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Abstract
The current state of the practice in probabilistic seismic hazard analysis (PSHA) employs 
ergodic ground motion models (GMMs), which assume that the ground motion variability 
observed in a global database is the same as the variability in ground motion at a single 
site-source combination. However, the fast-growing empirical ground motion databases 
indicate significant regional differences in ground motions due to repeatable and system-
atic source, path, and site effects. These systematic effects, which are spatially correlated, 
are not consistent with the ergodic assumption, promoting the transition to non-ergodic 
GMMs for PSHA. In this study, we use Gaussian processes with different covariance func-
tions to model the spatial correlation structures of systematic source, path, and site effects 
for the Ridgecrest area. We compare the proposed correlation models for Ridgecrest with 
those previously developed for the ANZA array in terms of predictive performance. We 
also evaluate the effects of the cell-specific attenuation approach on the spatial correlation 
structures of path effects. We find that the spatial correlation of systematic source and path 
effects is best characterized by anisotropic non-stationary covariance functions in Gaussian 
processes. We also find that the cell-specific attenuation approach with squared grids has 
limitations in predicting path effects and does not affect the correlation structures signifi-
cantly for the Ridgecrest database. Finally, comparisons with the ANZA array suggest that 
the spatial correlation structures of path effects derived from the ANZA array may be trans-
ferable to the Ridgecrest area, potentially due to their similarity in crustal heterogeneity.

Keywords  Non-ergodic ground motion model · Spatial correlation · Non-stationary 
covariancemodel · Gaussian process

1  Introduction

Probabilistic seismic hazard analysis (PSHA) requires ground motion models (GMMs) to 
describe the probability distribution of ground motion intensity measures (IMs) for given 
earthquake scenarios and site conditions. The probability distribution of an IM is often 

 *	 Jorge Macedo 
	 jorge.macedo@ce.gatech.edu

1	 Georgia Institute of Technology, Atlanta, GA, USA
2	 University of California, Los Angeles, California, USA

http://orcid.org/0000-0002-0457-4824
http://crossmark.crossref.org/dialog/?doi=10.1007/s10518-022-01441-9&domain=pdf


5320	 Bulletin of Earthquake Engineering (2023) 21:5319–5345

1 3

characterized by a log-normal distribution with a median and standard deviation which are 
estimated from GMMs as functions of earthquake characteristics (e.g., earthquake magni-
tude—M, rupture distance—Rrup , etc.) and site conditions (e.g., time-averaged shear wave 
velocity in the top 30 m of the soil profile—Vs30).

Current GMMs are based on the ergodic assumption that the distribution of ground 
motion IMs over time at a single site is the same as the distribution of ground motion 
IMs over space (Anderson and Brune 1999). Under this assumption, GMMs are devel-
oped using global databases, providing median and standard deviation estimates that are 
the same for a single source-site combination. However, the standard deviations of ergodic 
GMMs are affected by location-specific systematic and repeatable effects; hence they rep-
resent an inflated aleatory variability, which has become evident as regional differences 
in ground motions have been observed in recent studies (Walling 2009). As a result, the 
ergodic assumption leads to biased estimates of IM hazard curves due to an inadequate 
trade-off between aleatory variability and epistemic uncertainties, where the latter is asso-
ciated with repeatable and systematic effects (Walling 2009). On the contrary, non-ergodic 
GMMs model location-specific systematic and repeatable effects as adjustments to the 
median ground motions and hence yield a better trade-off between aleatory variability and 
epistemic uncertainties. The reduced standard deviations (associated with the reduced alea-
tory variability) are compensated by additional epistemic uncertainties introduced during 
the estimation of systematic effects (Abrahamson et al. 2019; Landwehr et al. 2016; Liu 
et al. 2022; Lavrentiadis et al. 2021). Many studies show that non-ergodic GMMs have sig-
nificant impacts on PSHA, as the median adjustments shift the hazard curves horizontally 
while smaller standard deviations lead to steeper hazard curves (e.g., Rodriguez-Marek 
et al. (2014); Stewart et al. (2017); Abrahamson et al. (2019)), which is schematically illus-
trated in Figure 1 (see details in the figure caption).

The fast-growing ground motion databases enable relaxing the ergodic assumption and 
transitioning from ergodic PSHA to non-ergodic PSHA, which requires estimating loca-
tion-specific systematic source, path, and site effects. Several efforts with different levels 
of complexities have been made to develop non-ergodic GMMs that account for system-
atic and repeatable effects for non-ergodic PSHA. An initial effort is the so-called single-
station-sigma GMMs (e.g., Rodriguez-Marek et al. (2013)), which estimate systematic site 
effects for well-recorded sites. Specifically, if repeated ground motion recordings from 
multiple earthquakes at a single site are available, then it is possible to estimate and remove 

Fig. 1   a The probability density of an ergodic model is compared with the densities of three non-ergodic 
models with smaller standard deviations, but different medians. b The non-ergodic models lead to steeper 
and horizontally shifted hazard curves as compared to the ergodic one (adapted from Abrahamson et  al. 
(2019))



5321Bulletin of Earthquake Engineering (2023) 21:5319–5345	

1 3

the systematic site effect of that site from the residuals and hence reduce the aleatory stand-
ard deviation. Examples of single-station-sigma GMMs include models developed by Rod-
riguez-Marek et al. (2013), Abrahamson and Hollenback (2012), Rodriguez-Marek et al. 
(2011), Atkinson (2006), Chen and Tsai (2002), and Lin et al. (2011a). Another approach 
for developing non-ergodic GMMs is to regionalize the functional forms that represent 
the scaling of IMs. For example, Kuehn et al. (2020) developed a non-ergodic GMM with 
several regionalized coefficients (e.g., Japan, Taiwan, Southern America, etc.) to capture 
regional differences in the scaling of spectral accelerations. Dawood and Rodriguez-Marek 
(2013) developed a GMM for Japan with different anelastic attenuation scaling for dif-
ferent small regions, which is known as the cell-specific attenuation. In a different effort, 
Landwehr et al. (2016) developed a varying-coefficient GMM for California with coeffi-
cients varying smoothly by geographical coordinates of earthquakes and sites. Lanzano 
et al. (2021) developed a non-ergodic GMM with spatially varying coefficients for crus-
tal earthquakes in Italy, using a multi-source geographically weighted regression (Cara-
menti et  al. 2022). More recent studies decompose the residuals of ergodic GMMs into 
systematic and aleatory components for source, path, and site terms. The systematic effects 
are then modeled as functions of geographical coordinates, while the aleatory residuals 
represent the inherent randomness of the process. For example, Kuehn and Abrahamson 
(2020) developed ergodic GMMs for Taiwan and California from which residuals were cal-
culated and used as inputs into Gaussian processes that evaluated the systematic source and 
path effects in the estimated residuals. The estimated systematic effects were subsequently 
used in the implementation of non-ergodic GMMs for Taiwan and California. In addition, 
Sgobba et al. (2021) developed a non-ergodic GMM by modeling the event, source, path, 
and site effects in the residuals of a region-specific GMM for central Italy, which was sub-
sequently used to generate shaking maps.

Although significant efforts have been made to provide valuable insights into the tran-
sition from ergodic to non-ergodic GMMs, there are still several gaps to be bridged. For 
example, one of the challenges is the estimation of the spatial correlation structures for 
systematic source, path, and site effects, which are expected to affect PSHA and the risk 
assessment of engineering systems significantly (Sgobba et  al. 2019, 2021; Park et  al. 
2007; Macedo et al. 2020, 2022; Liu et al. 2021; Patel et al. 2021; Ceferino et al. 2020). 
Hence, it is important to develop accurate and robust spatial correlation models for system-
atic effects. However, most studies developed spatial correlation models based on ergodic 
or partially ergodic assumptions, or have not fully exploited the functional forms of spatial 
correlation models. For example, Jayaram and Baker (2009) modeled the spatial correla-
tion of within-event residuals of ergodic GMMs using an isotropic semi-variogram that 
solely depends on the distances between sites. However, the within-event residuals contain 
both systematic path and site effects that cannot be fully modeled by an isotropic semi-
variogram alone (Kuehn and Abrahamson 2020; Kuehn et al. 2019; Villani and Abraham-
son 2015; Lin et al. 2011b; Schiappapietra and Smerzini 2021). Foulser-Piggott and Goda 
(2015) evaluated the spatial correlation for site effects in single-station-sigma GMMs, but 
they did not investigate the correlation structures of source and path effects. More recently, 
Kuehn and Abrahamson (2020) used Gaussian processes with several covariance functions 
to estimate the spatial correlation of systematic source and path effects from the ANZA 
array (Berger et al. 1984) database. However, only a smaller number of correlation models 
were tested for path effects, and a single model was used for source effects. Schiappapietra 
and Douglas (2020) have conducted a comprehensive review of previously developed cor-
relation models, among which most of them are developed based on semivariograms with 
isotropic and stationary exponential models. They also pointed out that a single rate of 
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decay of the correlation as a function of the inter-site separation distance may not be suf-
ficient for seismic hazard and risk assessment. Moreover, most of the previous studies have 
used ground motions databases that are too sparse to estimate repeatable effects effectively 
(e.g., Jayaram and Baker (2009); Hong et al. (2009)). Lastly, the transferability of spatial 
correlation structures across different regions is not fully understood. Schiappapietra and 
Douglas (2020) observed that differences in ground motion database and regional geologi-
cal  conditions could result in a different rate of decay of the correlation with increasing 
inter-site separation distance, in the context of second-order stationary and isotropic cor-
relation models. Kuehn and Abrahamson (2020) investigated the possibility of applying 
the correlation structures of non-stationary path-effect models developed using the ANZA 
array in California to Taiwan. They found this transfer of correlation structures (i.e., from 
California to Taiwan) promising if the magnitude extrapolation was properly accounted for. 
Even though the previous referred studies provided interesting insights, more efforts are 
required to investigate the transferability of correlation structures. Exploring the transfer-
ability of correlation structures is beneficial as it could reduce the computational efforts in 
PSHA assessments with non-ergodic GMMs and also improve the prediction of IMs for 
areas with scarce data (Abrahamson and Kuehn 2021).

In this study, we develop several spatial correlation models for systematic source, path, 
and site effects for peak ground acceleration (PGA) using the Ridgecrest database (Rekoske 
et al. 2020). The Ridgecrest database contains a dense set of ground motions in a localized 
region with a range of magnitudes, which is suitable for estimating systematic effects (Liu 
et al. 2022). We evaluate the efficacy of different correlation models based on their pre-
dictive performance on a hold-out set of ground motions representing future earthquakes. 
We also investigate the impact of the cell-specific attenuation approach (Dawood and Rod-
riguez-Marek 2013) on the correlation models for path effects. The performance of the 
different models developed in this study are compared, and insights from the comparison 
are shared. Finally, we also compare the performance of our models with the Kuehn and 
Abrahamson (2020) models, which are developed using a different database, to evaluate 
the transference of correlation structures across different regions.

2 � Database

This study uses the Ridgecrest ground motion database developed by the United States 
Geological Survey (Rekoske et al. 2020), which contains 22,375 recordings at 968 sta-
tions from 133 earthquakes. In this database, multiple recordings are available from 
a single event or site, making it suitable for estimating the spatial correlation of sys-
tematic effects. The database is further filtered based on two criteria. First, ground 
motions recorded at distances larger than 200 km are removed as PSHA studies com-
monly exclude scenarios with rupture distances beyond 200 km. Second, an ergodic 
GMM (i.e., see the “Functional form of the ground motion model” section) is fitted 
using the database, and additional records with high leverages (Hastie et al. 2009) or 
abnormal residuals are removed. The filtering process yields a final subset of 12,612 
recordings from 131 earthquakes at 458 stations with rupture distances up to 200 km 
and magnitudes between 3.6 to 7.1. To evaluate the performance of spatial correlation 
models, some earthquakes and stations are removed to a hold-out test set while the 
remaining recordings are used as a training set. The training set contains around 70% 
(9206 recordings from 87 events at 382 stations) while the test set  contains around 
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30% (3405 recordings from 73 events at 347 stations) of the ground motion record-
ings in the final subset. As elaborated upon later, correlation models are trained using 
the training set, and their performance is evaluated based on their predictions on the 
test set. Figures  2 and 3 show the magnitude-distance distribution and the spatial 

Fig. 2   Magnitude-distance distribution of ground motion recordings in the Ridgecrest database

Fig. 3   Spatial distribution of earthquakes and sites in a the training set and b the test set
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distribution of sites and earthquake epicenters for ground motion recordings in this 
database, respectively. 

3 � Estimation of systematic effects

3.1 � Components of ground motion residuals

Systematic effects can be estimated from residuals of an ergodic GMM, as shown in Eq. 1.

where Y is the IM of interest (i.e., PGA in this study), fergodic is a function of earthquake 
characteristics (e.g., M, Rrup , etc.) and soil conditions (e.g., Vs30 , etc.), which provides 
median estimates for the IM of interest. �B and �W are the between-event and within-event 
residuals, respectively, which can be estimated by random-effect regressions (e.g., Abra-
hamson and Youngs (1992)). �B and �W have Gaussian distributions with zero means and 
standard deviations of � and � , respectively.

Using a single-station-sigma model, �W can be divided into two components: the 
between-site residual �S , which contains systematic site effects; and the event-site-cor-
rected residual �WS , which includes the systematic path effects. Hence, �B , �S , and �WS 
follow Gaussian distributions with zero means and standard deviations of � , �S , and �SS , 
respectively, as shown in Eqs. 2 to 4.

Following the notations in Atik et al. (2010), �B , �S , and �WS can be further partitioned 
into epistemic components accounting for the systematic effects and aleatory components 
representing the natural randomness of the process:

(1)ln Y = fergodic(M,Rrup,Vs30) + �B + �W

(2)�B ∼ N(0, �2)

(3)�S ∼ N(0,�2
S
)

(4)�WS ∼ N(0,�2
SS
)

(5)�B = �L2L + �B0

(6)�2 = �2
L2L

+ �2
0

(7)�WS = �P2P + �WS0

(8)�2
SS

= �2
P2P

+ �2
0,SS

(9)�S = �S2S + �S0

(10)�2
S
= �2

S2S
+ �2

0,S2S
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where �L2L , �P2P , and �S2S represent systematic source, path, and site effects, respec-
tively. �B0 , �WS0 , and �S0 are the remaining aleatory between-event, event-site-corrected, 
and between-site residuals, respectively. �L2L , �P2P , and �S2S are (epistemic) standard devia-
tions of systematic source, path, and site effects; �0 , �0,SS , and �0,S2S are standard deviations 
of aleatory between-event, event-site-corrected, and between-site residuals, respectively.

3.2 � Modeling spatial correlation of systematic effects

We model systematic source, path, and site effects as functions of their geographic coordi-
nates as defined in Eqs. 11 to 13:

in which xe and xs are column vectors containing geographical coordinates of earthquakes 
and sites, respectively. Since the functional forms of fi ’s (for i = 1, 2, and 3 ) are unknown, 
we assume they are drawn from a Gaussian process (GP) prior:

where k(x, x�) is a covariance function that estimates the correlation between locations x 
and x′ . The variations of fi ’s are controlled by the choices of k(x, x�) . A covariance func-
tion k(x, x�) is called stationary if k(x, x�) = g(h) with h = x� − x (i.e., the covariance only 
depends on the vector from x to x′ ). Further, if k(x, x�) = g(||h||) (i.e., the covariance only 
depends on the distance between x and x′ ), k(x, x�) is called isotropic. Hence, isotropy 
implies stationarity in covariance functions; namely, a non-stationary covariance function 
is also anisotropic. As detailed in later sections, we build different isotropic stationary and 
anisotropic non-stationary covariance functions and evaluate their performance on esti-
mating spatial correlation of systematic effects. Modeling spatial correlation of systematic 
effects as GPs is an alternative to geostatistical methods such as fitting semivariograms, 
which have been used in previous studies (e.g., Jayaram and Baker (2009), Foulser-Piggott 
and Goda (2015), etc).

Considering that the aleatory residuals �B0 , �WS0 , and �S0 are each independent and 
identically distributed Gaussian random variables, �B , �WS , and �S follow multivariate 
Gaussian distributions:

(11)�L2L = f1(xe)

(12)�P2P = f2(xe, xs)

(13)�S2S = f3(xs)

(14)f1(xe) ∼ GP(0, k(xe, x
�
e
))

(15)f2(xe, xs) ∼ GP(0, k([xe, xs], [x
�
e
, x�

s
]))

(16)f3(xs) ∼ GP(0, k(xs, x
�
s
))

(17)�B ∼ N(0, k(xe, x
�
e
) + �ij�

2
0
)

(18)�WS ∼ N(0, k([xe, xs], [x
�
e
, x�

s
]) + �ij�

2
0,SS

)
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where �ij is the Kronecker delta with a value of 1 if two earthquakes, paths, or sites are the 
same in Eqs. 17, 18, and 19, respectively. When predictions of systematic effects at new 
locations are required, one can calculate the conditional distributions of systematic effects 
given the observed �B , �WS , and �S in the training set. Details on mathematical deriva-
tions for predictions are outlined in Rasmussen (2003) and Kuehn and Abrahamson (2020). 
In this study, we first compute the residuals of the Ridgecrest database (including both 
training and test sets) using an ergodic GMM. Then, we estimate correlation structures of 
systematic effects based on the residuals in the training set and evaluate their predictive 
performance on the test set.

4 � Functional form of the ground motion model

We use residuals of the ergodic GMM defined in Eqs. 20 and 21 to model spatial correla-
tion of systematic effects. This functional form has also been used by GeoPentech (2015) 
and Abrahamson et al. (2019) in previous studies for other areas in California.

where Zhyp is the hypocentral depth, Fn and Frv are flags with values of 1 for normal 
and reverse fault mechanisms, respectively. �i and �i are coefficients that are determined 
using Bayesian regression (Gelman et al. 2013). Considering that the earthquakes in the 
Ridgecrest database have mainly strike-slip fault mechanisms and only small fractions of 
ground motions recorded from large magnitudes at short distances are available, the coeffi-
cients representing magnitude scaling, geometric spreading, anelastic attenuation, and fault 
styles (i.e., �i’s) are constrained using the NGA-West2 ground motion database (Ancheta 
et al. 2014), while the remaining coefficients (i.e., �i’s) are fitted using the Ridgecrest train-
ing set.

Figure 4 shows the residuals of the ergodic GMM against M, Zhyp , Rrup , and Vs30 , where 
there are no noticeable trends, indicating that the ergodic GMM is adequately constrained. 
The coefficients and standard deviations of the ergodic GMM are presented in Table 1.

(19)�S ∼ N(0, k(xs, x
�
s
) + �ij�

2
0,S2S

)

(20)
fergodic = �0 + g(M) + (�4 + �5(M − 5)) ln

√
R2
rup

+ �2
6

+ �7Rrup + �8Zhyp + �9Fn + �10Frv + �11 ln
Vs30

760

(21)g(M) =

⎧⎪⎨⎪⎩

−𝜆1 + 𝜆2(M − 5.5), if M < 5.5

𝜆1(M − 6.5), if 5.5 ≤ M ≤ 6.5

𝜆3(M − 6.5), if M > 6.5
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5 � Spatial correlation of systematic source effects

Systematic source effects �L2L are often modeled using an isotropic covariance function 
for the GP defined in Eq. 14 (Abrahamson et al. 2019; Liu et al. 2022; Kuehn and Abra-
hamson 2020), which means that the correlation only depends on the distance between the 
locations of two earthquakes. A typical isotropic covariance function is defined as:

where � is the correlation length that controls the decaying rate of correlation with respect 
to distances between earthquakes. xe is a 2-dimensional column vector representing the 
longitude and latitude of an earthquake epicenter (all the coordinates are converted into the 

(22)k(xe, x
�
e
) = �2

L2L
exp

(
−
||xe − x�

e
||

�

)

Fig. 4   Residuals of the ergodic GMM for PGA against M, Zhyp , Vs30 and Rrup

Table 1   Coefficients and standard deviations of the ergodic GMM

�
0

�
1

�
2

�
3

�
4

�
5

�
6

�
7

0.178 0.035 1.026 0.064 −1.155 0.196 3.244 −0.007

�8 �9 �10 �11 � �SS �S

0.073 0.035 −0.045 −0.538 0.304 0.374 0.465
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Universal Transverse Mercator coordinates in this study). One limitation of Eq. 22 is that it 
ignores the geometry of a fault and hence could inappropriately extrapolate source effects 
to distant regions. This is illustrated in Figure 5 and subsequent sections.

In Figure  5, conceivably, we consider 3 pairs of equidistant earthquake epicenters 
(denoted with circles, squares, and triangles) and 2 fault segments (denoted with black 
lines), which is representative of the two main faults in the Ridgecrest area. Since all 3 
pairs of earthquakes have the same separation distances, Eq. 22 generates the same correla-
tions for the 3 cases. However, the pair of earthquakes located on the same fault (marked as 
squares) should be more correlated than the pair on different faults (marked as triangles). 
In addition, the correlation for the pair marked as circles is expected to be the weakest. 
Considering this observation, we propose an anisotropic non-stationary covariance func-
tion by making the correlation length � in Eq. 22 depend on the distance from the earth-
quake to the fault. Since the covariance function should be positive definite, we use the 
methodology proposed by Paciorek and Schervish (2006) to construct an anisotropic non-
stationary positive definite covariance function as defined in Eqs. 23 and 24.

in which D is the dimension of xe (i.e., D = 2 in this case). Λ is a D by D matrix-valued 
function. The premultiplication terms in Eq. 24 ensure the positive definiteness of k(xe, x�e) . 
Λ(x) describes the relationship between correlation length and the earthquake location x 
and should also be positive definite. As a result, we model the correlation length � as a 
positive function of xe and put it on the diagonal entries of Λ:

if i = j:

(23)Q(xe, x
�
e
) =

(
xe − x�

e

)T(Λ(xe) + Λ(x�
e
)

2

)−1

(xe − x�
e
)

(24)k(xe, x
�
e
) =�2

L2L
2D∕2|Λ(xe)|0.25|Λ(x�e)|0.25|Λ(xe) + Λ(x�

e
)|−0.5 exp (−

√
Q(xe, x

�
e
))

(25)Λ(x) =

(
�
2(x) 0

0 �
2(x)

)

(26)�
2(xe) = (a ∗ exp (−bd(xe, i)))

2

Fig. 5   Three pairs of earthquake 
epicenters with equal separation 
distances are marked with circles, 
triangles, and squares; in addi-
tion, two faults are represented 
by two solid lines. An isotropic 
stationary covariance function, in 
this case, would be unable to dif-
ferentiate the correlation among 
the three earthquake pairs
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if i ≠ j:

where i and j are the index numbers of the fault segments, to which xe and x′
e
 are clos-

est, respectively. d(xe, i) is the shortest distance from xe to the fault segment i. a and b are 
positive coefficients to be estimated. � is an exponentially decaying function of distances 
from earthquake locations to fault segments. As a result, the correlation between two earth-
quakes xe and x′

e
 decreases as their distances to the fault segments increase.

We train the isotropic stationary (Eq.  22) and anisotropic non-stationary models 
(Eqs. 23 to 29) using the Ridgecrest training set and evaluate their predictive performance 

(27)�
2(x�

e
) = (a ∗ exp (−bd(x�

e
, j)))2

(28)�
2(xe) = (a ∗ exp (−bd(xe, j)))

2

(29)�
2(x�

e
) = (a ∗ exp (−bd(x�

e
, i)))2

Fig. 6   Comparison of the spatial distribution of a between-event residuals in the training set, and predicted 
source effects, �L2L , by the b SRC-1, c SRC-2, and d SRC-KA models. The Eastern Little Lake and the 
Southern Little Lake faults in the Ridgecrest area are represented by the solid and dashed black lines, 
respectively
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on the test set. In addition, we compare our models with the one developed in Kuehn and 
Abrahamson (2020). The Kuehn and Abrahamson (2020) model shares the same functional 
form as our isotropic stationary model but has coefficients estimated using the ANZA array 
data. The coefficients in Eqs. 22 to 29 are determined by maximum a posteriori (MAP) 
estimation using the program STAN (Carpenter et al. 2017). For simplicity, we consider 
the two main faults in the Ridgecrest area (i.e., the Eastern Little Lake fault and the South-
ern Little Lake fault, as described in Plesch et al. (2020)) and parameterize them as two 
straight line segments, as shown in Fig. 6. It is important to note that the anisotropic non-
stationary model also works for faults with nonlinear geometries. For subsequent discus-
sion, we denote the isotropic stationary and anisotropic non-stationary models developed 
in this study for source effects as SRC-1 and SRC-2, respectively. In addition, we denote 
the source effects model developed in Kuehn and Abrahamson (2020) as SRC-KA. The 
estimated coefficients for these models are shown in Table 2.

Figure 6 shows the spatial distribution of the between-event residuals �B in the train-
ing set and systematic source effects ( �L2L ) predicted for the Ridgecrest area by SRC-1, 
SRC-2, and SRC-KA models. The lower half of the Eastern Little Lake fault shows on 
average higher between-event residuals than the upper half of the fault. This spatial pat-
tern is captured by all three models. The earthquake epicenters in the training set exhibit 
clustered structures, leading to the circular contours around earthquake epicenters in the 
SRC-1 model. In contrast, the source effects predicted by SRC-2 show no clusters; instead, 
the contours of the source effects are interpolated and constrained along the two faults. As 
opposed to SRC-1 and SRC-2, the predicted source effects from SRC-KA extrapolate to 
distant locations where there are no data to validate the extrapolation. This result is likely 
influenced by the sparsely distributed seismicity in the ANZA array (based on which SRC-
KA is developed) as compared to the clustered epicenters in the Ridgecrest area, which 
yields a longer correlation length in SRC-KA (i.e., 11.8 km vs. 2 km as shown in Table 2).

It is difficult to compare the distribution of source effects based on simple visualiza-
tions; as a result, we quantify the performance of these models by computing the root-
mean-square-error (RMSE) and mean negative log likelihood (MNLL) on the test set. 
The test set consists of earthquakes with different epicenter locations than the training set, 
which reduces the bias of the performance estimation. The RMSE and MNLL are defined 
as:

(30)RMSE =

�∑N

i=1
(yi − �i)

2

N

(31)MNLL =

∑N

i=1

1

2
log 2��2

i
+

(yi−�i)
2

2�2
i

N

Table 2   Coefficients of 
correlation models for path 
effects

Model a b � �
L2L

�
0

SRC-1 – – 2.013 0.302 0.037
SRC-2 51.086 1.001 – 0.239 0.188
SRC-KA – – 11.818 0.202 0.249
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where N is the total number of data, �i is the predicted mean source, path, or site effects, 
and yi corresponds to �B , �WS , or �S , respectively (for example, in the case of source terms, 
N represents the total number of earthquakes, yi and �i are the observed between-event 
residual ( �B ) and predicted mean source effect for the i th earthquake). �i is the total stand-
ard deviation (including both the epistemic and aleatory standard deviations) associated 
with the i th prediction. RMSE measures the differences between predicted and observed 
values, whereas the MNLL takes into account the uncertainty associated with the predic-
tions (Bosman and Thierens 2000). Specifically, the MNLL is proportional to Kullback-
Leibler divergence (Kullback and Leibler 1951); hence, it measures the difference between 
distributions predicted by different models and the true distribution of the data. For both 
metrics, RMSE and MNLL, a lower value indicates a better predictive performance.

The RMSE and MNLL results are presented in Figure 7 for the three source effects 
models. The anisotropic non-stationary SRC-2 model has better performance (lowest 
RMSE and MNLL) as compared to the other models. The SRC-1 model has similar 
RMSE and MNLL to the ergodic model (without any spatial correlation modeling of 
systematic source effects), indicating that it has a similar prediction error as the ergodic 
model. This is because the SRC-1 model is limited in extrapolating the source effect to 
new locations along the faults compared to the SRC-2 model (see Figure 6) and hence 
over-fits the data (see �0 in Table 2). Interestingly, the SRC-KA model has comparable 
performance to the SRC-2 model. One possible explanation for this may be due to the 
similarity in earthquake characteristics of the database used in its derivation and the one 
used in this study. Both the ANZA array and the Ridgecrest databases contain mainly 
earthquakes in a narrow magnitude range, and the earthquakes in both databases are 
within the same tectonic region (e.g., both in Southern California). Hence, it is rea-
sonable for the two regions to have similar spatial correlations of source effects. This 
may also be related to the fact that most of the earthquakes in the Ridgecrest database 
are located close to the considered faults, and the SRC-2 and SRC-KA models predict 
similar source effects along the faults (see Figure  6), which may be an artifact of the 
correlation length in the SRC-KA model. However, the extrapolation of source effects 
to distant areas in the SRC-KA model is not desired. It is worth highlighting that the 
performance of the SRC-2 and SRC-KA models should be further evaluated considering 
earthquakes that are far from the faults, which is not assessed in this study due to the 
characteristics of the Ridgecrest ground motion database (i.e., most earthquakes occur 

Fig. 7   Performance comparison of correlation models for source effects in terms of (a) RMSE and (b) 
MNLL on the test set
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near the faults). Moreover, the SRC-2 model takes into account the fault geometry; it is 
not only controlled by the spatial patterns of the between-event residuals, which is the 
case for the isotropic stationary model. This advantage is illustrated in Figure 8, where 
we select a different training set to estimate the coefficients of the SRC-1 and SRC-2 
models. In this dataset, the between-event residuals show strong negative and positive 
biases in the upper and lower portions of the Eastern Little Lake fault, respectively. In 
contrast with Figure 6, the SRC-1 model in Figure 8 shows a stronger extrapolation of 
source effects to distant locations due to its large correlation length (30 km—influenced 
by the different training set), while this extrapolation is constrained by the fault geome-
tries for the SRC-2 model, regardless of the training set. In certain scenarios where fault 
characteristics are not known or explicitly modeled, the traditional isotropic stationary 
correlation model for source effects could be used with engineering judgment to assess 
the model extrapolation carefully.

Fig. 8   Comparison of the spatial distribution of (a) between-event residuals, and predicted source effects, 
�L2L , by (b) the SRC-1 and (c) SRC-2 models for a different ground motion training subset. The East-
ern Little Lake and the Southern Little Lake faults in the Ridgecrest area are represented by the solid and 
dashed black lines, respectively
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6 � Spatial correlation of systematic path effects

Previous research efforts have found it difficult to model the spatial correlation of path 
effects using an isotropic stationary covariance model that is a function of the distances 
between two sites (i.e., ||xs − x�

s
|| ) (Loth and Baker 2013; Foulser-Piggott and Stafford 

2012; Kuehn and Abrahamson 2020). This difficulty results from the fact that the correla-
tion between two paths depends not only on the distances between sites but also on the 
source-to-site distances. For example, the two pairs of sites shown in Figure  9 have the 
same between-site distances but the path effects for the pair far from the earthquake epi-
center (represented by squares) should be more correlated because the propagation paths of 
earthquake waves to the further sites are likely more similar than those to the closer sites.

To capture this phenomenon, we first apply the anisotropic non-stationary covari-
ance function described in Kuehn and Abrahamson (2020), which is similar to the SRC-2 
model, to estimate the correlation of path effects, as shown in Eqs. 32 to 38.

If paths [xs, xe] and [x�
s
, x�

e
] come from the same earthquake or travel to the same site:

Otherwise:

Specifically, Q([xs, xe], [x�s, x
�
e
]) is modeled as a function of between-site or between-earth-

quake distances for paths from the same earthquakes or to the same sites, respectively:

(32)
k([xs, xe], [x

�
s
, x�

e
]) = �2

L2L
2D∕2|Λ(xs, xe)|0.25|Λ(x�s, x�e)|0.25

∗ |Λ(xs, xe) + Λ(x�
s
, x�

e
)|−0.5 exp (−

√
Q([xs, xe], [x

�
s
, x�

e
]))

(33)k([xs, xe], [x
�
s
, x�

e
]) = 0

(34)Q([xs, xe], [x
�
s
, x�

e
]) =

{
(xs − x�

s
)T (

Λ(xs ,xe)+Λ(x
�
s
,x�
e
)

2
)−1(xs − x�

s
) same earthquake

(xe − x�
e
)T (

Λ(xs ,xe)+Λ(x
�
s
,x�
e
)

2
)−1(xe − x�

e
) same site

(35)Λ(xs, xe) =

(
�
2(xs, xe) 0

0 �
2(xs, xe)

)

Fig. 9   Illustration of the spatial 
correlation of path effects. The 
earthquake epicenter is marked 
as a circle and sites are denoted 
as triangles and squares. Path 
effects for sites in squares are 
likely more similar than the sites 
marked as triangles
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In the above equations, D = 2 since the covariance function depends on either the earth-
quake or site locations. We have conducted an initial investigation of the spatial correla-
tion of �WS using semivariograms and observed a generally positive relationship between 
the correlation length of path effects and the earthquake magnitude. This observation is 
consistent with that in Heresi and Miranda (2019) that spatial correlation parameters for 
within-event residuals are magnitude dependent. Consistently, Kuehn and Abrahamson 
(2020) also found that the performance of correlation models for path effects was improved 
by making the correlation length magnitude-dependent. For simplicity, in this study, we 
model the correlation length �(xs, xe) to be dependent on the earthquake magnitude in 
addition to the source-to-site distance (we use Rrup in this study). Regarding the functional 
forms of �(x) , we first consider a linear dependence on Rrup and M:

where p and q are positive coefficients to be estimated, M is the magnitude of the earth-
quake with epicenter xe , and Rrup is the rupture distance from the site xs to the earthquake 
xe . This functional form is selected to be consistent with Kuehn and Abrahamson (2020) 
to facilitate comparisons, as discussed later. However, Eq. 36 implies that � is unbounded, 
and can unrealistically increase to infinity when Rrup approaches infinity. To address this 
issue, we evaluate additional functional forms with a slower increasing rate for � and an 
upper bound, as shown in Eqs. 37 and 38.

In Eq. 37, a natural logarithm is introduced to MRrup to reduce the scaling of � when Rrup 
gets extremely large. Equation  38 is modified based on the sigmoid function (Han and 
Moraga 1995), where � has a lower bound of p and an upper bound of p + q when MRrup 
approaches 0 and infinity, respectively. By making � a constant to be estimated from the 
data, we also develop an isotropic stationary model to benchmark the performances of ani-
sotropic non-stationary models. We denote the isotropic stationary model as PATH-1 and 

(36)�
2(xs, xe) = �

2(M,Rrup) = (p + qMRrup)
2

(37)�
2(xs, xe) = �

2(M,Rrup) = (p + q ln (MRrup + 1))2

(38)�
2(xs, xe) = �

2(M,Rrup) =

(
p + q

1 − exp (−MRrup)

1 + exp(−MRrup)

)2

Table 3   Characteristics of different models for path effects

Model � Stationarity Paths considered as correlated

PATH-1 Constant Isotropic stationary From the same station or earthquake
PATH-1a p + qMRrup Anisotropic non-stationary From the same station or earthquake
PATH-1b p + q ln (MRrup + 1) Anisotropic non-stationary From the same station or earthquake
PATH-1c p + q

1−exp (−MRrup)

1+exp(−MRrup)

Anisotropic non-stationary Fom the same station or earthquake

PATH-2 constant Isotropic stationary All paths
PATH-2a p + qMRrup Anisotropic non-stationary All paths
PATH-2b p + q ln (MRrup + 1) Anisotropic non-stationary All paths
PATH-2c p + q

1−exp (−MRrup)

1+exp(−MRrup)

Anisotropic non-stationary All paths

PATH-KA p + qMRrup Anisotropic non-stationary From the same station or earthquake
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the anisotropic non-stationary models with the length functions in Eqs. 36, 37, and 38 as 
PATH-1a, PATH-1b and PATH-1c, respectively. Similar to SRC-KA, the path-effect model 
in Kuehn and Abrahamson (2020) is denoted as PATH-KA, which has the same functional 
form as PATH-1a with different coefficients estimated from the ANZA array. These model 
definitions are summarized in Table 3. Lastly, it is important to highlight that, also as out-
lined in Schiappapietra and Smerzini (2021) and Stafford et al. (2019), other factors such 
as rupture processes, fault extent, etc., could also contribute to the estimation of correlation 
lengths, especially for near-field ground motions. Hence, more advanced correlation mod-
els that account for the different characteristics of far-field and near-field path effects could 
also be explored with different databases in the future.

It is important to note that the above models ignore the correlation between paths 
that travel from two different earthquakes to two different sites. This might be a proper 
assumption for a database with sparsely distributed seismicity and sites. However, 
for the Ridgecrest database used in this study where earthquakes and sites are closely 
located, it is reasonable to consider the correlation of paths from different earthquakes 
to different sites, which results in the following models:

where x̂ = [xT
e
, xT

s
]T is a 4 by 1 column vector, then D in Eq. 39 becomes 4. The functional 

forms of � are the same as Eqs. 36, 37, and 38. These models are similar to the previous 
ones (i.e., PATH-1a,1b, and 1c) except that now the correlation for any two paths depends 

(39)
k([xs, xe], [x

�
s
, x�

e
]) = �2

L2L
2D∕2|Λ(xs, xe)|0.25|Λ(x�s, x�e)|0.25

∗ |Λ(xs, xe) + Λ(x�
s
, x�

e
)|−0.5 exp (−

√
Q([xs, xe], [x

�
s
, x�

e
]))

(40)Q([xs, xe], [x
�
s
, x�

e
]) = (x̂ − x̂�)T (

Λ(xs, xe) + Λ(x�
s
, x�

e
)

2
)−1(x̂ − x̂�)

(41)Λ(xs, xe) =

⎛⎜⎜⎜⎝

�
2(xs, xe) 0 0 0

0 �
2(xs, xe) 0 0

0 0 �
2(xs, xe) 0

0 0 0 �
2(xs, xe)

⎞⎟⎟⎟⎠

Fig. 10   Correlation of path effects as a function of separation distances between stations and/or earthquakes 
for different models considering (a) Rrup = 90 km, M = 4.3 and (b) Rrup = 150 km, M = 7.5
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on both the distances between two earthquakes and between two sites. Accordingly, we 
denote these models with length functions in Eq. 36, 37, and 38 as PATH-2a, PATH-2b, 
and PATH-2c, respectively, and the corresponding isotropic stationary model is denoted as 
PATH-2. The details of the models are presented in Table 3.

Figure 10a shows the path-effect correlation as a function of separation distance given 
Rrup = 90 km and M = 4.3 for all correlation models developed in this study. The aniso-
tropic non-stationary models have similar trends compared to the isotropic stationary mod-
els. This may be because the considered Rrup and M values are close to the average values 
in the Ridgecrest database. The PATH-2a,b,c models show a lower correlation compared 
to the PATH-1a,b,c models; this is likely because they consider the correlation of paths 
from different earthquakes to different sites. Figure 10b shows the correlation considering 
a different magnitude and rupture distance (i.e., Rrup = 150 km and M = 7.5). While the 
trends of the isotropic stationary models remain unchanged, the anisotropic non-station-
ary models exhibit increased correlations due to their magnitude- and distance-dependent 
length functions. The models with a linearly-dependent length function (e.g., PATH-1a and 
PATH-2a) show a higher correlation compared to models with other length functions.

We also examine the impact of the cell-specific attenuation approach (Dawood and 
Rodriguez-Marek 2013) on the spatial correlation of path effects. In this case, we divide 
the Ridgecrest area into multiple 20-by-20-km cells and compute attenuation coefficients 
for each cell. Then the anelastic attenuation term �7Rrup in the ergodic GMM (Eq. 20) is 
replaced by the cell-specific attenuation term:

where Ncell is the total number of cells in the Ridgecrest area, ci is the attenuation coef-
ficient for the i th cell, and Ri is the fraction of a path within the i th cell. The coefficients 
of the correlation models are re-estimated using the event-site-corrected residuals ( �WS ) 
adjusted by the cell-specific attenuation.

Figure  11 shows the RMSE and MNLL of the path effects prediction on the test set 
using the correlation models without cell-specific attenuation. The isotropic stationary 

(42)
Ncell∑
i=1

ciRi

Fig. 11   Comparing the predictive performance of different correlation models for path effects in terms of a 
RMSE and b MNLL
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models have a higher RMSE and MNLL than the anisotropic non-stationary models, which 
show a similar reduction in RMSE and MNLL with respect to the ergodic one. The PATH-
2a, 2b, and 2c models have slightly lower RMSE and MNLL than the other models. This 
may be associated with the Ridgecrest earthquakes being located in a relatively narrow 
region; hence, there are potential correlations between paths that come from two nearby 
earthquake sources to two different stations, which cannot be captured by the PATH-1-
type models. The influences of the three correlation length functions on the RMSE are 

Fig. 12   Comparing the predictive performance of different correlation models with cell-specific attenuation 
for path effects in terms of a RMSE and b MNLL

Table 4   Coefficients of 
correlation models for path 
effects

Model p q � �
P2P

�
0,SS

PATH-1 − – 45.3 0.246 0.288
PATH-1a 2.267 0.092 – 0.252 0.278
PATH-1b 4e-6 7.289 – 0.248 0.280
PATH-1c 45.64 0.112 – 0.244 0.284
PATH-2 – – 40.3 0.233 0.291
PATH-2a 1.24e−6 0.027 – 0.277 0.269
PATH-2b 6.84e−5 2.907 – 0.249 0.278
PATH-2c 17.667 0.012 – 0.246 0.281

Table 5   Coefficients of 
correlation models for path 
effects with cell-specific 
attenuation adjustments

Model p q � �
P2P

�
0,SS

PATH-1 - – 44.3 0.245 0.288
PATH-1a 2.296 0.089 – 0.231 0.263
PATH-1b 3e-6 7.074 – 0.227 0.268
PATH-1c 44.09 0.125 – 0.232 0.281
PATH-2 – – 39.1 0.234 0.293
PATH-2a 9e-7 0.023 – 0.265 0.277
PATH-2b 7.14e−5 2.531 – 0.235 0.281
PATH-2c 16.891 0.012 – 0.221 0.293



5338	 Bulletin of Earthquake Engineering (2023) 21:5319–5345

1 3

unnoticeable, but the linear functional form (e.g., �2(M,Rrup) = (p + qMRrup)
2 , corre-

sponding to PATH-1a and PATH-2a models) shows slightly better MNLL than others. It 
is also interesting to observe that the PATH-KA model has a comparable performance (in 
terms of both RMSE and MNLL) to the models developed in this study, which possibly 
results from the similarity in the scales of crustal heterogeneity between Ridgecrest and 
ANZA array (Kuehn and Abrahamson 2020).

Similar comparisons for correlation models with cell-specific attenuation are shown in 
Figure 12. The prediction performance of these models is similar to those shown in Fig-
ure 11, indicating that the cell-specific attenuation approach has a minimal impact on the 
spatial correlation of path effects, which is also reflected by the estimated model coef-
ficients in Tables 4 and 5, where only small changes in coefficients can be observed for 
models with and without cell-specific attenuation. This observation could be attributed to 
the spatial distribution of earthquakes and sites in the Ridgecrest database. The clustered 
earthquake epicenters and stations lead to high correlation and similarity in the propaga-
tion paths of seismic waves (e.g., Kotha et al. (2017)). As a result, it is likely that multiple 
paths with similar lengths pass through the same cells, concealing the potential variations 
of path effects among these paths. More sophisticated cell grid designs (e.g., grids with 
heterogeneous cell shapes or sizes and different orientations) could be considered benefi-
cial in future studies to improve the cell-specific attenuation approach.  

7 � Spatial correlation of systematic site effects

The risk assessment of spatially distributed infrastructures (such as portfolios of build-
ings, pipeline networks, etc.) requires the estimation of the spatial correlation of systematic 
site effects for regional PSHA (Giorgio and Iervolino 2016; Chioccarelli et al. 2019). Fol-
lowing the common methodologies in previous studies (Foulser-Piggott and Goda 2015; 

Table 6   Coefficient of the 
correlation model for site effects

Model � �
S2S

�
0,S2S

SITE 34.798 0.384 0.262

Fig. 13   Spatial distribution of a between-site residuals are compared with b predicted site effects by the 
correlation model
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Abrahamson et  al. 2019; Jayaram and Baker 2009; Chao et  al. 2021; Rahpeyma et  al. 
2018), we model the spatial correlation of site effects using an isotropic stationary covari-
ance function of between-site distances:

The estimated coefficients in Eq. 43 are shown in Table 6. The site effects predicted using 
Eq. 43 are compared with the between-site residuals ( �S ) in Ridgecrest as shown in Fig-
ure 13. The site effects show consistent spatial variation with �S and decrease to zero when 
extrapolating to distant regions with no data. This spatial variation of site effects repre-
sents potential spatial deviations from the average correlation between Vs30 and deep shear 
wave velocity profiles as well as potential differences from average topographies effects 
described by the ergodic GMM. Figure 14 shows the predictive performance of the cor-
relation model on the test set, where a significant reduction in RMSE and MNLL can be 
observed as compared to the ergodic model. We denote this correlation model as SITE. 
One could further investigate whether the spatial correlation of site effects could be better 
modeled with a non-stationary correlation function that takes into account for example dif-
ferences between stations inside and outside basins (Chen et al. 2021).

(43)k(xs, x
�
s
) = �2

S2S
exp

(
−
||xs − x�

s
||

�

)

Fig. 14   Comparing the predictive performance of the correlation model for site effects with the ergodic 
model in terms of a RMSE and b MNLL

Table 7   Different combinations 
of correlation models for 
systematic effects to generate 
PGA prediction on the test set

Model Combination

A SITE+SRC-1+PATH-1a
B SITE+SRC-1+PATH-2a
C SITE+SRC-2+PATH-1a
D SITE+SRC-2+PATH-2a
KA SITE+SRC-KA+PATH-KA
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8 � Evaluation of overall performance

In this section, we compare the performance of different combinations of source-, path-, 
and site-effect models on the PGA prediction for the test set. The comparisons also include 
the ergodic GMM to provide additional insights. For simplicity, we consider only the 
PATH-1a and PATH-2a models without cell-specific attenuation for path effects since all 
path-effect models have similar performance. Hence, five models are compared, as sum-
marized in Table 7.

Figure 15 shows the RMSE and MNLL for the five models. Significant reductions in 
RMSE and MNLL are observed for all models. The similar performance between Mod-
els A and C, as well as between Models B and D, is associated with the similar perfor-
mance of the SRC-1 and SRC-2 models, which in turn only have a minimal improvement 
compared to the ergodic source-effect model (see Figure 7). By considering the correlation 
between paths from different earthquakes to different sites, Models B and D show slightly 
lower RMSE and MNLL than Models A and C. This is associated with the slightly better 
performance of the PATH-2a model over the PATH-1a model. Interestingly, despite being 
developed using a different database, Model KA exhibits significant improvement with 
respect to the ergodic GMM. The models developed in this study show a slightly better 
performance than Model KA. Considering the prediction performance and computational 
efficiency, we recommend the use of Model C. Model B could be preferred for its highest 
prediction accuracy and precision if the computational cost is not a major concern.

9 � Discussion

Compared to the correlation models for systematic path and site effects, the models for 
systematic source effects do not show a significant improvement in predictive performance 
with respect to their ergodic counterpart. This observation could be attributed to the data-
base used in this study. The Ridgecrest database mainly consists of aftershocks with simi-
lar magnitudes ranging from 3 to 5 and with epicenters densely located in a small region. 

Fig. 15   Comparing the predictive performance of different combinations of correlation models for system-
atic effects in terms of a RMSE and b MNLL
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Hence, it is challenging to model the spatial correlation of source effects at large scales 
and assess the potential magnitude dependence of correlation structures. Similarly, the 
cell-specific attenuation approach shows a minimal impact on the prediction of path effects 
and the coefficients of correlation models for the reasons discussed in the previous section. 
Additional correlation models for source effects and alternatives to the current formulation 
of the cell-specific attenuation approach should be further investigated when more compre-
hensive ground motion databases are available.

The PATH-2a to 2c models have slightly better predictive performance than the PATH-
1a to 1c models. However, it is worth pointing out that the PATH-1a, 1b, and 1c models 
produce sparse covariance matrices (Eq. 33) as compared to the PATH-2a, 2b, and 2c mod-
els that generate large dense matrices; hence, the PATH-1a, 1b, and 1c models can have a 
higher computational efficiency by using specialized matrix computation algorithms (Law-
rence et al. 2003; Melkumyan and Ramos 2009). For example, in this study, the coefficients 
in the PATH-1a, 1b, and 1c models are estimated using STAN on a local CPU, while the 
coefficients in the PATH-2a, 2b, and 2c models have to be solved using TensorFlow Proba-
bility (Dillon et al. 2017) with TPU (Tensor Processing Unit, Jouppi et al. (2017)) accelera-
tion on the cloud (Bisong 2019). Specifically, the PATH-2a, 2b, and 2c models would take 
30 times more time than the PATH-1a, 1b, and 1c models if they are run in a local CPU. 
More sophisticated correlation models for path effects should be further explored in future 
studies to account for both computational efficiency and predictive performance.

It is also interesting to highlight that the correlation models for systematic path effects 
developed in Kuehn and Abrahamson (2020) for the ANZA array show a performance that 
is comparable to the models developed in this study. Incidentally, Kuehn and Abrahamson 
(2020) also found that the correlation structures of path effects for the ANZA array were 
similar to those for a ground motion database in Taiwan (NCREE 2015). These observa-
tions potentially suggest that the spatial correlation structures for path effects in different 
regions might be potentially similar. This makes promising the transference of the spatial 
correlation structures from one region to another by assuming similar scales of crustal het-
erogeneity across regions, which is consistent with the observations in Kuehn and Abra-
hamson (2020). Lastly, the correlation models investigated in this study are restricted to 
PGA; correlation models for spectral accelerations at other periods or other IMs should be 
evaluated in future studies.

10 � Conclusions

In this study, we have developed spatial correlation models for systematic source, path, 
and site effects for the Ridgecrest area and compared their performance against existing 
correlation models. Specifically, we first develop an ergodic GMM and then partition its 
residuals to estimate the spatial correlation structures of systematic effects. We propose 
an anisotropic non-stationary correlation model that considers fault geometries and an iso-
tropic stationary model for source effects, several isotropic stationary or anisotropic non-
stationary models for path effects, and an isotropic stationary model for site effects.

We find that the anisotropic non-stationary correlation model for source effects cap-
tures the fault geometries and extrapolates more reasonably to regions with no data than 
isotropic stationary correlation models. In terms of path effects, the proposed anisotropic 
non-stationary correlation models show similar overall performance, which is better than 
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that of the isotropic stationary models. In addition, we find that an isotropic stationary 
model performs well in capturing the spatial distribution of site effects, which is consist-
ent with previous studies. We also observe that the performance gained from correlation 
models for source effects is lower compared to the gain in performance by including path 
and site effects, which may be associated with the spatial distribution of seismicity in the 
Ridgecrest area. Among the models considered in this study, we recommend the use of 
Model C (SITE+SRC-2+PATH-1a) as it provides a good balance in terms of prediction 
performance and computational efficiency. Model B (SITE+SRC-1+PATH-2a) has the 
highest prediction accuracy and could be preferred if the computational cost is not a major 
concern. The different correlation models developed in this study can also be incorporated 
in a logic tree for non-ergodic PSHA if additional epistemic uncertainties associated with 
the spatial correlation structures of systematic effects need to be considered.

The correlation models developed in this study are also compared with those developed 
by Kuehn and Abrahamson (2020) using different databases. We find that models for path 
effects in Kuehn and Abrahamson (2020) have comparable performance to those devel-
oped in this study, which may suggest that the spatial correlation structures of path effects 
are similar for different regions, making them potentially transferable. Interestingly, these 
models are developed based on very different databases (e.g., number of recordings, loca-
tions, spatial density, etc.); hence, this observation should be future investigated in future 
studies, emphasizing potential physical constraints. Lastly, this study investigated correla-
tion structures for PGA; future studies should consider spectral accelerations at other peri-
ods and other IMs.

11 � Data and resources

The United States Geological Survey Ridgecrest (Rekoske et  al. 2020) and the Pacific 
Earthquake Engineering Research (PEER) NGA-West2 (Ancheta et  al. 2014) ground 
motion databases are used in this study. The programs STAN (Carpenter et al. 2017) and 
TensorFlow Probability (Dillon et al. 2017) are used to infer the parameters of correlation 
models.
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