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Abstract
Hot-rolled ribbed bar (HRB) 600 is a new type of high-strength (HS) reinforcement. Its 
tensile stress‒strain curves show an obvious yield plateau, which can be used to effectively 
improve the seismic performance and reduce the reinforcement ratios for concrete mem-
bers. To better understand the effect of HRB600 reinforcement on the hysteretic behavior 
of concrete columns, cyclic tests are first conducted. Subsequently, a hysteretic model for 
such columns is proposed. The modeling method is established by combining the skel-
eton curve and hysteretic rule. The skeleton curve is simplified as a trilinear model rep-
resented by yield, peak and ultimate points, and the hysteretic rule is established based 
on the experimental hysteretic curves obtained in this paper. Meanwhile, numerical mod-
els are established by OpenSees to simulate the hysteretic behavior of HS bar reinforced 
concrete columns. Finally, the accuracy of the proposed model and numerical models are 
compared, then evaluated based on experimental data. The research results show that the 
proposed model and numerical models show a similar prediction accuracy and can be used 
to well predict the hysteretic behavior of concrete columns built with HRB600 steel bars. 
The Bernoulli–Euler assumption and plastic hinge theory can be extended for estimating 
the strength and deformation of HRB600 steel bar reinforced columns.

Keywords Concrete columns · HRB600 steel bars · hysteretic model · Skeleton curvature · 
Hysteretic rule

1 Introduction

A reinforcement with a yield strength of 500 MPa or greater is defined as high-strength 
(HS) reinforcement (NEHRP 2014). High-strength steel bars can be used to reduce the 
reinforcement ratios for concrete structures, reduce the processing and transportation costs 

 * Xiangyong Ni 
 20310091@tongji.edu.cn

1 State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, 
China

2 Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, 
Southeast University, Nanjing, China

3 China Construction Second Engineering Bureau Ltd.,, Shanghai 200135, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10518-022-01610-w&domain=pdf


2310 Bulletin of Earthquake Engineering (2023) 21:2309–2335

1 3

of steel bars, and improve the mechanical performance of reinforced concrete members. 
Meanwhile, high-strength steel bars can solve the problem of steel bar congestion in con-
struction to improve the construction quality. Therefore, the application of high-strength 
reinforcement in concrete structures is beneficial for energy savings and emission reduc-
tion and has good economic, environmental and social benefits. Reinforced concrete col-
umns are the main vertical bearing members of overall structures and are also used to resist 
horizontal loads generated by earthquakes or wind, so the safety of column members is 
important for such structures. HS reinforcement can take the form of longitudinal steel bars 
and stirrups for concrete column members. However, the permissible maximum strength 
grade for longitudinal reinforcement in the Chinese code is HRB500 with a nominal yield 
strength of 500 MPa, and HRB600 is expected to be approved in Chinese codes in the next 
few years. Consequently, more studies should be conducted to promote the application of 
HRB600 reinforcement in concrete structures.

Many types of high-strength reinforcement have been developed worldwide, including 
America Grade 550  MPa (80 psi) and 690  MPa (100 psi) (Li et  al., 2019), Japan USD 
685  MPa (Hwang et  al., 2014), Korea SD600 MPa (Ousalem et  al. 2009), and China 
HRB600 MPa. Figure 1 shows the strain‒stress curves for the above types of high-strength 
reinforcement. High-strength reinforcing bars have a similar elasticity modulus. HRB600, 
SD600, and USD685 reinforcing bars show yield plateaus and considerable elongation, 
which are different from that for Grade 550 MPa and 690 MPa reinforcement (America). 
From a comparison of the strain–stress curves obtained for HRB600 and SD600 with the 
same nominal yield strength of 600 MPa, the SD600 reinforcement shows a longer yield 
plateau, larger yield strength, and similar elongation. Therefore, the mechanical proper-
ties of HRB600 reinforcement are different from that of other types of high-strength rein-
forcement. On the other hand, the key performance specifications of HRB600, such as 
yield strength, yield plateau, and ultimate strain, can meet the engineering requirements of 
other countries, so such reinforcement can be used for civil engineering in other countries. 
HRB600 is a new type of high-strength reinforcing bar developed in China, but the current 
design specifications do not cover such steel bars, mainly due to the lack of relevant experi-
mental and theoretical research.

HS steel bars can be used as longitudinal bars and stirrups for concrete members, 
and the application of HS steel bars in columns has been experimentally investigated in 

Fig. 1  Stress‒strain curves for 
high-strength reinforcing bars
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depth. Restrepo et al. (2006), Matsumoto et al. (2008), Ousalem et al. (2009), Rauten-
berg et al. (2011), Su et al. (2014a, b), Legage et al. (2012), Link et al. (2014), Ou et al. 
(2015), Sokoli et al. (2014), Ibarra et al. (2016), Trejo et al. (2016), Lim et al. (2017), 
Aboukifa et al. (2021), Ding et al. (2021), He et al. (2020), and Zhang et al. (2020) have 
conducted cyclic loading tests on column specimens with high-strength longitudinal 
bars. The test results show that compared with normal strength bar reinforced concrete 
columns, HS longitudinal bar reinforced concrete columns show similar ductility and 
reduced energy dissipation capacity, which indicates that HS longitudinal reinforcement 
can solve the problem of reinforcement congestion and save reinforcement ratios with-
out affecting the seismic performance of the columns. The test results also found that 
the bond-slip failure phenomenon occurs between HS longitudinal steel bars and normal 
strength concrete, while the bond-slip failure phenomenon does not occur between HS 
longitudinal steel bars and ultra high-performance fiber concrete. Thomsen et al. (1994), 
Xiao-Martirossyan et al. (1998), Paultre et al. (2001), Shi et al. (2011), and Hwang et al. 
(2005) have experimentally investigated the influence of HS stirrups on the seismic per-
formance of columns. The test results indicate that HS stirrups can develop a strong 
confinement on the concrete columns under high axial compression. HS stirrups can 
save reinforcement ratios without reducing the seismic performance of the columns and 
can help the columns obtain satisfactory ductility. HS stirrups have little effect on the 
strength of the columns under small axial loading ratios, while they can significantly 
increase the strength of the columns with high axial compression ratios. The above stud-
ies also find that HS stirrups can be used to significantly improve the postpeak defor-
mation and ductility of columns. For the failure of column specimens in shear, high-
strength stirrups cannot significantly improve the shear strength of column specimens, 
and HS stirrups generally stay in an elastic state, but the deformation and energy dis-
sipation capacity of the column specimens can be increased with such reinforcement.

The above experimental studies have demonstrated that the application of high-
strength steel bars in concrete columns has high feasibility and can be used to effec-
tively reduce the reinforcement ratios in concrete columns. Then solve the problem of 
reinforcement congestion. To promote the application of HS steel bars in concrete col-
umns, more theoretical research is needed, but related studies are limited at present (Ni 
et  al. 2019). The flexure strength of normal strength bar reinforced concrete columns 
can be accurately predicted using the theory of the Bernoulli–Euler assumption, but for 
high-strength steel bars, the stress‒strain characteristics are quite different from those 
of normal strength steel bars, especially large yield strain, so it is necessary to study 
the applicability of the Bernoulli–Euler assumption to high-strength bar reinforced con-
crete columns. The nonlinear deformation of columns under cyclic loading is commonly 
calculated by plastic hinge theory (Thomsen et  al. 2004), and the adaptability of this 
theory to high-strength reinforced concrete columns needs to be investigated. The above 
experimental studies have found that bond-slip failure can occur between a HS longi-
tudinal bar and concrete and can lead to an increase in the lateral deformation of the 
column, so the deformation caused by bond-slip cannot be ignored. Bond-slip deforma-
tion is, currently, a difficult research point. Many studies have been conducted on the 
hysteretic models of concrete columns built with normal strength reinforcement, but due 
to the application of high-strength steel bars in columns, the hysteretic characteristics of 
such columns are quite different from those of normal strength bar reinforced concrete 
columns, especially in terms of unloading stiffness and pinch effect. In conclusion, the 
deficiencies of the present study can be summarized as follows:



2312 Bulletin of Earthquake Engineering (2023) 21:2309–2335

1 3

(1) The mechanical property of HRB600 reinforcement newly developed in China show 
some differences in material properties compared with existing high-strength steel bars, 
while previous research into HS steel bars in concrete structures has mainly focused on 
a yield strength of 500 MPa and below or 900 MPa and above, and the experimental 
research into the application of HRB600 reinforcement in columns remains limited.

(2) The hysteretic behavior of HS bar reinforced concrete columns has been experimentally 
investigated in depth, but few theoretical studies have been conducted. A hysteretic 
model can be used to predict the hysteretic response of the columns under cyclic 
loading, which can also be used for the nonlinear analysis of the column members in 
the whole structure. The hysteretic performance of concrete columns built with HS 
reinforcement is different than that of columns with normal strength reinforcement. 
However, studies based on hysteretic models of concrete columns built with HS rein-
forcement are scarce.

(3) Owing to the application of HS reinforcement in concrete columns, the applicability 
of the Bernoulli–Euler assumption and plastic hinge theory for such columns needs to 
be investigated. The bond-slip between HS longitudinal bars and concrete is complex, 
and the deformation caused by bond-slip should be considered and mathematized. 
However, few related studies have been conducted.

To address the above research gaps, a cyclic loading test is first carried out for column 
specimens built with HRB600 reinforcement to examine the influence of stirrup spacing 
and axial compression ratio on the hysteretic performance. Then, a simplified calculation 
method for hysteretic curves is proposed by combining the skeleton curve and hysteretic 
rule. Finally, the proposed model is used to predict the hysteretic curves for the column 
specimens, and the prediction accuracy is evaluated based on the test data.

2  Test program

2.1  Column specimens

Figure  2 depicts the geometric dimensions and reinforcing arrangement of the specimens. 
To research the effect of stirrup spacing and axial compression ratio on hysteretic behavior, 
four RC cantilever column specimens were tested under cyclic loading. The specimens’ pre-
cise design specifications can be obtained in a prior study (Li et al. 2018). The longitudinal 
bars of the column specimens adopted HRB600 reinforcement with a diameter of 16  mm 
(fy = 615 MPa) and HRB400 reinforcement with a diameter of 16 mm (fy = 471 MPa). Every 
specimen was given a unique name that could be used to identify the study parameters. The 
nomenclature is described as follows: the first two numerals denote longitudinal and stirrup 
reinforcing types, respectively, H signifies HRB600 reinforcement, and N signifies HRB400 
reinforcement. The second numeral denotes the axial compression ratios for the specimens: 
0.2, 0.4, and 0.5, and the axial compression ratios can be obtained by Eq. (1). The concrete uti-
lized for the sample had a C50 strength rating (the measured value is 47.4 MPa). The column’s 
longitudinal bars comprised 12 steel bars with a diameter of 16 mm, with a longitudinal bar 
ratio of 1.97 percent. The stirrup was constructed of an HRB400/600 steel bar with a diameter 
of 8 mm and yield strengths of 437 MPa and 629 MPa, respectively, and a well-shaped com-
pound stirrup form. Stirrup spacings of 70 mm and 105 mm stirrup spacing were available, 
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with volume stirrup ratios of 1.91% and 1.28%, respectively. Table 1 lists the details for the 
above six specimens.
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Fig. 2  Dimensions and reinforcement

Table 1  Design parameters

Note: dl is the diameter of the longitudinal reinforcement; ρ is the ratio of the longitudinal reinforcement; dt 
is the diameter of the stirrup; and s is the stirrup spacing

Specimens Axial load ratio n Longitudinal reinforcement Stirrup reinforcement

Strength grade dl/mm ρ/% Strength grade dt/mm s/mm

NN-0.2-1 0.2 HRB400 16 1.97 HRB400 8 70
NH-0.2-2 0.2 HRB400 16 1.97 HRB600 8 70
HH-0.2-3 0.2 HRB600 16 1.97 HRB600 8 105
HH-0.2-4 0.2 HRB600 16 1.97 HRB600 8 70
HH-0.4-5 0.4 HRB600 16 1.97 HRB600 8 70
HH-0.5-6 0.5 HRB600 16 1.97 HRB600 8 70
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where N is the axial load applied on the wall, fc is the strength of the concrete on the test 
day, and A is the wall cross-sectional area.

2.2  Hysteretic response

The hysteresis responses of the specimen are generally in the shape of a plump shuttle, 
indicating that the specimen has good seismic performance (Fig.  3). During the initial 
stage, the hysteresis loop areas are very small. With increasing loading displacement, the 
surrounding area of the hysteretic loops continuously increases, and an obvious residual 
deformation occurs after unloading; when the specimen reaches the peak force, the defor-
mation accelerates. Under the same displacement, the peak load and the slope of the 
curve decrease with increasing cycle number, which indicates that the specimen shows 
strength attenuation and stiffness attenuation under cyclic loading. Due to failure of the 
bond between the HRB600 reinforcement and concrete, the plumpness of the hysteresis 
curves becomes significantly worse, and the curve develops into an inverse S-shape in the 
later stage, indicating that the configuration of the HRB600 longitudinal reinforcement can 
reduce the hysteretic performance of the specimen in the later stage.

Table 2 summarizes the detailed experimental results obtained for the hysteretic curves 
of the above column specimens. Compared to Specimen NN-0.2–1 built with HRB400, 
the specimens built with HRB600 longitudinal reinforcement have a larger yield displace-
ment owing to the larger yield strain of HRB600 reinforcement. Compared to Specimen 
NN-0.2–1 with a HRB400 stirrup, Specimen NH-0.2–1 with a HRB600 stirrup (stirrup 
strength is increased by 43.9%) shows a larger lateral strength (↑ 15%) and drift ratio capac-
ity (↑ 12%) but smaller ductility ratio (↓8.28%). Compared to Specimen NH-0.2–2 with 
a HRB400 stirrup, Specimen HH-0.2–4 built using a HRB600 stirrup has a larger peak 
strength (↑ 29.3%) and a similar drift ratio capacity but a reduced ductility ratio (↓29.6%).

3  Simplified calculation method

3.1  Hysteretic model

The hysteretic model for HS bar reinforced columns is composed of a skeleton curve and 
hysteretic rule.

3.1.1  By analyzing the above hysteretic curves, the force process for the above column 
specimens can be roughly divided into three stages, including the elastic 
stage, elastic‒plastic stage from yielding to the peak point, and failure stage 
from Skeleton curve

the peak point to failure, as shown in Fig. 4. Therefore, the skeleton curve is simplified into 
a trilinear model that can be determined using three characteristic points, namely, Y, M and 
U, corresponding to the yield, peak and failure points, respectively. Therefore, six param-
eters need to be determined to establish the skeleton curve model, which are the preyield 
stiffness k1, yield load Py and displacement Δy; stiffness  k2, peak load Pm and displacement 
Δm; stiffness k3, ultimate load Pu and displacement Δu. The skeleton curve can be expressed 
as Eq. (2).
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Fig. 3  Hysteretic curves
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3.1.2  Hysteretic rule

With increasing loading displacement (especially after yield displacement), both the 
loading and unloading stiffnesses of the columns degrade. The line between the unload-
ing point and point where the force is unloaded to 0 is the unloading line, and the slope 
represents the unloading stiffness ku. ku changes with increasing loading displacement, 
and the axial ratios have a significant influence on the unloading stiffness attenuation. Li 
et al. (2014) reported that the unloading stiffness of an HS concrete column confined by 
an HS stirrup is related to the volume ratio of the stirrups and axial loading ratios, and 
they obtained the formula for unloading stiffness by regression. Guo et al. (2004) stud-
ied the variation law for unloading stiffness of concrete columns under different axial 

(2)P =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

Py

Δy

⋅ Δ 0 ≤ Δ < Δy

Pm−Py

Δm−Δy

⋅ (Δ − Δy) + Py Δy ≤ Δ < Δm

Pu−Pm

Δu−Δm

⋅ (Δ − Δm) + Pm Δm ≤ Δ < Δu

Table 2  Detailed experimental results obtained for the hysteretic curves

Note: the unit for F is kN

Specimens Yield drift ratio Peak point Drift ratio capacity 
δu (%)

Ductility 
ratio (δp/δu)δy (%) F δp (%)

NN-0.2-1 0.61 238 1.85 5.27 8.58
NH-0.2-2 0.71 273 1.84 5.56 7.87
HH-0.2-3 0.87 348 4.18 4.81 5.56
HH-0.2-4 0.95 353 5.06 5.67 5.98
HH-0.4-5 1.15 − 363 2.75 5.77 5.00
HH-0.5-6 0.91 406 2.32 4.21 4.62

Fig. 4  Trilinear model for the 
skeleton curve
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compression ratios and considered that the axial loading ratio is a critical parameter that 
can influence unloading stiffness. Meanwhile, a regression formula for unloading stiff-
ness is proposed. Figure 5 presents the variation in unloading stiffness attenuation rates 
(ku/k1) with ductility ratios for the above column specimens. The unloading stiffness 
formula can be obtained from regression analysis and is expressed as Eq. (3):

where k1 is the equivalent elastic stiffness, k1 = Py/Δy; Δi is the maximum displacement 
experienced by the specimen before unloading; and n is the axial compression ratio.

Based on the above experimental hysteretic curves, the hysteretic rule for the hyster-
etic model of concrete columns can be summarized as shown in Fig. 6, and its hysteresis 
rules are described as follows:

(3)ku = 1.061k1

(
Δi

Δy

)−0.733n−0.361

Fig. 5  Unloading stiffness of the 
columns

Fig. 6  Hysteresis rules
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(1) Points A and A′ are yield points, B and B′ are peak points, and C and C′ are failure 
points.

(2) The load‒displacement curve moves along Path O-A from the beginning to the yield 
point, and the loading stiffness is k1 (the equivalent elastic stiffness before yielding). 
If an unloading curve is performed by following Path O-A, the unloading path returns 
along the original loading path. When unloading to the origin, reverse loading is car-
ried out along Path O-A′.

(3) After yielding, the loading stiffness changes to k2, and the loading path goes along 
Path A-B. At this point, if the unloading is carried out in Section A-B, the unloading 
path is carried out along Line 1–2, and the unloading stiffness ku can be calculated 
according to Eq. (3). After unloading to Point 2, if the specimen fails to yield in the 
reverse direction, the path points to the reverse yield Point A’, that is, reverse loading is 
carried out along Path 2-A′-B′; if the specimen has yielded in the reverse direction, the 
maximum point pointing principle is adopted to point to the maximum displacement 
(Point 3) experienced in the previous loading, that is, reverse loading is carried out 
along Path 2–3-B′. When reverse unloading is carried out in Section A’-B’, unloading 
is carried out along Path 3–4, and the unloading stiffness ku can be calculated accord-
ing to Eq. (3). For the case of reverse unloading to 0 followed by forward loading, the 
loading path points to the maximum displacement (Point 1) experienced at the previous 
loading, that is, along Path 4–1-B.

(4) After the specimen reaches peak point B (B′), the loading stiffness changes to k3, and 
the loading path proceeds along Path B-C. At this point, if the unloading is carried out 
in Section B-C, the unloading path is carried out along Path 5–6, and the unloading 
stiffness ku is calculated according to Eq. (3). If the reverse load does not reach the 
peak load point (point B′), the path points to the reverse peak point B′, that is, along 
Path 6-B′-C′. If the reverse load reaches the peak load, the loading path points to the 
maximum displacement (Point 7) in the previous loading, that is, to proceed along 
Path 6–7-C ′. For the case of reverse unloading in Section B’-C’, unloading is carried 
out along Paths 7–8, and the unloading stiffness is calculated according to Eq. (3). For 
reverse unloading to 0 (Point 8) and forward loading, the loading path follows Path 
8–5. Other loading and unloading paths are the same as that for the preceding rules.

Fig. 7  Lateral deformation
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3.2  Lateral deformation

The lateral displacement is composed of three parts: flexure deformation (Δf), shear defor-
mation (Δv) and deformation (Δs) caused by the bond-slip, as shown in Fig. 7. Before yield-
ing, the curvature formed by the bending moment and the shear deformation is linearly 
distributed along the column height. After yielding, a plastic hinge forms at the column 
bottom. The curvature formed by the bending moment in the plastic hinge region is obvi-
ously larger than that of the elastic segment. The shear displacement of the column is com-
posed of shear deformation in the plastic hinge zone and elastic zone. The deformation 
caused by the bond-slip is generally small before the specimen yields. After the specimen 
yields, bond slip causes the column to rotate around the bottom of the column. Therefore, 
the lateral displacement can be expressed as follows (Wang et al. 2019a):

3.3  Yield point

3.3.1  Yield force

For the flexural-dominated member, it is generally assumed that the yield load (Py) and dis-
placement (Δy) are the load and displacement when the outermost longitudinal bars yield 
in the tensile direction. The stress‒strain formula for compressive concrete is expressed as 
follows (GB 50,010–2010 2011):

where fc is the axial compressive strength of concrete; ε0 is the peak strain, generally, ε0 is 
taken to be equal to 0.002; and εcu is the ultimate compressive strain, generally, εcu is taken 
to be equal to 0.0033 (GB 50,010–2010 2011).

(4)Δ = Δf + Δv + Δs

(5)𝜎 =

⎧
⎪
⎨
⎪
⎩

fc

�
1 −

�
1 −

𝜀

𝜀0

�2
�

𝜀 ≤ 𝜀0

fc 𝜀0 < 𝜀 ≤ 𝜀cu

Fig. 8  Force state of the critical cross-section at the yield point of the columns
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According to the assumption of a flat section, the force state of the critical cross-
section at the point of yielding is shown in Fig. 8. According to the balance condition of 
the force, the following formulas can be obtained:

With

where b is the width of the cross-section and h and h0 are the height and effective height 
of the cross-section, respectively, where Es is the elastic modulus of the longitudinal rein-
forcement, N is the axial load, My is the yield bending moment of the critical cross-section 
when the specimen yields, xc is the height of the concrete compression zone, fy is the ten-
sile yield strength of the longitudinal reinforcement, and εy is the tensile yield strain of the 
outermost longitudinal reinforcement. σsi and εsi are the stress and strain for the ith longi-
tudinal reinforcing bar (positive in tension and negative in compression), respectively. xi is 
the distance from the ith longitudinal reinforcing bar to the outermost tensile longitudinal 
reinforcing bar; x is the distance for any position along the neutral axis; and σx and εx are 

(6)
∑

�siAsi + N =
∫

xc

0

�xbdx

(7)My +
∑

�siAsixi + N
(
h0 −

h

2

)
=
∫

xc

0

�x
(
h0 − xc + x

)
bdx

(8)�si = Es�si = Es

(
h0 − xc − xi

) �y

h0 − xc
≤ fy

(9)�x = x
�y

h0 − xc

Fig. 9  Curvature distribution
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the compressive stress and strain of compressive concrete, respectively, at the distance of x 
to the neutral axis of the cross-section.

3.3.2  Yield displacement

The yield curvature of the critical section is �y , and the curvatures generated by the bend-
ing moment are linearly distributed along the column height (Fig. 9(a)).

(1) Flexure displacement Δyf.
  Based on Bernoulli’s assumption, the displacement caused by bending deformation 

can be obtained from

  With

where V is the lateral force, I is the inertia moment of the cross-section, and Ec is the 
elastic modulus of concrete.

(2) Shear displacement Δyv.
  The shear displacement can be obtained from

where Gc is the shear modulus of concrete, Ec/Gc = 2.5; A is the total area of the cross-
section; and μ is the nonuniform coefficient of the shear stress distribution of the rec-
tangular section, which is equal to 1.2.

(3) Lateral displacement caused by bond-slip Δys.
  Sezen-Setzler (2008) proposed a formula for calculating the bond slip based on 

experimental and theoretical analysis:

where θs is the rotation angle of the rigid body generated by bond-slip, db is the diam-
eter of the longitudinal reinforcing bars, μe is the uniform elastic bond stress, and the 
other parameters have the same meanings as above.

3.4  Peak point

3.4.1  Peak force

The peak point of the columns corresponds to the ultimate state of the bearing capacity, 
which is controlled by the maximum normal stress of the critical cross-section, and when 
the concrete at the compression edge reaches the ultimate compressive strain, the columns 
enter the peak point. The stress and strain distribution of the critical cross-section at the 

(10)Δyf =
Vl3

3EcI
=

1

3
�yl

2

(11)�y =
�y

h0 − xc

(12)Δyv = �
Vl

GcA

(13)Δys = �sl =
�yfydbl

8�e

(
h0 − xc

)
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peak point is shown in Fig. 10, where the concrete at the compression edge reaches the 
ultimate compressive strain. From the force balance condition for the cross-section, it can 
be determined that

 where

where α1 and β1 are the characteristic coefficients of the equivalent rectangular stress graph 
for the concrete stress distribution of the cross-section, which are adopted according to 
GB50010-2010 (2011), α1 = 1.0, and β1 = 0.8. Mu is the maximum bending moment; x is 
the height of the equivalent rectangular stress diagram in the concrete compression zone; 
and σsi and εsi are the stress and strain of the ith longitudinal reinforcement (positive in 
tension and negative in pressure), respectively. xi is the distance from the ith longitudinal 
reinforcement to the outermost tensile longitudinal reinforcement.

3.4.2  Peak displacement

At the peak point, the concrete strain at the edge of the compressive zone of the critical 
cross-section reaches the ultimate strain εcu, and, at this time, the curvature is the ultimate 
curvature ϕu, and a plastic hinge is formed with a height of lp. The area outside of the 
plastic hinge area is still in the elastic stage. The curvature distribution for the specimen is 
shown in Fig. 11. The lateral displacement of the specimen is composed of the displace-
ment generated by the upper elastic segment and that of the plastic hinge region. The dis-
placements of the upper elastic segment and plastic hinge region are all composed of flex-
ure, shear, and bond-slip displacements (Wang et al. 2019a), as expressed by Eq. (18):

(14)N = �1fcbx −
∑

�siAsi

(15)Mu = �1fcbx
(
h0 −

x

2

)
−
∑

�siAsixi − N
(
h0 −

h

2

)

(16)�si = Es�si = Es

(
h0 − xc − xi

)�cu
xc

≤ fy

(17)xc =
x
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Fig. 10  Force state of the critical cross-section of the peak point
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where Δmf, Δmv, and Δms are the peak flexure, shear and bond-slip deformation, respectively.

(1) Flexure displacement Δmf.
  The flexure displacement is composed of the displacement Δmf1 of the upper elastic 

segment and Δmf2 of the plastic hinge region, i.e., Δmf = Δmf1 + Δmf2. The displacement 
Δmf1 can be calculated using Eqs. (10–11). The column height l in the formula should 
be replaced by the height le of the upper elastic segment. The height lp of the plastic 
hinge region can be calculated according to Eq. (19):

  The displacement Δmf2 can be obtained from

  Combining Eqs. (21) and (22), the displacement Δmf2 can be obtained as follows:

  With

(18)Δm = Δmf + Δmv + Δms

(19)lp = 0.08l + 0.022fydb

(20)le = l − lp

(21)Δmf2 =
∫

le+lp

le

x�(x)dx

(22)�(x) =
�(u) − �(y)

lp

(
x − lp

)
+ �(y)

(23)Δmf2 =
1

2
lelp�y +

1

2
lelp�u +

1

6
l2
p
�y +

1

3
l2
p
�u

Fig. 11  Shear displacement
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(2) Shear displacement Δmv.
  As shown in Fig. 12, the shear deformation is composed of Δmv1 for the upper elastic 

section and Δmv2 for the plastic hinge region, i.e., Δmv = Δmv1 + Δmv2. The displacement 
Δmv1 can be calculated using Eq. (12), and the column height l given in the equation 
is replaced by the upper elastic section height le. The shear force V is replaced by the 
peak load. The shear displacement Δmv2 can be calculated according to the shear strain 
ductility coefficient μγ proposed by Gerin-Adebar (2004). The empirical formula for 
μγ can be obtained from

  It is assumed that the shear strain in the plastic hinge region is a trapezoidal distribu-
tion, in which the shear strain in the upper part of the plastic hinge region is the yield 
shear strain, and the shear strain at the bottom of the plastic hinge region reaches the 
limit shear strain. Therefore, the shear displacement Δmv2 can be expressed as follows:

  where

where μγ is the shear strain ductility coefficient; γy is the yield shear strain; γu is the 
ultimate shear strain; vy is the yield shear stress; ρh is the ratio of stirrup reinforce-
ment; ρv is the longitudinal reinforcement ratio; and fyv is the stirrup yield strength.

(3) Lateral displacement caused by bond-slip Δms.
  As shown in Fig. 12, the bond-slip between the longitudinal bars and concrete con-

sists of the slip displacement generated in the upper elastic segment and the plastic 
hinge region. The rotation angle (θs1) of the rigid body due to bond-slip in the upper 

(24)�u =
�cu

xc

(25)�� =
�u

�y
= 4 − 12

vy

fc

(26)Δmv2 =
1

2

(
�y + �u

)
lp =

1

2

(
�y + ���y

)
lp =

1

2

(
5 − 12

vy

fc

)
�ylp

(27)vy = 0.25
√
fc + �hfyh ≤ 0.25fc

(28)�y =
fyh

Es

+
vy − n

�vEs

+
4vy

Ec

, 0 ≤
vy − n

�vEs

≤
fyh

Es

Fig. 12  Bond strain and stress 
distribution for longitudinal bars



2325Bulletin of Earthquake Engineering (2023) 21:2309–2335 

1 3

elastic segment can also be calculated by using the model proposed by Sezen-Setzler 
(2008). The rigid body rotation angle (θs2) due to the slip of longitudinal bars in the 
plastic hinge region is mainly related to the plastic hinge length and the strain in lon-
gitudinal bars. The bond strain and stress distribution for the longitudinal bars in the 
slip region are shown in Fig. 12. Δms can be obtained from

  where

3.5  Ultimate point

3.5.1  Ultimate force

The failure force is taken as 0.85 times the previous peak load (JGJ3-2010 2010): 
Pu = 0.85Pm (32).

3.5.2  Ultimate displacement

When the failure is closed, the concrete in the plastic hinge area is seriously damaged, 
buckling of the longitudinal bars occurs, and the concrete out of the core area is crushed. 
The cross-section curvature distribution of the specimen at this point is shown in Fig. 12. 
The height of the plastic hinge area at the bottom of the specimen is still lp, the outside 
plastic hinge area is still in the elastic stage, and the cross-section curvature of the plas-
tic hinge area reaches the ultimate curvature. The lateral displacement of the specimen is 
mainly divided into the displacements generated by the upper elastic segment and the plas-
tic hinge region. Among them, the displacements are all composed of the displacements 
generated by flexure, shear and reinforcing bar slip, as shown in Eq. (33).

where Δuf, Δuv and Δus are the flexure, shear and bond slip displacements at the ultimate 
point, respectively.

(1) Flexure displacement Δuf.
  The flexure displacement is composed of the displacement Δuf1 of the upper elastic 

segment and the displacement Δuf2 of the plastic hinge region. Δuf = Δuf1 + Δuf2. The 
displacement Δuf1 can be calculated by Eqs. (10–11). The displacement Δuf2 can be 
obtained from

(29)Δms =
(
�s1 + �s2

)
l

(30)�s1 =
�yfydb

8�e

(
h0 − xc

)

(31)�s2 =
lp
(
�y + �s

)

2
(
h0 − xc

)

(33)Δu = Δuf + Δuv + Δus



2326 Bulletin of Earthquake Engineering (2023) 21:2309–2335

1 3

(2) Shear displacement Δuv.
  The ultimate displacement caused by shear is composed of displacement Δuv1 

of the upper elastic section and displacement Δuv2 of the plastic hinge region: 
Δmv = Δuv1 + Δuv2. The displacement Δuv1 can be calculated from Eq. (12), and the 
column height l in the equation is replaced by the upper elastic section height le. The 
shear force V is replaced by the ultimate load. Δmv2 can be obtained from the shear 
strain ductility coefficient μγ proposed by Gerin-Adebar (2004). The displacement Δuv2 
can be expressed as follows:

(3) Lateral displacement caused by bond-slip Δus.
  The rotation angle (θs1) of the rigid body due to bond-slip in the upper elastic seg-

ment can also be calculated by the method proposed by Sezen-Setzler (2008). The 
displacement due to bond slip can be obtained from

  where

where εs is the strain when the tensile longitudinal reinforcement reaches the ultimate 
tensile strength. According to previous low-cycle reciprocating fatigue performance 
tests for high-strength reinforcement (Li et al. 2005), εs is taken to be equal to 0.035.

4  Discussion

4.1  Prediction of the characteristic points

Table 3 summarizes a comparison of the analytical and experimental values obtained for 
the yield force for the above four column specimens. The mean value for the analytical to 
experimental yield force ratio is 1.0, and the coefficient of variation is 0.06, so it can be 
seen that the proposed model can well predict the yield force for concrete columns built 
with HRB600 steel bars.

Table 4 lists the analytical and experimental values for the yield displacements of the 
above column specimens. The mean value for the analytical to experimental yield displace-
ment ratio is 1.03, and the coefficient of variation is 0.11, so it can be seen that the pro-
posed method has reasonable accuracy. The yield displacement is mainly caused by the 
bending moment, and the shear displacement is very small and can be ignored.

Table 5 lists the analytical and experimental values for the peak load of the above four 
column specimens. The height values for the equivalent rectangular stress diagrams of 
specimens HH-0.2–3, HH-0.2–4 and HH-0.4–5 are 90.7  mm, 90.7  mm and 121.1  mm, 
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respectively, which are all less than ξbh0. For specimen HH-0.5–6, due to the larger axial 
load, x = 135.2 mm, which is greater than ξbh0 = 130.1 mm, the specimen suffers a small 
eccentric compression failure, which is consistent with the test results. Mu can be calcu-
lated according to Eq. (15), and then the peak load  Pm can be obtained from Pm = Mu/(l-υh). 
υ is the influence of the upward movement of the plastic hinge position due to the restric-
tion of the foundation beam on the column bottom. υ is considered to range between 0.2 
and 0.5, and a value of υ = 0.3 is adopted in this paper. The mean value for the analytical 
to experimental peak force ratio is 0.88, and the coefficient of variation is 0.08, so it can be 
seen that the proposed method can well predict the peak force for the columns.

The displacements (Δmf, Δmv, Δms) at the peak point can be obtained from the above 
equations. Table 6 lists the analytical and experimental values for the peak displacements 
of the above column specimens. The mean value for the analytical to experimental peak 
displacement ratio is 0.99, and the coefficient of variation is 0.06, so it can be seen that the 
proposed method has a reasonable prediction accuracy.

Table 7 lists the analytical and experimental values for the ultimate displacement, and 
the proportion of the displacement caused by the bond-slip is the largest. The mean value 

Table 3  Analytical and experimental values for the yield force

l is the shear span of the column; Py,c and Py,t are the analytical and experimental yield forces, respectively

Specimens Loading 
direction

l/mm My/kN·m Analytical Py,c/kN Experimental 
Py,t/kN

Py,c/Py,t

NN-0.2-1  + 1123 192.0 171.0 156.9 1.09
− 1123 192.0 171.0 158.9 1.08

NH-0.2-2  + 1095 192.0 175.3 164.8 1.06
− 1095 192.0 175.3 164.7 1.06

HH-0.2-3  + 1115 228.3 204.8 202.1 1.01
− 1115 228.3 204.8 205.7 1.00

HH-0.2-4  + 1080 228.3 211.4 209.7 1.01
− 1080 228.3 211.4 206.7 1.02

HH-0.4-5  + 1090 275.0 252.3 268.2 0.94
− 1090 275.0 252.3 266.8 0.95

HH-0.5-6  + 1090 294.4 270.1 301.3 0.90
− 1090 294.4 270.1 302.1 0.89

Table 4  Analytical and experimental values for the yield displacement

Δyc and Δyt are the analytical and experimental yield displacements, respectively

Specimens ϕy/m−1 Δyf/mm Δyv/mm Δys/mm Δyc/mm Δyt/mm Δyc/Δyt

NN-0.2-1 0.0108 5.36 0.14 2.43 7.93 8.19 0.97
NH-0.2-2 0.0108 5.10 0.14 2.37 7.61 7.06 1.08
HH-0.2-3 0.0160 6.81 0.16 4.07 11.04 11.32 0.98
HH-0.2-4 0.0160 6.39 0.16 3.94 10.49 11.77 0.89
HH-0.4-5 0.0186 7.67 0.20 4.69 12.55 12.08 1.04
HH-0.5-6 0.0204 8.34 0.21 5.10 13.65 11.00 1.24
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for the analytical to experimental ultimate displacement ratio is 0.92, and the coefficient of 
variation is 0.17. Due to the large axial compression ratio of HH-0.5–6, the P-Δ effect is 
obvious, which leads to a reduction in the deformation capacity and a small ultimate dis-
placement in the specimens.

4.2  Predicted hysteretic curves

The above simplified method and finite element modeling are used to model the mechani-
cal behavior of HRB600 bar reinforced concrete column specimens under cyclic loading, 
and the obtained analytical results are compared with the test results. OpenSees was used 
to model the hysteretic behavior of HRB600 bar reinforced concrete columns. To accu-
rately simulate the hysteretic performance of the columns built with HRB600 reinforce-
ment, the fibers of the cross-section are divided into reinforcement bars and concrete fibers 

Table 5  Comparison of the 
analytical and experimental 
values obtained for the peak 
force

Pm,c and Pm,t are the analytical and experimental yield forces, respec-
tively

Specimen Loading 
direc-
tion

x/mm Mu/kN·m Pm,c/kN Pm,t/kN Pm,c/Pm,t

NN-0.2-1  + 80.2 223.1 219.2 237.8 0.92
− 80.2 223.1 219.2 226.6 0.97

NH-0.2-2  + 80.2 223.1 225.4 262.0 0.86
− 80.2 223.1 225.4 273.0 0.83

HH-0.2-3  + 90.7 257.0 254.5 285.8 0.89
− 90.7 257.0 254.5 287.9 0.88

HH-0.2-4  + 90.7 257.0 263.6 292.8 0.90
− 90.7 257.0 263.6 287.9 0.92

HH-0.4-5  + 121.1 283.0 287.3 308.9 0.93
− 121.1 283.0 287.3 363.2 0.79

HH-0.5-6  + 136.0 294.4 298.9 406.2 0.74
− 136.0 294.4 298.9 312.1 0.96

Table 6  Analytical and experimental values for the peak displacement

Δmt is the experimental yield displacement, which is taken as the average value of the positive and negative 
yield displacements

Specimen Δmf1
/mm

Δmf2
/mm

Δmf
/mm

Δmv1
/mm

Δmv2
/mm

Δmv
/mm

Δms
/mm

Δmc
/mm

Δmt
/mm

Δmc/Δmt

NN-0.2-1 3.69 5.92 9.61 0.14 1.12 1.26 8.39 19.26 19.81 0.97
NH-0.2-2 3.58 5.71 9.29 0.16 1.36 1.52 8.13 18.94 19.89 0.95
HH-0.2-3 4.44 6.80 11.23 0.17 1.79 1.96 11.33 24.52 25.01 0.98
HH-0.2-4 4.26 6.50 10.76 0.16 1.63 1.79 10.91 23.46 24.80 0.95
HH-0.4-5 5.07 5.88 10.96 0.19 1.45 1.64 11.27 23.86 24.71 0.97
HH-0.5-6 5.52 6.00 11.52 0.20 1.45 1.65 12.07 25.24 22.31 1.13
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depending on the material types, as shown in Fig. 13. According to the different confine-
ment conditions of concrete at the cross-section, concrete fibers can be divided into two 
areas: concrete fibers in the cover area and confinement concrete fibers in the core area. 
Figure 14 presents a comparison of the analytical, simulated, and experimental hysteretic 
curves obtained for the HRB600 longitudinal bar reinforced concrete column specimen. To 
evaluate the accuracy of the predicted hysteretic curves, the analytical skeleton curves and 
energy dissipation were compared with the simulated and experimental curves. Figure 15 
presents a comparison of the skeleton curves obtained using the analytical, simulated, and 
experimental hysteretic curves shown in Fig. 14. The error range for the predicted to exper-
imental strength is 4% ~ 26%, and the error range for the predicted to experimental defor-
mation capacity is 0 ~ 19%. Therefore, the proposed model can be used to well predict the 
strength and deformation of HRB600 longitudinal bar reinforced concrete columns. The 
energy dissipation capacity is an important index for the seismic performance of RC mem-
bers. (Fig. 15) The energy dissipated by the members is indicated by the area surrounded 
by the hysteresis loops. Figure 16 shows a comparison of the variation in the experimen-
tal, simulated and analytical dissipated energy with increasing lateral displacement. The 
maximum error in the predicted to experimental dissipated energy is 20%, with both values 
showing a reasonable agreement.   

In conclusion, the analytical and simulated hysteresis curves are in reasonable agree-
ment with the experimental hysteretic curves in terms of energy dissipation, strength, and 
deformation capacity, indicating that the proposed hysteretic model can be used to well 
predict the hysteresis performance of HS bar reinforced concrete columns under cyclic 
loading. It also shows that the proposed model can achieve a prediction accuracy similar to 
that of the finite element software OpenSees.

5  Conclusions

In this paper, cyclic tests were conducted to examine the effect of the reinforcement 
strength, axial load ratio and stirrup spacing on the seismic performance of concrete col-
umns built with HRB600 reinforcement. A hysteretic model for HS bar reinforced columns 
is proposed, and its prediction accuracy is evaluated based on the test data. The following 
conclusions can be drawn:

(1) The skeleton curve and hysteretic rule can be combined to establish a calculation model 
for concrete columns built with HS and normal strength reinforcement. The skeleton 

Fig. 13  Fiber element arrangement of the finite model (OpenSees)
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curve is simplified as a trilinear model represented by yield, peak and ultimate points. 
By deriving the formulas for yield, peak and ultimate force and displacement, a method 
can be obtained for determining the skeleton curve. A hysteretic rule is established 
based on the experimental hysteretic curves shown in this paper.

(2) The equations for the flexure strength are derived based on the theory of the Bernoulli–
Euler assumption. The lateral deformation is assumed to be composed of flexure, shear, 
and bond-slip deformations. The equations for the flexure deformation are derived 
based on plastic hinge theory, the equations for shear deformation are derived based 
on elastic mechanics, and bond-slip deformations are calculated according to the actual 
contact stress between HS longitudinal bars and concrete. These studies demonstrate 
that the proposed equations have reasonable accuracy.

(c) HH-0.2-3 (d) HH-0.2-4

(e) HH-0.4-5 (f) HH-0.5-6 

Fig. 14  Comparison of the hysteresis curves
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(3) The proposed model is used to calculate the hysteretic curves for HS and normal-
strength bar reinforced concrete columns, which are compared with the experimental 
curves. The research results show that the analytical hysteresis curves are in good 
agreement with the experimental hysteretic curves in terms of strength, deformation 
and energy dissipation.
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Fig. 15  Comparison for the skeleton curves
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