 
scale centred at �

0
(����) .  T = 0s in these plots implies PGA
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approach. However, it is to be noted that if the Bayesian regression algorithm becomes 
capable of robust regressions, it is worth repeating the analyses presented in this study.

Restraining all the random-effects variances to their ESM inferred priors led to trial 3, 
which clearly shows the largest ‘left-over’ residual variabilities Φ0 at all spectral periods. 
The running hypothesis, in this study, is that the additional Résif ground-motion variability 
is absorbed into residual variability Φ0 , suggesting a high record-to-record variability for 
a few events and stations. The bottom panels of Fig. 16 show Φ0,M,R across the three tri-
als at T = 0s , which is essentially the MW − RJB dependent residual variability of PGAs in 
Résif dataset. The redistribution of residual ground-motion variability—from trial 1 to 3—
appears to have accumulated in 30 < RJB < 100 km range across the entire MW range. Fur-
ther investigation showed that the record-to-record variabilities are systematically larger 
for events located in the complex tectonic environment of the Alps mountain ranges, and 
for stations located in the Pyrenees mountain ranges. There are a few options to reduce 
or remodel the residual variability Φ0 , in order to mitigate its impact as a component of 
aleatory variability ( � ) in PSHA. But these options will be explored in a more application-
oriented manner; similar to the implementation of K20 GMMs in ESHM20.

This study presents the K20 GMMs in a Bayesian framework, with a more formalised 
updating procedure. New ground-motion datasets are steadily becoming more available 
following the demonstration of impact of GMM uncertainties in ESHM20, especially for 
low-moderate seismicity regions of pan-Europe. These new datasets can serve to extend 
the non-ergodic application of K20 GMMs to newer regions; but more significantly, in 
validating and improving existing ground-motion models themselves. It has often been 
the case that, numerous new GMMs supersede earlier models derived from older, more 
limited datasets. The newer models also often predict median ground-motions incongruent 
with their superseded versions, and quite often with larger aleatory variability. Bayesian 
frameworks may offer a connectivity between various versions of a GMM, and ensure a 
continuity of knowledge inferred from across various ground-motion datasets. This study 
concludes with the outlook that: Ground-motion analyses should benefit from advances in 
Bayesian regressions, by bringing in more data-driven transparency to their development, 
and in producing application-oriented GMMs for seismic hazard and risk assessments.
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viridis (Garnier 2019). All the outputs of the Bayesian linear mixed-effects regressions—including coef-
ficient tables and marginal distributions, non-ergodic adjustments, and full regression summaries—will 
require revision over time, following a stricter data selection, refinement of regionalisation models and vari-
ance models. Preliminary models from this study can be made available to interested readers upon request.

Declarations 

Conflict of interest  The authors ensure there are no conflict of interests.

References

Abrahamson NA, Youngs R (1992) A stable algorithm for regression analyses using the random effects 
model. Bull Seismol Soc Am 82(1):505–510

Al Atik L (2015) NGA-East: ground-motion standard deviation models for central and eastern North Amer-
ica. PEER Rep 2015:7

Arroyo D, Ordaz M (2010) Multivariate Bayesian regression analysis applied to ground-motion prediction 
equations, part 2: numerical example with actual data. Bull Seismol Soc Am 100(4):1568–1577

Atik LA, Youngs RR (2014) Epistemic uncertainty for NGA-West2 models. Earthq Spectra 
30(3):1301–1318

Basili R, Brizuela B, Herrero A, Iqbal S, Lorito S, Maesano FE, Murphy S, Perfetti P, Romano F, Scala A 
(2019) NEAMTHM18 documentation: the making of the TSUMAPS-NEAM tsunami hazard model 
2018. Front Earth Sci. https://​doi.​org/​10.​3389/​feart.​2020.​616594

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat 
Softw 45:789. https://​doi.​org/​10.​18637/​jss.​v067.​i01

Bindi D, Kotha S (2020) Spectral decomposition of the Engineering Strong Motion (ESM) flat file: regional 
attenuation, source scaling and Arias stress drop. Bull Earthq Eng 18:1–26

Bindi D, Kotha SR, Weatherill G, Lanzano G, Luzi L, Cotton F (2018) The pan-European engineering 
strong motion (ESM) flatfile: consistency check via residual analysis. Bull Earthq Eng 17:1–20

Bommer JJ (2012) Challenges of building logic trees for probabilistic seismic hazard analysis. Earthq Spec-
tra 28(4):1723–1735

Bommer JJ, Abrahamson NA (2006) Why do modern probabilistic seismic-hazard analyses often lead to 
increased hazard estimates? Bull Seismol Soc Am 96(6):1967–1977

Bradley BA (2015) Systematic ground motion observations in the canterbury earthquakes and region-spe-
cific non-ergodic empirical ground motion modeling. Earthq Spectra 31(3):1735–1761

Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophys Res 
75(26):4997–5009

Cara M, Cansi Y, Schlupp A, Arroucau P, Béthoux N, Beucler E, Bruno S, Calvet M, Chevrot S, Deboissy 
A (2015) SI-Hex: a new catalogue of instrumental seismicity for metropolitan France. Bull Soc Géol 
Fr 186(1):3–19

Causse M, Cornou C, Maufroy E, Grasso J-R, Baillet L, El-Haber E (2021) Exceptional ground motion dur-
ing the shallow M w 4.9 2019 Le Teil earthquake France. Commun Earth Environ 2(1):1–9

Chen Y-S, Weatherill G, Pagani M, Cotton F (2018) A transparent and data-driven global tectonic regionali-
zation model for seismic hazard assessment. Geophys J Int 213(2):1263–1280

Danciu L, Nandan S, Reyes C, Basili R, Weatherill G, Beauval Cl, Rovida A, Vilanova S, Şeşetyan K, Bard 
P-Y (2021) The 2020 update of the European seismic hazard model: model overview. EFEHR Techni-
cal Report 001, v1. 0.0

Douglas J (2018) Calibrating the backbone approach for the development of earthquake ground motion models. 
Best practice in physics-based fault rupture models for seismic hazard assessment of nuclear installations: 
issues and challenges towards full seismic risk analysis. CEA Cadarache-Château, Cadarache

Douglas J, Edwards B (2016) Recent and future developments in earthquake ground motion estimation. 
Earth Sci Rev 160:203–219

Douglas J, Jousset P (2011) Modeling the difference in ground-motion magnitude-scaling in small and large 
earthquakes. Seismol Res Lett 82(4):504–508

Dujardin A, Causse M, Berge-Thierry C, Hollender F (2018) Radiation patterns control the near-source 
ground-motion saturation effect. Bull Seismol Soc Am 108:3398–3412

https://doi.org/10.3389/feart.2020.616594
https://doi.org/10.18637/jss.v067.i01


2292	 Bulletin of Earthquake Engineering (2024) 22:2267–2293

1 3

Fukushima Y (1996) Scaling relations for strong ground motion prediction models with M 2 terms. Bull 
Seismol Soc Am 86(2):329–336

Garnier S (2019) Viridis: default color maps from “matplotlib” 2018. https://​github.​com/​sjmga​rnier/​virid​is. 
R package version 0.34: 27

Gómez-Rubio V (2020) Bayesian inference with INLA. CRC Press, New York
Grünthal G, Wahlström R (2012) The European-Mediterranean earthquake catalogue (EMEC) for the last 

millennium. J Seismolog 16(3):535–570
Hollender F, Rischette P, Maufroy E, Cornou C (2021) Caractérisation des conditions de site des stations 

RAP et RLBP: état des lieux et perspectives. 5èmes rencontres scientifiques et techniques Résif. CEA 
Cadarache-Château, Cadarache

Huber PJ (1992) Robust estimation of a location parameter. Breakthroughs in statistics. Springer, Cham, pp 
492–518

Kahle D, Wickham H, Kahle MD (2019) Package ‘ggmap’
Kohrangi M, Kotha SR, Bazzurro P (2020) Impact of partially non-ergodic site-specific probabilistic seis-

mic hazard on risk assessment of single buildings. Earthq Spectra 37:409–427
Koller M (2016) robustlmm: an R package for robust estimation of linear mixed-effects models. J Stat Softw 

75(6):1–24
Kotha SR, Bindi D, Cotton F (2017) From ergodic to region- and site-specific probabilistic seismic hazard 

assessment: Method development and application at European and Middle Eastern sites. Earthq Spec-
tra 33(4):1433–1453

Kotha SR, Cotton F, Bindi D (2019) Empirical models of shear-wave radiation pattern derived from large 
datasets of ground-shaking observations. Sci Rep 9:981

Kotha SR, Weatherill G, Bindi D, Cotton F (2020a) A regionally adaptable ground-motion model for shal-
low crustal earthquakes in Europe. Bull Earthq Eng 18:4091–4125

Kotha SR, Bindi D, Cotton F (2022) A regionally adaptable ground-motion model for fourier amplitude 
spectra of shallow crustal earthquakes in Europe. Bull Earthq Eng 20(2):711–740

Kotha SR, Weatherill G, Bindi D, Cotton F (2022b) Near-source magnitude scaling of spectral accelera-
tions: analysis and update of Kotha et al. (2020) model. Bull Earthq Eng 20(3):1343–1370

Kowsari M, Halldorsson B, Hrafnkelsson B, Snæbjörnsson JÞ, Jónsson S (2019) Calibration of ground 
motion models to Icelandic peak ground acceleration data using Bayesian Markov Chain Monte Carlo 
simulation. Bull Earthq Eng 17(6):2841–2870

Kowsari M, Sonnemann T, Halldorsson B, Hrafnkelsson B, Snæbjörnsson JÞ, Jónsson S (2020) Bayesian 
inference of empirical ground motion models to pseudo-spectral accelerations of south Iceland seismic 
zone earthquakes based on informative priors. Soil Dyn Earthq Eng 132:106075

Kowsari M, Ghasemi S, Bayat F, Halldorsson B (2023) A backbone seismic ground motion model for strike-
slip earthquakes in Southwest Iceland and its implications for near-and far-field PSHA. Bull Earthqu 
Engi 21(2):715–738

Kuehn N (2021) A primer for using INLA to estimate ground-motion models. University of California, Los 
Angeles

Kuehn NM, Scherbaum F (2016) A partially non-ergodic ground-motion prediction equation for Europe and 
the Middle East. Bull Earthq Eng 14(10):2629–2642

Lanzano G, Sgobba S, Luzi L, Puglia R, Pacor F, Felicetta C, D’Amico M, Cotton F, Bindi D (2018) The 
pan-European engineering strong motion (ESM) flatfile: compilation criteria and data statistics. Bull 
Earthq Eng 17:1–22

Lanzano G, Felicetta C, Pacor F, Spallarossa D, Traversa PJGJI (2020) Methodology to identify the refer-
ence rock sites in regions of medium-to-high seismicity: an application in Central Italy. Geophys J Int 
222(3):2053–2067

Laurendeau A, Clément C, Scotti O (2022) A strategy to build a unified dataset of moment magnitude esti-
mates for low-to-moderate seismicity regions based on European-Mediterranean data: application to 
metropolitan France. Geophys J Int 230:1980–2002

Laurendeau A, Kotha SR (2023) Moment-magnitude definition for pan-European shallow crustal earth-
quakes: impact on fourier ground-motion variability. In: 28th IUGG general assembly

Laurendeau A, Lancieri M, Rusch R, Causse M, Cushing EM, Gélis C, Hok S (2023) The extremely shal-
low Mw 4.9 2019 Le Teil earthquake, France: main ground motion features highlighted by comparison 
with ground motion models. In: 28th IUGG general assembly

Lindgren F, Rue H (2015) Bayesian spatial modelling with R-INLA. J Stat Softw 63:1–25

https://github.com/sjmgarnier/viridis


2293Bulletin of Earthquake Engineering (2024) 22:2267–2293	

1 3

Mayor J, Traversa P, Calvet M, Margerin L (2018) Tomography of crustal seismic attenuation in Metropoli-
tan France: implications for seismicity analysis. Bull Earthq Eng 16(6):2195–2210

Miller AC III, Rice TR (1983) Discrete approximations of probability distributions. Manag Sci 
29(3):352–362

Parker GA, Baltay AS (2022) Empirical map-based nonergodic models of site response in the greater Los 
Angeles area. Bull Seismol Soc Am 112(3):1607–1629

Pilz M, Cotton F, Kotha SR (2020) Data-driven and machine learning identification of seismic reference sta-
tions in Europe. Geophys J Int 22:861–873

R-Core-Team (2000) R language definition. R foundation for statistical computing, Vienna, Austria
RStudio-Team (2022) RStudio: integrated development environment for R. In, Boston, MA
Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using 

integrated nested Laplace approximations. J R Stat Soc Ser B 71(2):319–392
Samaniego FJ (2010) A comparison of the Bayesian and frequentist approaches to estimation. Springer, Cham
Stafford PJ (2014) Crossed and nested mixed-effects approaches for enhanced model development 

and removal of the ergodic assumption in empirical ground-motion models. Bull Seismol Soc Am 
104(2):702–719

Stafford PJ (2019) Continuous integration of data into ground-motion models using Bayesian updating. J 
Seismolog 23(1):39–57

Team RC (2013) R foundation for statistical computing. Vienna Austria 3:37
Thompson EM, Baise LG, Tanaka Y, Kayen RE (2012) A taxonomy of site response complexity. Soil Dyn 

Earthq Eng 41:32–43
Traversa P, Maufroy E, Hollender F, Perron V, Bremaud V, Shible H, Drouet S, Guéguen P, Langlais M, 

Wolyniec D (2020) RESIF RAP and RLBP dataset of earthquake ground motion in mainland France. 
Seismol Res Lett 91:2409–2424

Trugman DT, Chu SX, Tsai VC (2021) Earthquake source complexity controls the frequency dependence of 
near-source radiation patterns. Geophys Res Lett 48(17):e2021GL095022

Wang M, Takada T (2009) A Bayesian framework for prediction of seismic ground motion. Bull Seismol 
Soc Am 99(4):2348–2364

Weatherill G, Kotha SR, Cotton F (2020) A Regionally-adaptable, “scaled-backbone’” ground motion logic 
tree for shallow seismicity in Europe: application in the 2020 European seismic hazard model. Bull 
Earthq Eng 18:5087–5117

Weatherill G, Crowley H, Roullé A, Tourlière B, Lemoine A, Gracianne C, Kotha SR, Cotton FJBoEE, 
(2023) Modelling site response at regional scale for the 2020 European seismic risk model (ESRM20). 
Bull Earthq Eng. 21(2):665–714

Weatherill G, Kotha SR, Danciu L, Vilanova S, Cotton F (2023b) Modelling seismic ground motion and 
its uncertainty in different tectonic contexts: challenges and application to the 2020 European seismic 
hazard model (ESHM20). Natl Hazards Earth Syst Sci Discuss 2023:1–66

Wickham H, Chang W, Henry L, Pedersen T, Takahashi K, Wilke C, Woo K (2019) R Package ‘ggplot2’v. 
3.1. 1. Cran R

Wickham H, François R, Henry L, Müller K (2019) dplyr: a grammar of data manipulation. R package ver-
sion 0.8. 0.1

Youngs R, Abrahamson N, Makdisi F, Sadigh K (1995) Magnitude-dependent variance of peak ground 
acceleration. Bull Seismol Soc Am 85(4):1161–1176

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.


	A Bayesian update of Kotha et al. (2020) ground-motion model using Résif dataset
	Abstract
	1 Introduction
	2 Datasets
	3 Method
	3.1 Bayesian inference of K20 GMM from ESM dataset
	3.2 Bayesian update of K20 GMM with Résif dataset

	4 Results
	4.1 Fixed-effects
	4.2 Random-effects
	4.2.1 Attenuation variability:  = Ɲ(0,τc3)
	4.2.2 Tectonic variability:  = Ɲ(0,τL2L)
	4.2.3 Between-event variability:  = Ɲ(0,τ0)
	4.2.4 Between-station variability:  = Ɲ(0,ϕS2S)

	4.3 Residuals:  = Ɲ(0,ϕ0)

	5 Discussion
	Acknowledgements 
	References




