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Abstract
Industrial plants are complex structures, highly vulnerable with respect to seismic loading. 
Past seismic events have demonstrated the devastating impact and huge economic losses 
that an industrial plant can experience not only due to physical damage of equipment, but 
also due to interruption of the production processes. In order to quantify these economic 
losses, plant seismic resilience evaluation is required. The current paper presents a proba-
bilistic process flow-based framework for assessment of industrial plant resilience and eco-
nomic losses in case of seismic events. Uncertainties are considered in the ability of plant 
equipment to withstand the perturbation, and also in the recovery process including equip-
ment recovery durations and recovery costs. Monte Carlo Simulation is used to account 
for the uncertainties of the model. A black carbon plant is used as a case study to show the 
applicability of the model. Results and capability of the proposed model shows that it can 
be a useful tool for decision makers, plant owners, insurance companies, emergency man-
agers and plant designers in their decision making process.

Keywords  Process plants · Resilience · Na-Tech hazard · Seismic risk · Economic losses · 
Business Interruption

 *	 Fabrizio Paolacci 
	 fabrizio.paolacci@uniroma3.it

	 Bledar Kalemi 
	 bledar.kalemi@uniroma3.it

	 Antonio C. Caputo 
	 antoniocasimiro.caputo@uniroma3.it

	 Daniele Corritore 
	 daniele.corritore@uniroma3.it

1	 Department of Civil, Computer Science and Aeronautical Technologies Engineering, Roma Tre 
University, Via Vito Volterra, 62, 00146 Rome, Italy

2	 Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito 
Volterra, 62, 00146 Rome, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10518-023-01685-z&domain=pdf
http://orcid.org/0000-0003-2724-4809


76	 Bulletin of Earthquake Engineering (2024) 22:75–106

1 3

1  Introduction

1.1 � Background and motivation

In process plants unexpected external or internal events, such as natural disasters, cata-
strophic failure of critical equipment, supply chain interruption, cyber attacks etc. may 
determine process stoppage and extended downtime disrupting operations for signifi-
cant time intervals. Such perturbations can rapidly propagate through the supply chains, 
causing huge economic losses, impairing firms competitivity, or even forcing them out 
of business. In this respect, technological accidents triggered by natural hazards (Na-
Tech events), are of particular interest, for the severe consequences they can generate. 
For instance, the clean room systems of New Mexico semiconductor manufacturing 
plant of the Philips NV Group were contaminated by a minor fire in the year 2000. This 
disrupted the production of cellular phone chips and interrupted for over 9 months’ sup-
ply to Philips’ customers. Apart from the resulting $ 40 million lost sales cost to Philips, 
the loss to one of its final customers, LM Ericsson, amounted to $  2.34 billion loss 
and forced its retreat from the cellular business (Sheffi 2005). In Japan the 1995 Kobe 
earthquake hugely impacted the industrial infrastructure. A city-wide power interrup-
tion lasted 7 days while the industrial water and gas supply required more than 80 days 
to be recovered (Cole et  al. 2013). This caused severe impact at the individual plant 
level (Cole et al. 2016; Kajitani et  al. 2013). In general, earthquake damage to indus-
trial building may severely impact even operations of manufacturing plants (Saitta et al. 
2012). In such cases traditional risk assessment measures, which focus on vulnerability 
and immediate consequences may not be sufficient, while resilience is a performance 
measure providing a more complete picture. Resilience measures both the robustness 
of a system, i.e. the ability to survive unexpected disruptive events, and the capability 
of rapidly restoring its capacity after the event occurred (Bhamra et al. 2011; Bristow 
and Hay 2017; Hosseini et al. 2016b; Ivanov et al. 2017; Woods 2015). By accounting 
even for long term effects, and explicitly factoring in the system capabilities of absorp-
tion, adaptation and restoration, resilience is of great relevance to operations managers, 
plant engineers, public administrators, and industrial actors in general. Sheffi (2005) and 
Sheffi (2015) reports several practical examples of the devastating consequences of lack 
of resilience in manufacturing enterprises and the industrial sector. Therefore, to predict 
unexpected disruptions, by computing resilience-based metrics, is a priority for indus-
trial enterprises, (Nauck et al. 2021), and is a prerequisite for mitigating adverse events 
impact through building more resilient systems.

While research on industrial systems resilience started more than two decades ago, it 
was initially aimed at civil infrastructures, networked systems and service distribution 
infrastructures (i.e. telecommunication and road transportation networks, gas and elec-
tricity distribution grids or telecommunication networks etc.), (Argyroudis et al. 2020, 
2021; Sun et  al. 2020). Subsequently the attention shifted to supply chain resilience, 
while research on resilience estimation of industrial plants has been comparatively 
scarcer in both the process and manufacturing sectors. In fact, as noted by El-Halwagi 
et al. (2020) “very little work has targeted the resilience of the manufacturing processes. 
Even less work has addressed the topic of process design approaches to create disaster-
resilient industrial processes”. Consequently, the present paper is a contribution to fill 
this gap by providing a complete framework allowing a fully probabilistic detailed resil-
ience estimation of process plants under Na-Tech Seismic events.
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When reviewing the literature, some noteworthy distinctions were identified between 
the available approaches to resilience modeling, allowing a broad classification. For 
sake of clarity it was found useful to distinguish two main categories of approaches, i.e. 
non-flow based and flow based.

Non-flow based methods, focus on logical interaction between plant components and 
often neglect the physical architecture of the plant, thus making an estimation of pro-
cess flows more awkward if not impossible, especially if different process flows coexist. 
Moreover, they do not allow to compute the recovery period and capacity recovery trend 
in a precise manner because interactions between the recovery activities, that is the 
dependency of the recovery stages from specific end-start constraints, are neglected. In 
fact, the recovery process is often modelled resorting to predefined analytical functions 
(Cimellaro et al. 2006; Cimellaro 2016) which may be unrealistic. A continuous instead 
of discrete recovery curve is thus obtained which often is not related to actual process 
structure nor includes a schedule of recovery actions dictated by logic constraints in 
the sequence of recovery tasks. Economic consequences of equipment failure are often 
neglected (Cimellaro et al. 2009). Within non-flow based models, the main approaches 
utilize Bayesian networks (BN) or reliability-based modeling. Generally, BN do not 
describe the physical structure of the system but map the logical structure of "cause-
consequences" between damage caused by the disruptive event and its consequences. 
They often provide only a probabilistic aggregate indicator of system resilience, and the 
evaluation of this indicator in different time intervals allows to plot resilience evolution 
over time instead of a time trend of capacity based on progress of actual recovery activi-
ties. Among non flow-based models, the dynamic object-oriented BN has been applied 
to the case of the Fukushima Daiichi nuclear power plant accident (Abimbola and Khan 
2019), to model resilience (actually the failure probability considered as its proxy) as 
the joint probability of the resilience capacities (absorption, adaptation, and restoration) 
as a function of time. The Chevron refinery accident was analysed in a similar man-
ner (Tong et  al. 2020). BN were also used to estimate resilience of a sulphuric acid 
manufacturing plant (Hosseini et al. 2016a) as well as electric infrastructures (Hossain 
et  al. 2019a), maritime ports (Hossain et  al. 2019b), inland waterway ports (Hosseini 
and Barker 2016), and a composites production facility (Yodo and Wang 2016).

Differently, flow-based approaches rely on modeling the physical structure of the sys-
tems and quantifying one or more types of flows passing through the system. Such kind 
of approach is thus inherently suited to process plants modeling. Flow-based models rep-
licate the system structure by mapping physical and logical interconnections between sys-
tems components and often use balance equations to compute flows across branches and 
nodes. Such models can be even supplemented by mathematical programming approaches 
where decision variables value has to be selected to optimize a performance measure dur-
ing system design or recovery after a disruption. In the  estimation of seismic resilience 
of an industrial plant either epistemic uncertainty or randomness can be included, relying 
on Monte Carlo simulations. Caputo and Paolacci (2017) developed a process flow-based 
method based on functional block diagrams and activity networks to model both the impact 
of disruptions on system capacity as well as discontinuous time trend of capacity recov-
ery, as dictated by the actual interaction between the equipment restoration activities. The 
model is specifically conceived for process plants under natural hazards and allows to com-
pute economic loss in terms of reconstruction and business interruption costs. The model 
was also applied to a nitric acid plant (Caputo et al. 2020) impacted by earthquakes, in a 
deterministic way analyzing the most probable seismic damaged scenarios. Mussini (2019) 
develops a similar approach, also including multi-level analysis and detailed structural 
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analysis of equipment failure under earthquake risk. However, in this model the interaction 
of recovery actions is only captured in approximate manner.

1.2 � Scope of the work

When modelling resilience of process plants, a flow-based approach seems preferable, 
especially in presence of catastrophic events like earthquakes, as this allows to base the vul-
nerability and resilience computation on the actual physical structure of the plant account-
ing for the effect that equipment failure has on process flows changes, which impact on 
production loss costs. Moreover, to compute in a reliable manner the recovery period dura-
tion, the mutual interactions between single units restoration activities must be factored 
in. The possibility of computing the actual time trend of capacity recovery also allows to 
compute different resilience metrics and easily assess the individual equipment contribu-
tion to plant resilience. Nevertheless, a full probabilistic approach that fully implements the 
capabilities of a flow-based approach is currently missing.

For the above reasons, in the present paper a probabilistic flow-based model for process 
plant resilience estimation under seismic Na-Tech events is proposed. It relies on a simpli-
fied graph-based network representing the recovery tasks, showing the interdependencies 
between reconstruction activities of different equipment. For its implementation a specific 
probabilistic equipment recovery model is formulated. The capability of estimating eco-
nomic loss from repair activities, material loss and business interruption and the definition 
of a schedule of recovery tasks, useful for project management purposes, is also imple-
mented. The model is also associated to a hazard analysis module allowing to generate 
multiple damage scenarios in a realistic manner for seismic Na-Tech events. This enables 
plant designers and safety managers to explore the possible impact of high risk—low prob-
ability events and plan effective measures to increase plant resilience of industrial plants 
under earthquakes. The main novelties of the work with respect to Caputo et al. (2020), 
are essentially: (i) a full integration of seismic risk analysis in the MCS approach for the 
resilience assessment, (ii) the presence of multiple damage states in the definition of all 
recovery phases, iii) incorporation of the randomness of recovery cost and time, (iv) use of 
simplified recovery process in the resilience quantification, (v) the quantitative resilience 
analysis of a new case study for the validation of the method.

The paper is organized as follows. Section 2 provides the adopted definition of resil-
ience for industrial plants. Section 3 deals with a general formulation of probabilistic seis-
mic resilience analysis of process plants (PSRA), whereas Sect. 4 provided the formulation 
of the simplified PSRA model for process plants. The seismic resilience of a black car-
bon plant under earthquakes is analyzed in Sect. 5 in order to show the practical applica-
tion of the methodology and its capabilities. Discussion of results and prospects for future 
research conclude the paper.

2 � Definition of resilience for major‑hazard process plants

Industrial plants are complex facilities which process raw materials to produce different 
types of final products. Seismic resilience of an industrial plant can be defined as ability 
of the plant to withstand a low frequency high impact disruptive seismic event, and rapidly 
recover in order to maximize the total production capacity in case of physical damages. 
Plant operational capacity, which represents the maximum physical production output of 
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the plant, can be used to calculate the resilience of the system. In order to better understand 
this concept, Fig. 1 shows a representative time trend of plant operational capacity C(t), 
starting from a time t0 when the seismic event occurs, until a control time (th). It can be 
noticed that the plant operational capacity curve can be subdivided in five important states. 
Pre-earthquake state which is defined as the nominal plant capacity C(t0). In this state, the 
plant operational capacity can be unaltered, or higher than the original one if upgrades 
are made under the request of stakeholders, or even smaller than original capacity due to 
aging effects (Ayyub 2014). Earthquake occurrence corresponds to the initiation of dam-
age propagation state, which ends at a time td. In this state, due to seismic damages and 
related consequences (e.g. explosions or fire), there is a loss of plant operational capacity. 
Industrial plants deal with hazardous materials and in case of an earthquake occurrence the 
plant equipment can experience damages with loss of containment, which can trigger dam-
age propagation effects, known as domino effects (Antonioni et al. 2009; Alessandri et al. 
2018; Paolacci et al. 2018; Chen et al. 2020). If damage propagation effects are not consid-
ered the time td will be equal to t0. Meanwhile, in case of domino effects, the weather con-
ditions and plant emergency response will play an important role in the estimation of the 
plant residual operational capacity C(td). Moreover, plant robustness, plant topology and 
intensity of seismic event influence directly the operational capacity loss.

The post-earthquake steady state condition, from td to ta, corresponds to the inspec-
tion and planning phase, necessary for the identification of all damages and deciding 
the recovery plan. The extension of this state is mainly influenced by the preparedness 
of plant emergency managers and the presence of an existing recovery plan. Moreover, 
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the resilience of other systems, as critical infrastructure, or transportation infrastructure, 
can have a certain influence (Wu et al. 2020). The plant can become inaccessible due 
to damages in the road infrastructure which can cause the stoppage of production due 
to lack of workers which cannot reach the plant, even in the case that the plant might 
have not experienced damages. Moreover, in the case when the plant is damaged and not 
accessible the recovery process will be delayed by the time that is needed to repair the 
transportation infrastructure that connects the industrial plant with the nearby commu-
nity. Damages in critical infrastructure such as electric network, water network, internet, 
gas supply, etc. can cause the plant to stop the production process or delay the recovery 
process. For example, the plant cannot function if there is no electricity supposing that 
the backup measures are available only to safe shutdown the plant, or the industrial plant 
cannot operate if the water pressure of the fire hydrants does not fulfill the requirements. 
Meanwhile, the influence of the community is even more complex as it does not only 
directly influence the plant, but it is also interdependent with the other systems (Gui-
dotti et al. 2019; Sharma and Tabandeh 2020). When an earthquake occurs, the nearby 
community is affected, for example people might be injured and might not be available 
to work, or some people might need to relocate due to damage of their apartment or due 
to lack of utilities etc. (Guidotti et al. 2019). So, for this reason, after an earthquake the 
plant might lack plant operators or plant workers which will directly influence the plant 
operability. Moreover, the damages in community will also affect the recovery process 
(e.g., lack of  skilled and unskilled labors) not only of the industrial plant but also of 
other systems such as transportation infrastructure, critical infrastructure as they are all 
interdepended to each other (Guidotti et al. 2016; Sharma et al. 2019, 2021).

Delays due to impeding factors (post-earthquake inspection, engineering, permitting, 
financing, contractor mobilization) can influence the duration of this phase, which ends 
at a time ta, time which corresponds with initiation of the recovery phase. In industrial 
plants the recovery path is gradual, following a step function from ta until the complete 
recovery of the operational capacity, (tr). In fact, the recovery process involves sequen-
tially the equipment that although they may have different damage states (DS). From 
a functional point of view they have binary states (working or failing) as soon as the 
equipment is put back into service its contribution to the recovery of the capacity is 
instantaneous and thus discrete. This approach has been adopted also by other authors, 
(Mussini 2019). Each step corresponds to the recovery of one or more equipment, which 
directly influences the production capacity. The recovery path is influenced by plant 
topology, availability of workers, market availability for the requested equipment, and 
the selected recovery strategy. Moreover, stakeholders can decide the level of the opera-
tional capacity, with respect to the original one (normal, lower, or higher). Finally, the 
last state, corresponds to the post-recovery steady state which has a duration interval 
(th − tr), where th is a control time which is generally decided by stakeholders (Cimellaro 
et al. 2009), useful to compare, on a consistent basis, resilience determined by different 
disruptive events.

A plant resilience index can be adopted for the quantification of resilience (R) and 
can be calculated in different manners, as already mentioned in the introduction. In the 
present paper R is calculated as the integral over the time of the operational capacity 
curve, using one of the most popular expression present in the literature (Cimellaro 
et al. 2009), according to Eq. (1). The reasons of this choice are basically related to the 
non-dimensional form of R and its straightforward computation  related to the integral 
operation adopted.
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Nevertheless, beside the calculation of a resilience metric, other aspects assume rele-
vance, such as residual operational capacity C(td), time to full capacity recovery (tr), maxi-
mum recovery interval (Tmax = tr−td) and also economic losses. In particular, the total eco-
nomic loss of the plant (EL) can be accounted for as sum of direct economic loss (DC) due 
to equipment reconstruction cost and business interruption loss (BI), same as defined in 
FEMA P-58 (2012).

3 � Probabilistic seismic resilience analysis (PSRA) of process plants

In classical risk analysis, the Risk of process plants is defined as a combination of Hazard, 
Vulnerability and Exposure. When it comes to Resilience, it can be defined as combination 
of Risk properties with the Recovery process. In order to have a reliable model for seis-
mic resilience quantification the epistemic and aleatory uncertainties should be considered. 
Epistemic uncertainty or state-of-knowledge uncertainty is related to the lack of knowledge 
about the adopted models (e.g. fragility models, restoration models, plant recovery model), 
whereas aleatory is typically related to the seismic action. While it is challenging to reduce 
the aleatory uncertainties, epistemic uncertainties due to lack of information can be taken 
into consideration. The model should account for the Hazard (H) uncertainties, Vulnerabil-
ity (V) uncertainties, Exposure (E) uncertainties and uncertainties in Recovery (RE).

Aleatory hazard uncertainties are related to different possible seismic sources, the earth-
quake magnitude, and site to source distance. In order to account for them all possible seis-
mogenic zones should be considered, earthquake magnitude distribution should be defined 
together with the site to source distance distribution. All these data randomly combined 
together using the attenuation law of Akkar and Bommer (2010) can define the probability 
distribution of ground motion intensity. Given that industrial plants have different types 
of equipment with different natural periods the use of different IMs should be envisaged 
(Bakalis et al. 2018; Karaferis et al. 2022; Kazantzi et al. 2022; Melissianos et al. 2022; 
Phan and Paolacci 2016; Phan et al. 2021). This is generally not convenient, especially in 
case of expeditious methodologies for risk analysis are employed. Moreover, in most of the 
cases the literature offers fragility curves in terms of PGA (Syner-G 2014). Consequently, 
in the present paper all fragility curves will be expressed in terms of PGA, with the idea to 
use more appropriate IM for equipment that will be found critical after the risk assessment, 
for which more refined analysis will be required.

Vulnerability uncertainty is related to the equipment performance under different 
earthquakes, and it can be expressed in term of fragility curves, generally defined as 
lognormal cumulative distribution function (Porter 2015). Exposure uncertainties are 
mainly related to epistemic uncertainties. While considering only the most critical 
equipment of a plant in analysis and neglecting some other equipment, epistemic uncer-
tainties arise. These uncertainties can be reduced by considering every single element 
of the industrial plant in the analysis, but it might not be feasible if considering compu-
tational costs. The uncertainties in Recovery include uncertainties in equipment/activi-
ties recovery duration due to working delays, delays due to weather conditions, delays 

(1)R =
1

th − t0

th

∫
t0

C(t)dt
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coming from supply chain etc. Furthermore, uncertainties in equipment/activities recov-
ery costs due to unexpected construction works or due to variable cost of equipment 
spare parts and raw materials, should be considered during the recovery interval (TR).

The general formulation of probabilistic resilience metrics due to seismic hazard, 
accounting for all uncertainties mentioned above, can be expressed as:

where E[R(t)] is the expected annual resilience index R(t), which is a function of the sev-
eral random variables and of the time t elapsed from t0; ν is annual rate of occurrence of 
the seismic events greater than a given minimum value of magnitude Mmin, which is pro-
vided by the Gutenberg-Richter law. The symbol f indicated the probability density func-
tion (PDF) of the several random variables. These latter are respectively: recovery interval 
(TR), the damage measure (DM), the engineering demand parameter (EDP), the intensity 
measure (IM), the Magnitude (M) and the distance from the fault (D). The results of Eq. 2 
can be easily extended to different seismic sources simply making the summation of the 
results obtained for each one of them.

A similar integral can be formulated for expected annual losses (E[L(t)]), where the 
economic loss function (L(t)) depends on the above-mentioned random variables and 
the recovery cost (C). In this formulation the domino effects and the environmental 
effects are not explicitly considered and will be object of consideration in future works.

The above-mentioned integrals can be solved numerically via Monte Carlo Simulation 
(MCS). Each simulation consists in sampling simultaneously from the corresponding PDFs 
of uncertainties: magnitude M, distance D, IM, equipment damage DM, recovery time TR 
and recovery cost C, obtaining for each simulation a random operational capacity curve. 
As described by Caputo et al. (2020) the recovery time and cost will be generated for each 
recovery task to be carried out. At the end of MCS, the statistic of resilience and economic 
losses are determined. The expected annual losses can also be easily evaluated. The advan-
tage of this method is to be extremely general because it allows to obtain with a unique 
framework the statistic of resilience or the economic losses, the mean annual frequency 
of a given damage scenario or the frequency of occurrence of a given damage state etc. 
The drawback is the need of a quite large number of simulations in order to obtain reliable 
results as it involves a quite large number of random variables, and the difficulty in obtain-
ing the actual PDFs of most of them.

A more practical approach consists in selecting a certain number of IM values and 
evaluating the statistic of L and R in a discrete manner. In particular, in this approach the 
uncertainties of the seismic event are accounted for performing a classical probabilistic 
seismic hazard analysis (PSHA) (Cornell 1968; Baker 2008). Then, for each i-th PGA 
(Scenario), a MCS is conducted sampling random recovery times, recovery costs and 
seismic damage scenarios. Consequently, for each IM a set of resilience curves will be 
obtained based on which the statistic (mean and standard deviation) can be determined. 

(2)

E[R(t)] = � ∫ ..∫ r(t) × f (R(t)|TR) f (TR|DM) f (DM|EDP) f (EDP|IM)f (IM|d,m)

× f (d) f (m) dR dTR dDM dEDPdIM dDdM

(3)

E[L(t)] = � ∫ ..∫ l(t) × f (L(t)|TR,C) f (TR|DM) f (C|DM) f (DM|EDP) f (EDP|IM)

× f (IM|d,m) f (d) f (m) dL dTR dC dDM dEDPdIM dDdM
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The logical sequence of the MCS is detailed in the subsequent Section and therein syn-
thesized in Fig. 4. In this case the convolution of vulnerability and hazard is not auto-
matic but needs to be evaluated a posteriori. In fact, based on the considered scenarios 
and the predefined hazard curve it is possible to associate a frequency of occurrence 
to each IM and thus evaluate the mean annual frequency of the economic losses and 
resilience metrics. The quality of the method strictly depends on the number of PGA 
values analyzed. In this sense it can be computationally more convenient than the gen-
eral approach.

The approach can be further simplified by reducing the number of random recovery 
activities to be carried out. The combination of a discrete number of seismic scenarios 
and the simplification of the recovery activities framework represents the central nov-
elty of the paper for the PSRA of industrial facilities. Section 4 will explain in details 
this integrated approach, whereas Sect.  5 will report the application of the proposed 
method to a Black Carbon plant.

4 � Simplified PSRA model for major‑hazard process plants

As mentioned before, the simplified approach can be more efficient in terms of compu-
tational time for probabilistic seismic resilience estimation, and for this reason it will be 
explained in more details in this section. The model includes the preparatory steps listed 
below that are used for the Monte Carlo simulations:

•	 Process mapping and plant topology representation
•	 Definition of initial residual capacity of the plant
•	 Formulation of plant recovery model
•	 Formulation of the plant recovery function
•	 Definition of resilience index and economic loss model
•	 Probabilistic Seismic Hazard Analysis and evaluation of seismic damage scenarios
•	 Monte Carlo Simulation for estimation of probabilistic resilience metrics

The following subsections will provide the necessary elements for the implementation 
of the proposed approach.

4.1 � Process mapping and plant topology representation

At first, all equipment of the plant should be identified based on their structural configu-
ration and process function, for example steel storage tanks, horizontal vessels, vertical 
vessels, piping systems etc. This will help to build the proper seismic vulnerability func-
tions, as explained in Sect. 4.6. Then, Process Flow Diagram (PFD) of the plant should be 
constructed, including the main equipment of the plant and mapping the different material 
flows evolving through the equipment and giving rise to marketable output product flows. 
An equipment can be part of a unique process flow (PF) or it can be part of multiple pro-
cess flows contemporarily. In order to represent all the equipment that are included in f-th 
process flow, a unique set of equipment S[f] should be defined (Caputo et al. 2020).

After having defined the sets of equipment of all PFs, the Capacity Block Diagram 
(CBD) of each PF should be constructed. CBD contains process stages (PS) connected 
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in series, where the capacity of the entire PF corresponds to the capacity of the PS having 
the lowest capacity. A process stage contains a single equipment, or a group of equipment 
based on their operational functionality and their influence on the operational capacity of 
the PF. The most common arrangements of PS are: PS with units in series (PSS); PS with 
fully redundant units (PSR); PS with k out of n redundant units (PSRk); PS with fractionated 
capacity units in parallel (PSP). A plant process flow can have a single PSS while the num-
ber of PSR, PSRk and PSP can vary from plant to plant. Readers interested in greater details 
can consult Caputo et al. (2020) while practical application of the CBD can be clarified 
from the case study of black carbon plant in Sect. 5.

Moreover, in this phase also the possible damage states (DS) of equipment that will be 
considered in analysis, should be defined. The damage scenarios can be generated by any 
kind of natural event, but in this work, focus will be on damages caused by earthquakes. 
In this respect, different DS of equipment can be considered. A damage scenario vector 
DSV = {γ1, … γN} is defined in order to assign the damage state to the selected units, where 
γi is the damage limit state of i-th unit. The i-th component of the vector DSV can assume 
different values depending on the damage level caused by the earthquake:

At the beginning of the simulations all equipment will be considered undamaged, γi = 1.
Furthermore, a vector SV = {δ1, … δN} is defined in order to assign the functionality 

state to the all equipment. The functionality state variable δi will be a binary variable as 
shown in Eq. (5). At first all δi will be equal to 1, which corresponds to no damage sce-
nario. Then, for a given damage scenario vector, which has several damaged equipment in 
different DS, the initial SV should be modified by setting to zero the functionality state var-
iables (δi = 0) of damaged equipment ( γi > 1). Meanwhile, during the recovery phase, the 
state variable of each damaged equipment will switch from 0 to 1 as soon as the equipment 
is taken back at operational status, in order to represent the time-varying system status.

4.2 � Definition of initial residual capacity of the plant

Definition of the capacity block diagrams of each process flow, allows the computation 
of the plant operational capacity. Having defined the set of equipment S[f] and the corre-
sponding PSs of f-th process flow, the normalized capacity of the f-th process flow (Cf) can 
be calculated as:

where C
{
PSS

[
f
]}

 is the normalized capacity of PSS of the f-th PF; C
{

PSR
j

[
f
]}

 is the nor-
malized capacity of j-th PSR allocated in f-th PF; C{PSRk

j

[
f
]
} is the normalized capacity of 

(4)�i =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1 if i − th equipment is in 1 − st DS (no damage)

2 if i − th equipment is in 2 − nd DS

…

n if i − th equipment is in n − th DS

(5)𝛿i =

{
0 if i − th equipment is damaged (𝛾i > 1)

1 if i − th equpment in not damaged
(
𝛾i = 1

)

(6)Cf = min
{

C
{
PSS

[
f
]}
;C
{

PSR
j

[
f
]}

;C{PSRk
j

[
f
]
};C{PSP

j

[
f
]
}

}
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j-th PSRk allocated in f-th PF; C{PSP
j

[
f
]
} is the capacity of j-th PSP allocated in f-th PF. 

The normalized capacity of each different configuration of process stages can be evaluated 
as described in Caputo et al. (2020). Furthermore, for a given DSV and the corresponding 
SV the residual overall plant capacity C(td) can be evaluated using Eq. (7), where Of is the 
fraction of absolute capacity allocated to the f-th PF (Caputo et al. 2020). This procedure 
allows for automatic calculation of the plant operational capacity during the recovery 
process.

4.3 � Formulation of plant recovery model

As stated above, the definition of recovery model is an essential ingredient for resilience 
analysis. In this respect different recovery models can be implemented for the recovery 
process of industrial plants (Fig. 2). The Overall Reconstruction Activity Network (ORAN) 
model was first introduced by Caputo and Paolacci (2017) and was later applied to a nitric 
acid plant case study (Kalemi et  al. 2019a; Caputo et  al. 2020). Kalemi et  al. (2019b) 
applied a probabilistic version of ORAN recovery model to calculate the resilience metrics 
of predefined seismic damage scenarios of a nitric acid plant.

The ORAN model describes the recovery process in terms of an activities network 
and is based on CPM/PERT method (Vanhoucke 2012) for calculation of the date when 

(7)C(td) =
∑

f

Of Cf

(
td
)

(a)

Recovery of 
Equipment 3

Inspec�on &
Planning

(b)

(d)(c)

Inspec�on &
Planning

Ai,3
Ai,5

Ai,2 Ai,4

Ai,7Ai,6
Ai,1

PT2

PT1

ET1 ET2

Subtask 1 
STi,1

Subtask 2 
STi,2

Subtask 3 
STi,3

PT2

PT1

ET1 ET2

STi,1 STi,2 STi,3

Fig. 2   a Example of equipment subtask grouping of a fictitious equipment; b Simplified activity network of 
a fictitious equipment; c SPEREN: all equipment start recovering instantaneously; d SPEREN: some equip-
ment start recovering after the recovery of the equipment they depend on. Legend: A = reconstruction activ-
ity, PT = preparatory task, ET = external task, ST = subtask
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a damaged equipment is recovered (TCRi). CPM and PERT are graph-based methods uni-
versally used in project management practice to visualize the logical sequence of multiple 
activities constituting a complex project and their mutual interactions in terms of end-start 
constraints. In such applications an acyclic graph is built where arrows represent activities 
and nodes represent events associated to the end or start of activities. An activity depart-
ing from a node cannot start until all preceding activities ending in that node are com-
pleted. All paths between initial and the final node represent parallel sequences of activities 
required to complete the project, and the longest sequence is defined as the critical path 
whose length determines the duration of the project. This approach is useful to link in a 
mechanistic manner the length of the recovery process to the actual specific activities to 
be carried out which, in turn, are dictated by the process structure, instead of trying to 
arbitrarily estimate the length of recovery period. Another advantage is the availability of 
an algorithm to establish the start and finish date of each activity, thus easily allowing to 
compute the recovery date of each equipment.

The ORAN model is very detailed and precise as it accounts for the interdependencies 
between reconstruction activities, but its only drawback is that it requires a lot of infor-
mation and effort to be applied, which may not always be very practical when quick risk 
and resilience analysis are needed. For this reason, different levels of simplification can 
be implemented. For example, it is often possible to group sub-tasks, Fig. 2a, deriving a 
simplified activity network as shown in Fig. 2b, where the symbols PT, ST and ET stand, 
respectively, for preparatory, subtask and external activities.

Even simplified, this recovery model still accounts for external interferences and delays 
at the activity level. For this reason, simpler approach, similar to the one proposed by 
Almufti and Willford (2013), is herein adopted. In this model a Simplified Plant Equip-
ment Reconstruction Network (SPEREN) is constructed accounting for preparatory task 
named as inspection and planning recovery task, and equipment recovery tasks. In this 
case, for each damaged equipment the recovery process will be considered as a single task, 
with its duration related to the damage state. The recovery of damaged equipment will start 
only after inspection and planning are finished, with two possible options:

	 (i)	 All equipment start recovering instantaneously as shown in Fig. 2c.
	 (ii)	 There is an interdependency between recovery of different equipment, where start of 

recovery of an equipment can only start after previous equipment has been recovered, 
as shown in Fig. 2d.

The duration of inspection and planning will be defined based on subtasks such as post-
earthquake inspections, financing, contractor mobilization, access cleaning, site cleaning 
and recovery plan, following the longest path. Equipment recovery duration can be cal-
culated based on sub-tasks as engineering, permitting, delivery and installation, whose 
duration can be adopted from literature (i.e. Hazus (2022)), or can be defined based on 
engineering judgment. Accordingly, the probability distribution functions of each dura-
tion of inspection and planning and equipment recovery phase will be assumed, specifying 
distribution shape, mean and standard deviation, for the implementation of Monte Carlo 
simulations.

This simplified recovery model is very practical, does not require to build a detailed 
ORAN, allows adoption of empirical recovery duration curves from literature and it simpli-
fies the construction of resilience curves from the computational point of view. In the pre-
sent paper, the restoration functions in terms of time and cost provided by Hazus (2022) for 
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oil and gas systems components have been used, which are normal distribution functions 
characterized by mean µ and standard deviation σ.

The only drawback is that the interdependency between equipment can be either at the 
start of equipment recovery process or when the equipment is fully recovered, as it does 
not account any possible interconnections in between recovery process of each equipment.

For the implementation of SPEREN model the following procedure has been adopted. 
At first, all possible duration TP(i,j) of preparatory activities of i-th equipment with j-th 
damage state DS (inspection and planning activity), and recovery costs CP(i,j) of prepara-
tory activities are identified and defined through Gaussian probability density functions, 
with mean (μ) and standard deviation (σ). In any case, user can adopt any kind of distribu-
tion, which must be truncated in order not to have negative values. Analogously, the activ-
ity/equipment recovery duration TA(i,j) and activity/equipment recovery costs RC(i,j) need 
to be defined accounting for all possible damage states of equipment.

Next step will be determination of interdependencies between activities/equipment 
recovery tasks, which will be defined through activities/equipment interdependency matrix 
(AI). The matrix will have 0/1 numbers, where i.e. AI[i, k] = 1 will mean that starting of i-
th recovery activity depends by finishing of k-th activity. In case that i-th activity does not 
depends on any activity, the i-th row of AI will have all columns with 0 values.

An example is shown in Fig. 3a, where a fictitious activity network has in total 3 recon-
struction activities, corresponding, in the spirit of SPEREN, to 3 different equipment. 
Activities A1 and A2 are related to equipment 1 and 2, respectively, both with damage 
state DS2, while activity A3 corresponds to equipment 3 with damage state DS3. For sake 
of simplicity in the subsequent numerical application we have considered only one possible 
damage state of equipment. The 1-st and 3-rd row of AI have all zeros which means that 
activity A1 and A3 do not depend on any other equipment recovery activities, excluding 
preparatory activity which are considered apart as described in the following subsection. 
Meanwhile, AI [2,1] = 1 means that the start of recovery activity of 2-nd equipment(A2) 
depend from finishing date of recovery activity of 1-st equipment (A1).

p
DS1
DS2

DS5
...

,1,2

, ,

p
DS1
DS2

DS5
...

1,2

Equipment 1

Equipment 1

(b)

(c)

p
DS1
DS3
DS5

...

,3,3

, ,

p
DS1
DS3
DS5

...

Equipment 3

Equipment 3

…..

…..

3,3

...

...

Fig. 3   a Fictitious SPEREN and probabilistic Operational capacity curve; b Fictitious distributions of all 
possible TP(i,j); c Fictitious distribution of all possible TA(i,j)
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Generally, the equipment-activities interdependency should be defined in order to assign 
the activities to equipment. However, differently from the ORAN method, in SPEREN the 
interdependencies between activities and equipment are excluded a priori, and thus this 
phase is not considered.

4.4 � Formulation of the plant recovery function

The implementation of recovery model is made only once by defining all the possible dis-
tributions of TP(i,j), TA(i,j), CP(i,j), RC(i,j), and AI matrix. Then, for a given DSV and its 
corresponding SV, it is needed to calculate the vector TCR, which contains the recovery 
date of each equipment, where for the undamaged equipment the corresponding recovery 
date will be 0.

At first, TP should be calculated based on DSV and the corresponding probability distri-
bution functions TP(i,j), as shown in Fig. 3b. In this respect, the duration of common pre-
paratory activity will be governed by the equipment which influence the most the inspec-
tion and planning phase and will be calculated as TP = max[TP(i,j)]. Then, the duration 
TA(i) of the i-th activity is generated, based on DSV, SV and the probability distribution 
functions of TA(i,j), see Fig. 3c. Using Eq. (8), it is possible to create the vector of recovery 
dates for all equipment TCR, where corresponding value for the undamaged equipment will 
be 0. The duration of the preparatory activities TP however should also be included in the 
squared brackets terms of Eq. (8) for those equipment reconstruction activities having pre-
paratory activities as predecessor.

In order to compute the time trend of capacity recovery, at each time value t = TCR(i), 
the corresponding equipment state variable is set back to δi = 1, the SV is updated, the PF 
capacity is updated using Eq. (6), and plant residual capacity is updated through Eq. (7). A 
graphical representation of this procedure is shown in Fig. 3a, where the operational capac-
ity curve is constructed based on the TCR vector. This curve will be randomly generated 
during the Monte Carlo simulation, as better described in Sect. 4.6.

4.5 � Definition of resilience index and economic loss model

For each seismic damage scenario, the resilience index is calculated using Eq. (1), while 
the EL will be sum of direct costs (DC) and Business Interruption (BI) cost. DC are cal-
culated as sum of cost of preparatory tasks (CP) and the equipment reconstruction costs 
(RCi), as given in Eq. (9). In the general case the RCik is the cost of k-th restoration activ-
ity required to recover the i-th equipment. In case of SPEREN model there will be just 
one total cost of equipment recovery of i-th equipment (RCi). The vector RC should have 
a dimension equal to the number of total reconstruction activities NA (or total number of 
equipment in case of simplified recovery model) and at the initial state all RC(i) values 
would be zero. For a given damage scenario vector with a corresponding state vector SV, 
the vector RC will be updated taking the corresponding random values from the predefined 
distributions RC(i,j) for the equipment reconstruction activities that need to be carried out ( 
δi = 0). On the other hand, the CP will be calculated as maximum value of CP(i,j) that cor-
responds to DSV, using the same reasoning as per TP.

(8)TCR(i) = TA(i) +max
[
TCR(1)AI(i, 1),… , TCR

(
NA

)
AI
(
i,NA

)]
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BI is computed as the contribution margin of the lost production during the flow inter-
ruption period. In greater detail we assume that operating costs of a firm include both fixed 
costs (which are paid irrespective of the production level), and variable costs which only 
incur if production takes place and are proportional to the production level (i.e. materials 
and energy costs). Consequently, when production is interrupted the company loses the 
revenues from sales of lost production, but also saves the variable cost which did not occur 
thanks to the production interruption, while it continues to pay the fixed costs. Therefore, 
the actual BI economic loss is the revenues minus the saved variable cost of lost produc-
tion. This is recognized as margin of contribution because it represents the net revenue 
which is available to contribute to cover the fixed cost and make a profit. Accordingly,in 
Eq. (10), Cf(t) is the capacity of f-th process flow at time t, Cnf is the nominal production 
output of the f-th process flow, Cvuf is the variable unit production cost of the f-th process 
flow, pf is the unit selling price of the f-th process flow, and Δtz is the duration of the z-th 
time interval between functional recovery of two successive units (Caputo et al. 2020).

4.6 � Probabilistic Seismic Hazard Analysis and evaluation of seismic damage 
scenarios

The simplified methodology here proposed relies on the generation of different damage 
scenarios to be used in the Monte Carlo framework of Fig. 4. At this purpose three differ-
ent sub steps are necessary:

•	 Probabilistic Seismic Hazard Analysis (PSHA) of the plant site
•	 Vulnerability analysis of all equipment
•	 Evaluation of seismic damage scenarios of the plant

Seismic hazard estimation methods are usually based on the classical Probabilistic 
Seismic Hazard Analysis (PSHA) approach proposed by Cornell (1968), which will be 
employed in Sect. 5. In this respect the Matlab script Mathazard has been used (Paolacci 
et al. 2022). This open source software has been developed by the research group of Roma 
Tre University which is available under request.

Seismic vulnerability of structures and equipment can be usually expressed in terms of 
fragility curves (Baker 2015). The latter are synthetic tools to assess the equipment failure 
modes and the probability of exceeding the related damage states. For the generation of 
fragility curves different approaches can be employed, as judgmental (Hazus 2022), empir-
ical (Salzano et al. 2003; D’Amico and Buratti 2018) and analytical formulations (Alfanda 
et al. 2022; Karaferis et al. 2022; Kazantzi et al. 2022; Phan et al. 2019, 2017, 2020; Capri-
nozzi et al. 2021; Bakalis et al. 2017, 2018; Di Sarno and Karagiannakis 2020; Farhan and 
Bousias 2020). For each plant equipment all possible damage states that will be taken into 
consideration should be defined. As stated in Sect. 3, in order to perform expeditious risk 

(9)DC = CP +
∑

i

RCi

(10)BI =
∑

f

∑

z

(
pf − Cvuf

)[
Cnf − Cf (t)

]
Δtz
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analysis, Peak Ground Acceleration (PGA) will be used as intensity measure (IM) for the 
fragility curves of all equipment.

Both these data can be synergically used for the generation of different seismic damage 
scenarios in the plant and feeding the simplified probabilistic resilience evaluation process. 
At this purpose, the approach formulated by Alessandri et al. (2018) for the quantitative 
seismic risk analysis of major-hazard process plants can be profitably used. In this respect, 
in order to generate different seismic damage patterns in the plant and then quantifying the 
statistical distribution of resilience index and economic losses, the software PRIAMUS, 
proposed in Corritore et  al. (2017) will be employed. This software can easily generate 
damage patterns within the plant, including also possible damage propagation effects 
(domino effects). In brief, the method employs Monte Carlo simulations to generate sam-
ples of damage scenarios involving the equipment of a plant subjected to an earthquake, 
based on which the related statistic is built.

The following section will explain in detail the integration of all above sub-steps by 
using a Monte Carlo simulation approach and how the probabilistic resilience metrics can 
be quantified.

4.7 � Monte Carlo Simulation for estimation of probabilistic resilience metrics

After defining the seismic hazard curve of the selected site, a suitable range of PGA, com-
patible with the set of Damage States considered in the analysis for the several equipment 
and their corresponding mean annual frequency of occurrence (λ) are defined. Different 
seismic scenarios, corresponding to different PGA values, will be used in analysis. The 

Fig. 4   Logical sequence of Monte Carlo Simulation
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greater the number of points selected, the greater the precision, but at the expense of com-
putational efficiency. Consequently, Monte Carlo Simulation (MCS) should be conducted 
in order to balance the numerical effort and the accuracy of the results.

In simplified approach, as stated before, probabilistic resilience metrics are identified 
with the economic losses (EL) and the resilience index (R). The mean value of economic 
losses can be expressed analytically as sum of Eqs. (11) and (12). They provide, respec-
tively, the expected values of business interruption loss (BI) and direct cost (DC), given the 
PGAj, at time t. Both will be referred to random damage scenarios, herein identified with 
the previously defined vector DSV (Damage Scenario Vector), which represents, for each 
j-th sampled PGA, the ensemble of damage states DS of the equipment.

In Eq.  (11) the term f
(
BI|TCR

)
 is the probability density function of BI conditional to 

TCR; f
(
TCR|DSV

)
 represent the probability density functions of TCR conditional on DSV; 

f (DSV|PGA) is the probability density function of the DSV conditional to PGA. Similarly, in 
Eq. (12) for a given damage scenario vector (DSV) and its corresponding equipment recovery 
cost vector (RC), the DC is evaluated using Eq. (9). Moreover, f (DC|RC) is the probability 
density function of DC conditional to RC; finally, f (RC|DSV) represent the probability den-
sity functions of RC conditional on DSV.

E[BI(t)|PGAj] = ∫
BI

∫
TCR

∫
DSV

bi(t) × f
(
BI|TCR

)
f
(
TCR|DSV

)
f (DSV|PGA) dBI dTCR dDSV

The expected resilience index for a given PGAj, is provided by Eq. (13). The term R(t) is 
the resilience index at time t, (Eq. (1)) for a given damage scenario vector (DSV) and its corre-
sponding equipment recovery time duration vector (TCR); f

(
R|TCR

)
 is the probability density 

function of R conditional to TCR.

For each seismic scenario of interest, characterized by PGAj, a Monte Carlo Simulation 
(MCS) is conducted in order to solve the integral of Eqs. (11), (12), (13). Its logical sequence 
is illustrated in Fig. 4. For each step of MCS, for each equipment, a random sampling of the 
damage state DS is generated through fragility curves, enabling the construction of the dam-
age scenario vector DSV and its corresponding equipment state vector SV, as shown in Fig. 4, 
(Alessandri et al. 2018).

Then, random equipment/activities recovery times (TA(i,j)) and equipment/activities recov-
ery costs (RC(i,j)) should be generated. Having defined the DSV and SV, the corresponding 
random vectors of equipment/activity recovery duration TA and equipment/activity recovery 
cost RC can be built as previously described, in above. Moreover, if there is any preparatory 
or external task, also the random TP and CP will be generated as described above. Know-
ing TA vector and TP, the recovery dates of each equipment (TCR) can be evaluated using 
Eq.  (8). Then the operational capacity curve versus time can be constructed. Moreover, for 
each simulation, economic losses such as direct costs (DC) and business interruption (BI) can 

(11)

(12)

E[DC|PGAj] = ∫
DC

∫
RC

∫
DSV

dc × f (DC|RC) f (RC|DSV) f (DSV|PGA) dDC dRC dDSV

(13)

E[R(t)|PGAj] = ∫
R

∫
TCR

∫
DSV

r(t) × f
(
R|TCR

)
f
(
TCR|DSV

)
f (DSV|PGA) dR dTCR dDSV
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be estimated as described in Sect. 4.5. The procedure is repeated until convergence criteria of 
MCS is reached, (Alessandri et al. 2018). Moreover, statistics of resilience metrics such as dis-
tribution of resilience index, distribution of initial residual capacity C(td), distribution of maxi-
mum duration of plant full recovery (Tmax), distribution of economic losses can be estimated.

The Monte Carlo simulations will be repeated NPGA times, and statistics of resilience met-
rics and economic losses (direct and indirect) can be calculated at any PGA scenario.

Finally, the mean annual losses (EALm) can be directly calculated as integral of the loss 
exceedance curve versus the mean annual frequency of exceeding PGA, λ. In this respect, 
given the limited number of seismic scenarios, EAL can be approximated by Eq. (14). The 
same procedure can be adopted for calculating separately business interruption BI and direct 
costs DC.

5 � Illustrative example

A black carbon plant is used as a case study (Karagiannakis et al. 2020), and it is assumed 
to be ideally located in Priolo Gargallo, a highly seismic zone of Italy. The plant produces 
different types of black carbon, which are widely used for coloring products in black tones, 
or as additives in various rubber products, such as car tires, car dashboard etc. A plan view 
of the plant with the indication of the main equipment is shown in Fig. 5. The principal 
process can be summarized as follows: first, the feed stock oil needs to be stored in the fuel 
storage tanks; secondly, the oil needs to be preheated and transported to the reactors (oil 
pumps, pipe rack, heat exchangers); in the reactors, an incomplete combustion of the oil 
produces the desired carbon black powder, and tail gas (horizontal and vertical reactors); 
the carbon black powder then needs to be separated from the tail gas (bag collectors) and 
compacted into pellets (milling towers); finally, the pellets need to be stored in the silos 
before they can be shipped to the costumer.

(14)EALm ≅

NPGA∑

j=2

ELm
(
PGAj

)
− ELm

(
PGAj−1

)

2

[
�

(
PGAj

)
− �

(
PGAj−1

)]

Fig. 5   Milling tower (left) and plan view of the Black Carbon Plant (Right)
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5.1 � Process plant mapping

In total, 23 major equipment are considered in analysis as shown in Fig. 6 and named in 
Table 1. In the plant two distinct process flows (PFs) can be identified, corresponding to 
two separate physical production lines sharing the pumping facilities, as shown in Fig. 6 
and it can produce two different types of black carbon in same time. PF1 has a production 
capacity of 60 t/d while PF2 has a production capacity of 100 t/d. Both types of carbon 
black that are analyzed in this case study have a variable unit production cost estimated 
around 1111 €/t and a market selling price of 1273 €/t, based on information provided from 
plant engineers. The two sets of equipment of each process flow are S[1] = {E-1, E-2, E-7, 
E-9, E-10, E-13, E-14, E-15, E-18, E-20, E-22} and S[2] = {E-3, E-4, E-5, E-6, E-7, E-8, 
E-11, E-12, E-16, E-17, E-19, E-21, E-23}.

In Fig.  7 is shown the Capacity Block Diagram of black carbon plant. PF1 has two 
blocks with two fully redundant equipment each (PS1

R [1] = {E-1, E-2}; PS2
R [1] = {E-9, 

E-10}), a block with three equipment in parallel with a capacity of 33.3% each (PSP 
[1] = {E-13, E-14, E-15}) and a block with equipment is series (PSS [1] = {E-7, E-8, E-18, 
E-20, E-22}). PF2 has one block with four fully redundant equipment (PS1

R [2] = {E-3, 
E-4, E-5, E-6}), one block with two fully redundant equipment (PS2

R [2] = {E-11, E-12}) 
and a block with equipment in series (PSS [2] = {E-7, E-8, E-16, E-17, E-19, E-21, E-23}). 
It can be noticed that equipment E-7 and E-8 are used by both PFs, so in case any of them 
fails, the entire plant will stop operating.

Fig. 6   Simplified process flow diagram of black carbon plant

Fig. 7   Capacity block diagram of black carbon plant
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5.2 � Seismic hazard and vulnerability of the equipment

The scenario-based resilience analysis is applied to the black carbon plant. As mentioned 
previously, the black carbon plant is assumed to be placed closed to Priolo Gargallo city, 
having a latitude of 39.17° and a longitude of 15.17°, and characterized by a soil type 
B. The seismic hazard curve of the selected site is shown in Fig.  8a (Alessandri et  al. 
2018). In the same figure the selected PGAs used in analysis, ranging from 0.05 to 1.79 g, 
are indicated with red dashed vertical lines. PGA values smaller than 0.05  g have been 
neglected, because not capable to generate appreciable seismic damages to the equipment. 
On the contrary, the maximum value of PGA considered in the analysis, that is 1.79 g, cor-
responds to a very small annual probability of exceedance, which is approximately 10–6. 
Intermediate values of PGA can possibly generate relevant seismic damage scenarios and 
not negligible frequency occurrence.

Seismic vulnerability of equipment is expressed in terms of fragility curves. Equipment 
with multiple damage states have been here considered, as summarized in Table 1. The 
definition of damage states of equipment is adopted from Hazus (2022), where DS1 cor-
responds to no damage, DS2 corresponds to slight/minor damages, DS3 corresponds to 
moderate damage, DS4 corresponds to extensive damage, and DS5 to complete damage. 
For more details about seismic vulnerability and damage states of the main equipment of 
hazardous facilities, the readers can refer to Paolacci et  al. (2013). The fragility curves 
parameters of steel storage tanks, oil pumps station, horizontal HEX and vertical HEX 
are derived from Hazus (2022) manual. Meanwhile for the reinforced concrete pipe rack 
and steel frame structures such as vertical reactor, bag collector, milling tower and silo, 
fragility curves parameters are based on numerical models (Karagiannakis et  al. 2020). 
Table 1 summarizes the median value of PGAm and the lognormal standard deviation of 
the fragility curves of each group of process equipment. As a matter of fact, fragility curves 
for the oil tanks are illustrated in Fig. 8b.

Fig. 8   a Seismic hazard curve of Priolo Gargallo site with the selected PGA; b Hazus (2022) Fragility 
curves of oil tanks
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5.3 � Recovery model

Simplified probabilistic equipment recovery model (SPEREN) is used, and equipment 
recovery duration and costs are summarized in Table 2. Mean values for recovery duration 
and recovery costs of each equipment are provided by plant engineers based on their expe-
rience (Karagiannakis et al. 2020). In this study, both equipment recovery durations and 
costs are considered as normal distributions, truncated to have positive values. The use of 
Gaussian distribution seems reasonable, given that a recovery activity duration can deviate 
from the mean for random motives and in equiprobable manner, but the higher the devia-
tion the lower the probability of occurrence However, another candidate distribution often 
used in maintenance engineering is lognormal.

A standard deviation of 20% of the mean value is assumed for recovery durations and 
recovery costs. Assumption that there is no limitation in working force has been made, and 
the  reconstruction of all damaged equipment can start at the same time, after inspection 
and planning activity, without having any interdependencies between them. A control time 
equal to 2 years (th = 730d) is selected for analyzing the operational capacity curve of the 
plant and calculation of seismic resilience index.

5.4 � Analysis of the results and discussion

For each of the selected PGA scenarios, a Monte Carlo Simulation is conducted using PRI-
AMUS software (Corritore et al. 2017), to randomly generate seismic damage scenarios. 
A random number Xi is sampled from a uniform standard distribution Ui (0, 1), and based 
on equipment fragility curves the damage state for each equipment is defined. Along with 
equipment damage states a random recovery duration and random recovery cost, are gener-
ated based on predefined distributions for each damaged equipment. The seismic damage 

Table 2   Mean values of recovery time and recovery cost for each DS of equipment

Process equipment DS2 DS3 DS4 DS5

Cost (€) Recov-
ery time 
(d)

Cost (€) Recov-
ery time 
(d)

Cost (€) Recov-
ery time 
(d)

Cost (€) Recov-
ery time 
(d)

Steel storage tank 25,000 15 250,000 210 500,000 300 600,000 360
Oil pumps station 750 3 7500 10 15,000 90 16,500 100
Pipe rack 16,600 10 58,100 70 83,000 135 – –
Horizontal HEX – – 65,000 185 – – 78,000 225
Reactor + Vertical 

HEX
– – 1,050,000 120 2,100,000 660 – –

Vertical reactor – – – – 3,000,000 660 – –
Vertical heat 

exchanger
– – 365,000 60 730,000 295 – –

Bag collector 60,000 15 600,000 120 1,200,000 390 – –
Milling tower 35,000 15 350,000 120 700,000 660 – –
Silo 500t 25,000 10 250,000 90 500,000 480 – –
Silo 1000t 35,000 10 350,000 90 700,000 480 – –
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probability of exceeding several damage states in the equipment for PGA = 0.5 g is illus-
trated in Fig. 8.

From the Fig. 9, it is clear that storage tanks represent rather vulnerable equipment in 
different damage conditions. For example, for storage tanks, the probability to be in dam-
age state DS3, DS4 or DS5 are respectively 37, 28 and 17%. Horizontal Heat Exchanger, 
the reactors, vertical reactors and the vertical Heat Exchanger can also be considered rather 
vulnerable elements, especially for damage state DS3 and DS4, as clearly shown in Fig. 9. 
According to the 19 scenarios generated with the help of PRIAMUS software, the statistic 
of the resilience quantities has been determined.

Figure 10a shows probabilistic operational capacity curves of black carbon plant for dif-
ferent confidence intervals, corresponding to a PGA = 0.5 g. In this condition, resilience 
index which corresponds to 10th, 20th, 50th, 80th and 90th percentiles are 81.0, 77.4, 69.5, 
45.0, 25.9%, respectively. It is worth mentioning that operational capacity curves of differ-
ent percentiles represent realistic curves which may occur, and these curves are used later 
to calculate the probabilistic economic losses and probabilistic expected annual losses of 
the plant. We can see from Fig. 10a that the operational capacity of 90th percentile curve 
does not reach the full capacity even after 730 d. This is due to delays coming from proba-
bilistic recovery of damage scenarios with at least a vertical reactor, reactor and vertical 
heat exchanger, or milling tower in DS4, which have a mean recovery time of 660 d.

Figure 10b summarizes the probabilistic resilience index for different PGA levels. It 
can be noticed that until a PGA = 0.15 g the variation of resilience indexes of different 
percentiles does not vary a lot, while it could not be said the same for PGA bigger than 
0.15  g where the change is quite significant. Regarding the 80th and 90th percentiles 
resilience index, it can be noticed a difference around 10–20% in the range of PGA from 
0.35 g to 0.7 g while for other values the difference is smaller. Moreover, for PGA equal 
or bigger than 1 g the 80th and 90th resilience index of the black carbon plant drops 
almost to 0%.

Fig. 9   Seismic Damage Probability of exceeding damage states (DS) in the equipment for PGA = 0.5 g



98	 Bulletin of Earthquake Engineering (2024) 22:75–106

1 3

Figure  11a shows the distribution of resilience index for MCS of PGA = 0.5  g, 
which has a peak around 75%. Figure  11b shows the maximum recovery interval for 
PGA = 0.5  g, and it confirms that for some simulation the maximum time needed for 
the plant to be fully recovered is bigger than control time th = 730d. This is the reason 
why the 90th percentile operational capacity curve of Fig. 10a does not reach the 100% 
operational capacity. Maximum recovery time distribution seems to be a bimodal distri-
bution having one peak around 350d and the second one around 700d. The first peak at 
350d is governed from recovery of steel storage tanks in DS4 or DS5, vertical HEX in 
DS4 and bag collector in DS4, while the second peak at 700d is governed from recovery 
of vertical reactor in DS4, reactor plus vertical HEX in DS4 and milling tower in DS4.

Figure 12a shows the distribution of economic losses for PGA = 0.5 g. Direct costs have 
a mean of 4.81 million euros, BI have a mean 7.17 million euros and EL have a mean of 
11.98 million euros.

Figure 12b shows the variation of probabilistic BI losses for different levels of PGA. 
For PGA bigger than 1 g the BI losses curve of 80th and 90th percentile reaches a plateau 

Fig. 10   a Probabilistic Operational Capacity curves of Black Carbon plant for MCS corresponding to 
PGA = 0.5; b Probabilistic resilience index curves for different PGA

Fig. 11   a Resilience index distribution for MCS corresponding to PGA = 0.5 g; b Distribution of maximum 
recovery interval (Tmax) for MCS corresponding to PGA = 0.5 g
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of maximum values, which goes around 18–18.5 million euros. Regarding the mean and 
50th percentile curve, it can be notices that for PGA between 0.7 g to 1 g the BI losses are 
almost same, while for PGA values bigger than 1 g the 50th percentile BI losses are around 
1 million euros bigger than BI losses of the mean curve. Meanwhile, for PGA smaller than 
0.7 g the mean BI losses are bigger than BI losses of 50th percentile curve. Figure 13a 
shows the variation of probabilistic Direct Cost losses for different levels of PGA. It can 
be noticed that the 50th percentile and mean curve have almost same values. The max val-
ues of DC for 10th, 20th, 50th,80th, and 90th percentiles, are 12.2 million euro, 13.3 mil-
lion euro, 15.0 million euro, 16.4 million euro and 17.0 million euro, respectively. While 
the maximum DC losses for the mean curve are 14.8 million euro. Figure 13b shows the 
variation of probabilistic EL for different levels of PGA. For PGA bigger than 1.2 g the EL 
curve of 80th and 90th percentile reaches a plateau of maximum values, which goes around 
32–35 million euros. Regarding the mean and 50th percentile curve, it can be noticed that 
for PGA between 0.7 g to 1 g the EL are almost same, while for PGA values bigger than 
1 g the 50th percentile EL are around 1 million euros bigger than EL losses of the mean 
curve. Meanwhile, for PGA smaller than 0.7 g the mean EL are bigger than EL of 50th per-
centile curve. The maximum values of EL for 10th, 20th, 50th, 80th, and 90th percentiles, 
are 26 million euro, 29 million euro, 32 million euro, 34 million euro and 35 million euro, 
respectively. While the maximum EL for the mean curve are 31.3 million euro.

In Fig.  14a are summarized the mean curves of DC, BI and EL of black carbon 
plant for different levels of PGA. For small levels of PGA, 0.05 g up to 0.3 g the BI 
losses influence approximately between 70 and 80% in EL, while for PGA levels bigger 
than 0.7 g the BI losses are slightly higher than DC. By combining the hazard curve of 
Fig. 8a and mean economic loss curve of Fig. 14a, the mean expected loss exceedance 
curve is constructed as shown in Fig. 14b. Using Eq. (14) mean expected annual losses 
(EALm) of the carbon black plant are calculated to be around 27,976 €, from which 
19,599 € are due to business interruption and 8378 € are due to direct cost for recon-
struction of damaged equipment. As business interruption losses causes around 70% of 
total expected losses, it is important to have an efficient recovery plan in order to mini-
mize the maximum recovery time and business interruption losses.

Fig. 12   a Distribution of Economic Losses for PGA = 0.5 g; b Probabilistic Business Interruption losses for 
different PGA



100	 Bulletin of Earthquake Engineering (2024) 22:75–106

1 3

Additionally, EAL are calculated also for 10th, 20th, 50th, 80th and 90th percentiles, 
having a value of 5990 €, 8940 €, 18,972 €, 39,410 € and 60,114 €, respectively. We 
can see that the difference between EALm and EAL of 50th percentile is around 10,000 
€, and this is due to higher values of EL of mean curve for lower PGAs compare to the 
50th percentile curve. It is important to be highlighted, that the smaller PGAs, influence 
more the EALm due to their higher probability of exceedance. For the case of black car-
bon plant, the PGAs 0.5 g and smaller cause around 93% of total EALm.

Fig. 13   a Probabilistic Direct Cost losses for different PGA; b Probabilistic Economic Losses for different 
PGA

Fig. 14   a Mean economic loss curve for different PGA; b Mean annual frequency of exceedance of eco-
nomic losses of the Black Carbon Plant
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6 � Conclusions

The effects of catastrophic events on industrialized communities can be extremely dis-
pendious both in terms of human lives and economic losses. Consequently, the miti-
gation strategies against natural hazards and climate change, primary causes of such 
events, need to be re-thought. In fact, interaction between critical elements and the 
presence of multiple damage conditions that characterize those events can amplify the 
damage propagation effects. Moreover, the quantification of the restoration capacity of 
infrastructures and the community resilience represents, under these conditions, a very 
difficult task.

A particular case is represented by  Na-Tech events in major-hazard facilities, like 
process plants, which have been the object of many studies in the past, especially in 
presence of earthquakes. Nevertheless, methods for quantitative resilience quantification 
of such complex systems are scarce, which often do not account for all possible random-
ness in the quantification of the hazard, vulnerability and reconstruction costs.

For these reasons, the present paper proposed a Probabilistic Seismic Resilience Analy-
sis (PSRA) method for the quantification of the operational capacity of hazardous process 
plants and the quantification of direct and indirect economic losses generated by the seis-
mic damage conditions. The method is a generalization of the Performance-based Earth-
quake Engineering method, including also the restoration phase. It derived from a method 
already proposed by the authors, which now incorporates the probabilistic nature of the 
problem.

One of the relevant aspects of the proposed method is the capacity to account for, in 
a probabilistic manner, functional interactions between the damaged equipment, for the 
quantification of the operational capacity of the system along the time. At this purpose, 
a Simplified Plant Equipment Reconstruction Network (SPEREN) approach has been 
proposed, which allow the use of empirical recovery costs and duration from literature. 
Given the large number of random variables and the complex interaction between the 
equipment and reconstruction activities, the method has been formulated adopting a 
Monte Carlo Simulation approach.

Consequently, using a scenario-based approach samples of damage scenario and recon-
struction activity are generated and the statistics of operational capacity and economic 
losses (direct and indirect) are evaluated.

Resilience value can inform decision making in a valuable manner. Each single plant 
manager can establish an acceptable threshold to resilience. No objective and absolute 
value can be stated, and no standard or law requirement has been established on that mat-
ter, because it depends on the impact that the capacity loss and interruption duration has on 
the customer satisfaction level and the overall company business. In safety–critical plants 
one should strive to have very high values of resilience, while a manufacturer of consumer 
goods can accept a lower value, provided that the resulting economic loss does not jeop-
ardize the company survival. Based on the plant owner perception of the criticality of pro-
duction interruption and capacity loss, he can judge as satisfactory or not the computed 
resilience level and decide to actuate resilience improvement projects such as modify the 
plant structure (i.e. introducing redundancy) to reduce capacity loss, improving equipment 
robustness or install protective devices. Capacity recovery plans can even be revised in 
order to shorten the duration of recovery process. The possibility to quantitatively compare 
resilience before and after such interventions provides a measures of their cost/effective-
ness ratio.
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A Black Carbon plant has been selected as representative case study for the application 
and validation of the proposed method. The selection is related to the evident strategic role 
of such a facility and its complexity. The plant ideally located in Priolo Gargallo (Italy), 
includes different seismically vulnerable elements (storage tanks, pumps, stacks, piperack, 
etc.), whose fragility curves have been derived either empirically or analytically. According 
to the proposed method the following conclusions can be drawn:

•	 The operational capacity (OC) curve is rather dispersed with an evident dissymmetry 
with respect to the mean curve. This strongly depends on the dispersion of the recovery 
time of the equipment and the prevalent damage states in which they are in the after-
math of a seismic event. For example, in the analyzed case, for a PGA = 0.5 g, the 90th 
percentile OC curve presents a total recovery time out of scale (> 720d). This is due to 
delays coming from probabilistic recovery of damage scenarios with at least a verti-
cal reactor, reactor and vertical heat exchanger, or milling tower in DS4, which have a 
mean recovery time of 660d.

•	 The variation of resilience index (R) with the intensity measure (PGA) is straight-
forward. There is a lower zone where R is insensitive to PGA. In mean, this zone in 
extended up to PGA = 0.15 g with a 90% confidence interval between 0.1 g and 0.3 g. 
After that, R drops quite linearly up to (in mean) 1.3 g. Subsequently, R remains practi-
cally unvaried. This upper invariance zone ranges from 0.8 g up to PGA > 1.8 g.

•	 The probability distribution functions of R and recovery interval Tmax appears bimodal, 
as shown in the example for PGA = 0.5  g. This depends essentially by the different 
damage states of the equipment and the different recovery function. In the example, 
the first peak (350d) is governed by the prevalent damage states (DS4/DS5) of storage 
tanks and their recovery phases. The second one is instead governed by the prevalent 
damage state (DS4) and recovery function of vertical reactors and reactor  + vertical.

•	 The proposed method easily allowed to evaluate the statistic of economic losses both of 
direct (seismic damage of the equipment, DC) and indirect (Business interruption, BI) 
nature. For example, similarly to R and Tmax, the probability distribution function for 
PGA = 0.5 g showed a clear prevalence in terms of mean value of the BI, with an incre-
ment with respect to DC of about 50%.

•	 In the investigated range of PGA, the economic losses showed a prevalence of BI up 
to 0.3 g, after that the difference decreases to 10% after PGA = 1.0 g. This means that 
for seismic intensities whose return period comprises the limit states typically used for 
civil structures (up to collapse prevention) BI represents the predominant economic 
losses.

•	 The mean expected annual losses (EALm) indicates that more than 90% of the economic 
loss is related to seismic events with a PGA <  = 0.5 g, due to their higher frequency of 
occurrence. Moreover, around 70% of EALm occurs due to BI, so it is important to have 
an efficient recovery strategy in order to minimize the economic losses.

In summary it is clear the potentiality of the proposed method for decision making anal-
ysis of process plant vulnerable to seismic action. The outcomes in terms of operational 
capacity and economic losses can be profitably used to individuate the most critical com-
ponents of a plant and investigate the most effective mitigation strategy, both in terms of 
fragility reduction and recovery time control. This aspect along with the influence of possi-
ble domino effects will the object of further investigations, as well as the dynamic interac-
tion between interconnected equipment.



103Bulletin of Earthquake Engineering (2024) 22:75–106	

1 3

Acknowledgements  This project has received funding from the European Union’s Horizon 2020 research 
and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 721816.

Funding  Open access funding provided by Università degli Studi Roma Tre within the CRUI-CARE 
Agreement.

Data availability  The raw data supporting the conclusions of this article will be made available by the 
authors, upon reasonable requests.

Declarations 

Conflict of interest  The authors declare that the research was conducted in the absence of any commercial or 
financial relationships that could be construed as a potential conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abimbola M, Khan F (2019) Resilience modeling of engineering systems using dynamic object-oriented 
bayesian network approach. Comput Ind Eng 130:108–118. https://​doi.​org/​10.​1016/j.​cie.​2019.​02.​022

Akkar S, Bommer JJ (2010) Empirical equations for the prediction of PGA, PGV, and spectral accelerations 
in Europe, the Mediterranean Region, and the Middle East. Seismol Res Lett 81:195–206

Alessandri S, Caputo A, Corritore D, Giannini R, Paolacci F, Phan H (2018) Probabilistic risk analysis 
of process plants under seismic loading based on monte carlo simulations. J Loss Prev Process Ind 
53:136–148. https://​doi.​org/​10.​1016/j.​jlp.​2017.​12.​013

Alfanda AM, Dai K, Wang J (2022) Review of seismic fragility and loss quantification of building-like 
industrial facilities. J Pressure Vessel Technol 144(6). https://​doi.​org/​10.​1115/1.​40548​44

Almufti I, Willford M (2013) Redi™ rating system: resilience-based earthquake design initiative for the 
next generation of buildings. Arup Co. https://​doi.​org/​10.​13140/​RG.2.​2.​20267.​75043

Antonioni G, Spadoni G, Cozzani V (2009) Application of domino effect quantitative risk assessment to an 
extended industrial area. J Loss Prev Process Ind 22(5):614–624. https://​doi.​org/​10.​1016/j.​jlp.​2009.​02.​
012

Argyroudis SA, Fotopoulou S, Karafagka S, Pitilakis K, Selva J, Salzano E, Basco A, Crowley H, Rodrigues 
R, Matos J, Schle AJ (2020) A risk-based multi-level stress test methodology: application to six critical 
non-nuclear infrastructures in Europe. Nat Hazards 100(2):595–633

Argyroudis SA, Nasiopoulos G, Mantadakis N, Mitoulis SA (2021) Cost-based resilience assessment of 
bridges subjected to earthquakes. Int J Disaster Resil Built Environ 12(2):209–222. https://​doi.​org/​10.​
1108/​IJDRBE-​02-​2020-​0014

Ayyub BM (2014) Systems resilience for multihazard environments: definition, metrics, and valuation for 
decision making. Risk Anal 34(2):340–355. https://​doi.​org/​10.​1111/​risa.​12093

Bakalis K, Vamvatsikos D, Fragiadakis M (2017) Seismic risk assessment of liquid storage tanks via a non-
linear surrogate model. Earthquake Eng Struct Dyn 46(15):2851–2868. https://​doi.​org/​10.​1002/​eqe.​
2939

Bakalis K, Kohrangi M, Vamvatsikos D (2018) Seismic intensity measures for above-ground liquid storage 
tanks. Earthquake Eng Struct Dyn 47(9):1844–1863. https://​doi.​org/​10.​1002/​eqe.​3043

Baker JW (2015) Efficient analytical fragility function fitting using dynamic structural analysis. Earthq 
Spectra 31(1):579–599. https://​doi.​org/​10.​1193/​02111​3EQS0​25M

Baker JW (2008) An introduction to probabilistic seismic hazard analysis (psha). White paper, version 
1:72. https://​cites​eerx.​ist.​psu.​edu/​viewd​oc/​downl​oad?​doi=​10.1.​1.​575.​7494&​rep=​rep1&​type=​pdf

Bhamra R, Dani S, Burnard K (2011) Resilience: the concept, a literature review and future directions. 
Int J Prod Res 49(18):5375–5393. https://​doi.​org/​10.​1080/​00207​543.​2011.​563826

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cie.2019.02.022
https://doi.org/10.1016/j.jlp.2017.12.013
https://doi.org/10.1115/1.4054844
https://doi.org/10.13140/RG.2.2.20267.75043
https://doi.org/10.1016/j.jlp.2009.02.012
https://doi.org/10.1016/j.jlp.2009.02.012
https://doi.org/10.1108/IJDRBE-02-2020-0014
https://doi.org/10.1108/IJDRBE-02-2020-0014
https://doi.org/10.1111/risa.12093
https://doi.org/10.1002/eqe.2939
https://doi.org/10.1002/eqe.2939
https://doi.org/10.1002/eqe.3043
https://doi.org/10.1193/021113EQS025M
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.575.7494&rep=rep1&type=pdf
https://doi.org/10.1080/00207543.2011.563826


104	 Bulletin of Earthquake Engineering (2024) 22:75–106

1 3

Bristow DN, Hay AH (2017) Graph model for probabilistic resilience and recovery planning of multi-
infrastructure systems. J Infrastruct Syst 23(3):04016039. https://​doi.​org/​10.​1061/​(ASCE)​IS.​1943-​
555X.​00003​38

Caprinozzi S, Paolacci F, Bursi OS, Dolšek M (2021) Seismic performance of a floating roof in an 
unanchored broad storage tank: Experimental tests and numerical simulations. J Fluids Struct 
105:103341. https://​doi.​org/​10.​1016/j.​jflui​dstru​cts.​2021.​103341

Caputo AC, Paolacci F (2017) A method to estimate process plant seismic resilience. In: Proceed-
ings of the ASME 2017 Pressure Vessels and Piping Conference, vol 8: Seismic Engineering, 
v008T08A023. https://​doi.​org/​10.​1115/​PVP20​17-​65464

Caputo AC, Kalemi B, Paolacci F, Corritore D (2020) Computing resilience of process plants under NA-
tech events: methodology and application to seismic loading scenarios. Reliability Eng Syst Safety 
195:106685. https://​doi.​org/​10.​1016/j.​ress.​2019.​106685

Chen C, Reniers G, Khakzad N (2020) A thorough classification and discussion of approaches for mod-
eling and managing domino effects in the process industries. Safety Sci 125:104618. https://​doi.​
org/​10.​1016/j.​ssci.​2020.​104618

Cimellaro GP, Reinhorn AM, Bruneau M (2006. Quantification of seismic resilience. In: Proceedings 
of of 8th U.S. National Conference on Earthquake Engineering April 18–22, 2006, San Francisco, 
California, USA, Paper No. 1094

Cimellaro GP, Fumo C, Reinhorn AM, Bruneau M (2009) Quantification of disaster resilience of health 
care facilities. Tech. Rep. MCEER-09-0009, University of Buffalo, NY, USA. https://​www.​eng.​
buffa​lo.​edu/​mceer-​repor​ts/​09/​09-​0009.​pdf

Cimellaro GP (2016) Urban resilience for emergency response and recovery, Chapter 5 Downtime and 
recovery models. Springer, Switzerland.

Cole MA, Elliott RJ, Okubo T, Strobl E (2013) Natural disasters and plant survival: the impact of the 
kobe earthquake. Discussion Papers Series 13-E-063, https://​www.​rieti.​go.​jp/​en/​publi​catio​ns/​
summa​ry/​13070​007.​html

Cole MA, Elliott RJ, Okubo T, Strobl E (2016) How do manufacturing plants respond to large physical 
shocks? The Kobe earthquake as a natural experiment. https://​api.​seman​ticsc​holar.​org/​Corpu​sID:​
19574​5800

Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606. https://​
doi.​org/​10.​1785/​BSSA0​58005​1583

Corritore D, Alessandri S, Giannini R, Paolacci F (2017) Priamus: a new tool for the probabilistic risk 
assessment with monte carlo simulations of process plants under seismic loading. In: Proceedings 
of the ANIDIS Conference. 2017, Pisa University Press, pp 83–93. http://​digit​al.​casal​ini.​it/​42162​03

D’Amico M, Buratti N (2018) Observational seismic fragility curves for steel cylindrical tanks. J Pres-
sure Vessel Technol 141(1). https://​doi.​org/​10.​1115/1.​40401​37

Di Sarno L, Karagiannakis G (2020) On the seismic fragility of pipe rack—piping systems consid-
ering soil–structure interaction. Bull Earthq Eng 18(6):2723–2757. https://​doi.​org/​10.​1007/​
s10518-​020-​00797-0

El-Halwagi MM, Sengupta D, Pistikopoulos EN, Sammons J, Eljack F, Kazi MK (2020) Disaster-resil-
ient design of manufacturing facilities through process integration: principal strategies, perspec-
tives, and research challenges. Front Sustain 1:595961. https://​doi.​org/​10.​3389/​frsus.​2020.​595961

Farhan M, Bousias S (2020) Seismic fragility analysis of lng sub-plant accounting for compo-
nent dynamic interaction. Bull Earthq Eng 18(10):5063–5085. https://​doi.​org/​10.​1007/​
s10518-​020-​00896-y

Federal Emergency Management Agency (2012) FEMA P-58 Seismic Performance Assessment of 
Buildings. Washington, DC: Federal Emergency Management Agency. https://​www.​atcou​ncil.​org/​
docman/​fema/​246-​fema-p-​58-1-​seism​ic-​perfo​rmance-​asses​sment-​of-​build​ings-​volume-​1-​metho​dol-
ogy-​second-​editi​on/​file

Guidotti R, Chmielewski H, Unnikrishnan V, Gardoni P, McAllister T, van de Lindt J (2016) Modeling 
the resilience of critical infrastructure: the role of network dependencies. Sustain Resil Infrastruc-
ture 1(3–4):153–168. https://​doi.​org/​10.​1080/​23789​689.​2016.​12549​99

Guidotti R, Gardoni P, Rosenheim N (2019) Integration of physical infrastructure and social systems in 
communities’ reliability and resilience analysis. Reliabil Eng Syst Safety 185:476–492. ISSN 0951-
8320. https://​doi.​org/​10.​1016/j.​ress.​2019.​01.​008

Hazus FEMA (2022) - Hazus Earthquake Model Technical Manual - Hazus 5.1. https://​www.​fema.​gov/​sites/​
defau​lt/​files/​2020-​09/​fema_​hazus_​earth​quake-​model_​techn​ical-​manual_​2.1.​pdf

Hossain NUI, Jaradat R, Hosseini S, Marufuzzaman M, Buchanan RK (2019a) A framework for mod-
eling and assessing system resilience using a Bayesian network: a case study of an interdependent 

https://doi.org/10.1061/(ASCE)IS.1943-555X.0000338
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000338
https://doi.org/10.1016/j.jfluidstructs.2021.103341
https://doi.org/10.1115/PVP2017-65464
https://doi.org/10.1016/j.ress.2019.106685
https://doi.org/10.1016/j.ssci.2020.104618
https://doi.org/10.1016/j.ssci.2020.104618
https://www.eng.buffalo.edu/mceer-reports/09/09-0009.pdf
https://www.eng.buffalo.edu/mceer-reports/09/09-0009.pdf
https://www.rieti.go.jp/en/publications/summary/13070007.html
https://www.rieti.go.jp/en/publications/summary/13070007.html
https://api.semanticscholar.org/CorpusID:195745800
https://api.semanticscholar.org/CorpusID:195745800
https://doi.org/10.1785/BSSA0580051583
https://doi.org/10.1785/BSSA0580051583
http://digital.casalini.it/4216203
https://doi.org/10.1115/1.4040137
https://doi.org/10.1007/s10518-020-00797-0
https://doi.org/10.1007/s10518-020-00797-0
https://doi.org/10.3389/frsus.2020.595961
https://doi.org/10.1007/s10518-020-00896-y
https://doi.org/10.1007/s10518-020-00896-y
https://www.atcouncil.org/docman/fema/246-fema-p-58-1-seismic-performance-assessment-of-buildings-volume-1-methodology-second-edition/file
https://www.atcouncil.org/docman/fema/246-fema-p-58-1-seismic-performance-assessment-of-buildings-volume-1-methodology-second-edition/file
https://www.atcouncil.org/docman/fema/246-fema-p-58-1-seismic-performance-assessment-of-buildings-volume-1-methodology-second-edition/file
https://doi.org/10.1080/23789689.2016.1254999
https://doi.org/10.1016/j.ress.2019.01.008
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_earthquake-model_technical-manual_2.1.pdf
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_earthquake-model_technical-manual_2.1.pdf


105Bulletin of Earthquake Engineering (2024) 22:75–106	

1 3

electrical infrastructure system. Int J Crit Infrastruct Prot 25:62–83. https://​doi.​org/​10.​1016/j.​ijcip.​
2019.​02.​002

Hossain NUI, Nur F, Hosseini S, Jaradat R, Marufuzzaman M, Puryear SM (2019b) A bayesian network 
based approach for modeling and assessing resilience: a case study of a full service deep water port. 
Reliabil Eng Syst Safety 189:378–396. https://​doi.​org/​10.​1016/j.​ress.​2019.​04.​037

Hosseini S, Barker K (2016) Modeling infrastructure resilience using bayesian networks: a case study of 
inland waterway ports. Comp Ind Eng 93:252–266. https://​doi.​org/​10.​1016/j.​cie.​2016.​01.​007

Hosseini S, Al Khaled A, Sarder M (2016a) A general framework for assessing system resilience using 
bayesian networks: a case study of sulfuric acid manufacturer. J Manuf Syst 41:211–227. https://​
doi.​org/​10.​1016/j.​jmsy.​2016.​09.​006

Hosseini S, Barker K, Ramirez-Marquez JE (2016b) A review of definitions and measures of system 
resilience. Reliab Eng Syst Saf 145:47–61. https://​doi.​org/​10.​1016/j.​ress.​2015.​08.​006

Ivanov D, Dolgui A, Sokolov B, Ivanova M (2017) Literature review on disruption recovery in the sup-
ply chain. Int J Prod Res 55(20):6158–6174. https://​doi.​org/​10.​1080/​00207​543.​2017.​13305​72

Kajitani Y, Chang SE, Tatano H (2013) Economic impacts of the 2011 tohoku-oki earthquake and tsu-
nami. Earthquake Spectra 29(1_suppl):457–478. https://​doi.​org/​10.​1193/1.​40001​08

Kalemi B, Caputo AC, Paolacci F (2019a) Resilience calculation of process plants under seismic load-
ing: a case study. In: Proceedings of the ASME 2019a pressure vessels and piping conference, vol 
5, v005T09A014, https://​doi.​org/​10.​1115/​PVP20​19-​93311

Kalemi B, Corritore D, Caputo AC, Paolacci F (2019b) On the resilience calculation of process plants 
in seismic regions based on monte carlo simulation. In: Proceedings of the ANIDIS 2019b Confer-
ence, Ascoli Piceno, Italy, Pisa University Press, pp 20–29. https://​doi.​org/​10.​1400/​271042

Karaferis N, Kazantzi A, Melissianos V, Bakalis K, Vamvatsikos D (2022) Seismic fragility assess-
ment of high-rise stacks in oil refineries. Bull Earthquake Eng, pp 1–24. https://​doi.​org/​10.​1007/​
s10518-​022-​01472-2

Karagiannakis G, Wenzel M, Kowalczyk P, Farhan M, Zhelyazkov A, Celano F, Caprinozzi S, Pedot 
M, Kalemi B, Bennani H et al. (2020) Seismic risk and resilience assessment of industrial facili-
ties: Case study on a black carbon plant. In: 17th World Conference on Earthquake Engineering, 
17WCEE Sendai, Japan-September 13th to 18th 2020 Paper N° C003250. https://​www.​resea​rchga​
te.​net/​publi​cation/​34585​8334

Kazantzi A, Karaferis N, Melissianos V, Bakalis K, Vamvatsikos D (2022) Seismic fragility assessment 
of building-type structures in oil refineries. Bull  Earthquake Eng, pp 1–24. https://​doi.​org/​10.​1007/​
s10518-​022-​01476-y

Melissianos VE, Karaferis N, Kazantzi AK, Bakalis K, Vamvatsikos D et al. (2022) An integrated model 
for the seismic risk assessment of an oil refinery. In: 3rd International conference on natural haz-
ards & infrastructure, 5–7 July 2022, Athens, Greece

Mussini N (2019) A multilevel decision-making approach for the resilience assessment of industrial 
plants in seismic prone areas. PhD thesis, Fakultät für Bauingenieurwesen der Rheinisch-Westfälis-
chen Technischen Hochschule Aachen. https://​doi.​org/​10.​18154/​RWTH-​2018-​226030

Nauck F, Pancaldi L, Poppensieker T, White O (2021) The resilience imperative: succeeding in uncer-
tain times. McKinsey Global Publishing https://​www.​mckin​sey.​com/​busin​ess-​funct​ions/​risk-​and-​
resil​ience/​our-​insig​hts/​the-​resil​ience-​imper​ative-​succe​eding-​in-​uncer​tain-​times?​cid=​eml-​web

Paolacci F, Giannini R, De Angelis M (2013) Seismic response mitigation of chemical plant components 
by passive control techniques. Journal of Loss Prevention in the Process Industries (5):924–935, 
https://​doi.​org/​10.​1016/j.​jlp.​2013.​03.​003

Paolacci F, Corritore D, Caputo AC, Bursi OS, Kalemi B (2018) A probabilistic approach for the assess-
ment of LOC events in steel storage tanks under seismic loading. In: Proceedings of the ASME 
2018 pressure vessels and piping conference, vol 8: Seismic Engineering, v008T08A016. https://​
doi.​org/​10.​1115/​PVP20​18-​84374

Paolacci F, Giannini R, Corritore D, Phan H, Quinci G (2022) Scores: an algorithm for records selection to 
employ in seismic risk and resilience analysis. In: Proceedings of the ANIDIS XIX Conference. 2022 
11–15 September, Turin, Italy. https://​doi.​org/​10.​1016/j.​prostr.​2023.​01.​040

Phan HN, Paolacci F, Bursi OS, Tondini N (2017) Seismic fragility analysis of elevated steel storage 
tanks supported by reinforced concrete columns. J Loss Prev Process Ind 47:57–65. https://​doi.​org/​
10.​1016/j.​jlp.​2017.​02.​017

Phan HN, Paolacci F, Di Filippo R, Bursi OS (2020) Seismic vulnerability of above-ground storage 
tanks with unanchored support conditions for na-tech risks based on gaussian process regression. 
Bull Earthq Eng 18(15):6883–6906. https://​doi.​org/​10.​1007/​s10518-​02000​960-7

Phan HN, Paolacci F (2016) Efficient intensity measures for probabilistic seismic response analysis of 
anchored above-ground liquid steel storage tanks. In: Proceedings of the ASME 2016 Pressure 

https://doi.org/10.1016/j.ijcip.2019.02.002
https://doi.org/10.1016/j.ijcip.2019.02.002
https://doi.org/10.1016/j.ress.2019.04.037
https://doi.org/10.1016/j.cie.2016.01.007
https://doi.org/10.1016/j.jmsy.2016.09.006
https://doi.org/10.1016/j.jmsy.2016.09.006
https://doi.org/10.1016/j.ress.2015.08.006
https://doi.org/10.1080/00207543.2017.1330572
https://doi.org/10.1193/1.4000108
https://doi.org/10.1115/PVP2019-93311
https://doi.org/10.1400/271042
https://doi.org/10.1007/s10518-022-01472-2
https://doi.org/10.1007/s10518-022-01472-2
https://www.researchgate.net/publication/345858334
https://www.researchgate.net/publication/345858334
https://doi.org/10.1007/s10518-022-01476-y
https://doi.org/10.1007/s10518-022-01476-y
https://doi.org/10.18154/RWTH-2018-226030
https://www.mckinsey.com/business-functions/risk-and-resilience/our-insights/the-resilience-imperative-succeeding-in-uncertain-times?cid=eml-web
https://www.mckinsey.com/business-functions/risk-and-resilience/our-insights/the-resilience-imperative-succeeding-in-uncertain-times?cid=eml-web
https://doi.org/10.1016/j.jlp.2013.03.003
https://doi.org/10.1115/PVP2018-84374
https://doi.org/10.1115/PVP2018-84374
https://doi.org/10.1016/j.prostr.2023.01.040
https://doi.org/10.1016/j.jlp.2017.02.017
https://doi.org/10.1016/j.jlp.2017.02.017
https://doi.org/10.1007/s10518-02000960-7


106	 Bulletin of Earthquake Engineering (2024) 22:75–106

1 3

Vessels and Piping Conference, PVP2016, July 17–21, 2016, Vancouver, British Columbia, Can-
ada. https://​doi.​org/​10.​1115/​PVP20​16-​63103

Phan HN, Paolacci F, Alessandri S (2019) Enhanced seismic fragility analysis of unanchored steel stor-
age tanks accounting for uncertain modeling parameters. J Pressure Vessel Technol 141(1). https://​
doi.​org/​10.​1115/1.​40396​35

Phan HN, Paolacci F, My Nguyen V, Hoang PH (2021) Ground motion intensity measures for seismic 
vulnerability analysis of steel storage tanks with unanchored support conditions. J Pressure Vessel 
Technol 143(6). https://​doi.​org/​10.​1115/1.​40512​44.

Porter K (2015) A beginner’s guide to fragility, vulnerability, and risk. Springer Berlin Heidelberg, pp 
235–260. https://​doi.​org/​10.​1007/​978-3-​642-​35344-4_​256.

Saitta F, Bongiovanni G, Buffarini G, Clemente P, Martelli A, Marzo A, Marghella G, Indirli M, Poggia-
nti A (2012) Behaviour of industrial buildings in the pianura padana emiliana earthquake. Energia, 
Ambiente e Innovazione 4–5 – Parte II:47–57, https://​www.​eai.​enea.​it/​archi​vio/n-​4-5-​luglio-​ottob​
re-​2012-​parte-​secon​da/​behav​iour-​of-​indus​trial-​build​ings-​in-​the-​pianu​ra-​padana-​emili​ana-​earth​
quake.​html

Salzano E, Iervolino I, Fabbrocino G (2003) Seismic risk of atmospheric storage tanks in the frame-
work of quantitative risk analysis. J Loss Prev Process Ind 16(5):403–409. https://​doi.​org/​10.​1016/​
S0950-​4230(03)​00052-4

Sharma N, Tabandeh A, Gardoni P (2020) Regional resilience analysis: a multiscale approach to opti-
mize the resilience of interdependent infrastructure. Comput Aided Civ Inf 35:1315–1330. https://​
doi.​org/​10.​1111/​mice.​12606

Sharma N, Nocera F, Gardoni P (2021) Classification and mathematical modeling of infrastructure inter-
dependencies. Sustain Resil Infrastruct 6(1–2):4–25. https://​doi.​org/​10.​1080/​23789​689.​2020.​17534​
01

Sharma N, Tabandeh A, Gardoni P (2019) Recovery optimization of interdependent infrastructure: A 
multi-scale approach. In: 13th International conference on applications of statistics and probability 
in civil engineering, ICASP 2019. https://​doi.​org/​10.​22725/​ICASP​13.​148

Sheffi Y (2015) The power of resilience: how the best companies manage the unexpected. MIT Press, 
Cambridge. https://​doi.​org/​10.​7551/​mitpr​ess/​97802​62029​797.​001.​0001

Sheffi Y (2005) The resilient enterprise: Overcoming vulnerability for competitive advantage. MIT Press 
Books 1. https://​mitpr​ess.​mit.​edu/​books/​resil​ient-​enter​prise

Sun W, Bocchini P, Davison BD (2020) Resilience metrics and measurement methods for transporta-
tion infrastructure: the state of the art. Sustain Resil Infrastructure 5(3):168–199. https://​doi.​org/​10.​
1080/​23789​689.​2018.​14486​63

SYNER-G (2014) Typology Definition and Fragility Functions for Physical Elements at Seismic Ris 
Buildings, Lifelines, Transportation Networks and Critical Facilities, Ed. K. Pitilakis, H. Crow-
ley, A.M. Kaynia, Part of the book series: Geotechnical, Geological and Earthquake Engineering 
(GGEE, volume 27).

Tong Q, Yang M, Zinetullina A (2020) A dynamic bayesian network-based approach to resilience assess-
ment of engineered systems. J Loss Prevent Process Industries 65:104152. https://​doi.​org/​10.​1016/j.​
jlp.​2020.​104152

Vanhoucke M (2012) Project management with dynamic scheduling. Springer, Berlin. https://​doi.​org/​10.​
1007/​978-3-​642-​25175-7

Woods DD (2015) Four concepts for resilience and the implications for the future of resilience engineer-
ing. Reliab Eng Syst Saf 141:5–9. https://​doi.​org/​10.​1016/j.​ress.​2015.​03.​018

Wu Z, Lu X, Noori M (2020) Resilience of Critical Infrastructure Systems: Emerging Developments and 
Future Challenges (1st ed.). CRC Press, Boca Raton. https://​doi.​org/​10.​1201/​97803​67477​394

Yodo N, Wang P (2016) Resilience modeling and quantification for engineered systems using Bayesian 
networks. J Mech Des Trans ASME 138(3). https://​doi.​org/​10.​1115/1.​40323​99

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1115/PVP2016-63103
https://doi.org/10.1115/1.4039635
https://doi.org/10.1115/1.4039635
https://doi.org/10.1115/1.4051244
https://doi.org/10.1007/978-3-642-35344-4_256
https://www.eai.enea.it/archivio/n-4-5-luglio-ottobre-2012-parte-seconda/behaviour-of-industrial-buildings-in-the-pianura-padana-emiliana-earthquake.html
https://www.eai.enea.it/archivio/n-4-5-luglio-ottobre-2012-parte-seconda/behaviour-of-industrial-buildings-in-the-pianura-padana-emiliana-earthquake.html
https://www.eai.enea.it/archivio/n-4-5-luglio-ottobre-2012-parte-seconda/behaviour-of-industrial-buildings-in-the-pianura-padana-emiliana-earthquake.html
https://doi.org/10.1016/S0950-4230(03)00052-4
https://doi.org/10.1016/S0950-4230(03)00052-4
https://doi.org/10.1111/mice.12606
https://doi.org/10.1111/mice.12606
https://doi.org/10.1080/23789689.2020.1753401
https://doi.org/10.1080/23789689.2020.1753401
https://doi.org/10.22725/ICASP13.148
https://doi.org/10.7551/mitpress/9780262029797.001.0001
https://mitpress.mit.edu/books/resilient-enterprise
https://doi.org/10.1080/23789689.2018.1448663
https://doi.org/10.1080/23789689.2018.1448663
https://doi.org/10.1016/j.jlp.2020.104152
https://doi.org/10.1016/j.jlp.2020.104152
https://doi.org/10.1007/978-3-642-25175-7
https://doi.org/10.1007/978-3-642-25175-7
https://doi.org/10.1016/j.ress.2015.03.018
https://doi.org/10.1201/9780367477394
https://doi.org/10.1115/1.4032399

	A probabilistic framework for the estimation of resilience of process plants under Na-Tech seismic events
	Abstract
	1 Introduction
	1.1 Background and motivation
	1.2 Scope of the work

	2 Definition of resilience for major-hazard process plants
	3 Probabilistic seismic resilience analysis (PSRA) of process plants
	4 Simplified PSRA model for major-hazard process plants
	4.1 Process mapping and plant topology representation
	4.2 Definition of initial residual capacity of the plant
	4.3 Formulation of plant recovery model
	4.4 Formulation of the plant recovery function
	4.5 Definition of resilience index and economic loss model
	4.6 Probabilistic Seismic Hazard Analysis and evaluation of seismic damage scenarios
	4.7 Monte Carlo Simulation for estimation of probabilistic resilience metrics

	5 Illustrative example
	5.1 Process plant mapping
	5.2 Seismic hazard and vulnerability of the equipment
	5.3 Recovery model
	5.4 Analysis of the results and discussion

	6 Conclusions
	Acknowledgements 
	References




