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Abstract
Catastrophe models are important tools to provide proper assessment and financial man-
agement of earthquake-related emergencies, which still create the largest protection gap 
across all perils. Earthquake catastrophe models include three main components, namely: 
(1) the earthquake hazard model, (2) the exposure model and, (3) the vulnerability model. 
Simulating spatially distributed ground-motion fields within either deterministic or prob-
abilistic seismic hazard assessments poses a major challenge when site-related financial 
protection products are required. In this framework, we develop ad hoc correlation models 
for different Italian regions (specifically northern, central and southern Italy) and there-
after we perform both deterministic scenario-based and probabilistic event-based hazard 
and risk assessments in order to advance the understanding of spatial correlations within 
the catastrophe modelling process. We employ the OpenQuake engine for our calculations. 
This is an open-source tool suitable for accounting for the spatial correlation of earthquake 
ground-motion residuals. Our outcomes, albeit preliminary, demonstrate the importance 
of considering not only the spatial correlation of ground motions, but also its associated 
uncertainty in risk analyses. Although loss exceedance probability curves for the return 
periods of interest for the (re)insurance industry show similar trends, both hazard and risk 
footprints in terms of average annual losses feature less noisy and more realistic patterns if 
spatial correlation is taken into account. Such results will have implications for (re)insur-
ance companies evaluating the risk to high-value civil engineering infrastructures.
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1 Introduction

Catastrophe models are important tools to provide proper estimations and financial man-
agement of earthquake-related emergencies, which still have the largest protection gap 
across all perils. The mitigation of socio-economic losses and the development of insur-
ance and reinsurance strategies are, therefore, central targets in the assessment of the 
seismic risk at urban and regional scales. Earthquake catastrophe models include three 
main components: hazard, vulnerability and exposure (Grossi and Kunreuther 2005). 
The earthquake hazard requires a proper description of the earthquake ground motion 
(intensity measures–IMs) and its spatial variability across the region using deterministic 
or probabilistic earthquake hazard models. In particular, three main issues need to be 
identified to achieve reliable estimates of local intensity and therefore assess catastrophe 
loss: (1) locations of potential future events, (2) their frequency of occurrence, and (3) 
their severity. The vulnerability component estimates the probability that a structure’s 
damage will exceed various levels as a result of ground motion. The vulnerability com-
ponent usually defines loss ratios as a function of IM values depending on material of 
construction, seismic design, building height, occupancy and other modifiers. The expo-
sure component provides geocoding of the analysed assets, i.e. (re)insurance portfolio, 
including asset’s vulnerability modifiers, total insured value and policy conditions.

Simulating spatially-distributed ground-motion fields poses a major challenge when 
site-related financial protection products are required. Indeed, the loss assessment of 
spatially-distributed systems requires the consideration of: (1) the cross-correlation 
among different IMs at the same site, (2) the spatial correlation of the same IM at dif-
ferent sites, and (3) the spatial cross-correlation among different IMs at closely-spaced 
sites (Weatherill et  al. 2015a, b). Several authors have demonstrated the importance 
of including correlation models in risk analyses. For example, Park et  al. (2007) and 
Sokolov and Wenzel (2011) evidenced that neglecting the spatial correlation may cause 
a bias in loss estimates, whose magnitude depends on the considered portfolio. Simi-
larly, Weatherill et al. (2015a, b) proved that the effects of including spatial cross-cor-
relations is limited when larger footprints are considered or a building typology is pre-
domintant in the portfolio. While investigating the losses in a district of Istanbul as a 
consequence of a Mw 7.2 earthquake scenario, Wagener et al. (2016) found that the loss 
distribution changes clearly depend on the correlation model in contrast to the mean 
loss, which is not affected. Wesson and Perkins (2001) also demonstrated that the spa-
tial correlation is crucial for explaining the variance of losses to a spatially-distributed 
system, but not the mean loss. Costa et al. (2018) evaluated the consequences of seis-
mic events on transportation networks and observed that the probability of disruption is 
higher when the spatial correlation is neglected.

It is well-established that IMs at multiple locations during the same earthquake 
are spatially correlated and their degree of correlation tends to be higher for closely-
spaced sites and for low-frequency ground motions. In addition, several authors (Chen 
and Baker 2019; Schiappapietra and Douglas 2020; Infantino et al. 2021; Schiappapie-
tra and Smerzini 2021) have demonstrated that the spatial correlation of earthquake 
ground-motion is period-, regionally- and scenario-dependent, so that the implementa-
tion of a unique correlation model calibrated on worldwide databases may represent an 
oversimplification. Besides, spatial correlation models are usually inferred from a set 
of multiple events due to the limited number of ground-motion recordings from a sin-
gle earthquake. The event-to-event correlation variability should be therefore included 
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in regional probabilistic risk analysis to enable more realistic estimations of both the 
ground motion and corresponding losses (Heresi and Miranda 2019).

In this context, we firstly calibrate different correlation models based on observations of 
the Mw 6.5 2016 Norcia (central Italy) earthquake. These models are used in deterministic 
scenario-based calculations for the same event. The primary aim of such analyses is to bet-
ter investigate to what extend different input models may affect the overall economic losses. 
Thereafter, we perform event-based probabilistic seismic hazard assassement (PSHA) cal-
culations in order to advance the understanding of spatial correlations within the catastro-
phe modelling process. Indeed, the probabilistic seismic risk assessment is usually required 
for decision-making and insurance/reinsurance purposes (Erdik 2017; Kohrangi et  al. 
2021). To account for the event-to-event correlation variability, we follow the methodology 
proposed by Heresi and Miranda (2019), based on the median range value and its associ-
ated dispersion. We employ the OpenQuake engine (Silva et al. 2012; Pagani et al. 2014) 
for our calculations, which is an open-source seismic hazard and risk modelling tool that 
can account for the spatial correlation of earthquake ground-motion residuals. In particular, 
we develop custom spatial correlation models, and we fine-tune the already implemented 
approach to simulate spatially-correlated random fields to significantly reduce the compu-
tational cost and to enable whole country event-based PSHA calculations.

The goals of this study are: (1) to illustrate the impact of spatially dependent modelling 
on the resulting earthquake shaking losses of building portfolios or spatially-distributed 
infrastructures and, (2) to investigate the effects on per-event and in-location loss estimates 
for underwriting purposes. The results of this project, albeit only illustrative, will have 
implications for (re)insurance companies evaluating the risk to high-value civil engineer-
ing infrastructures.

This article is organized as follows. Section 2 describes the characterization of the spa-
tial correlation of ground motion IMs, with particular emphasis on the custom correlation 
models derived for the regions of interest. Section  3 details the parameters and models 
required as input to the OpenQuake engine. We mainly focus on the seismic hazard assess-
ment aspect, and only a brief description of the vulnerability and exposure components is 
given. Finally, Sect. 4 examines the outcomes of the risk analyses with the aim of illustrat-
ing the effects of spatial correlations within the catastrophe modelling process. The article 
ends with some brief conclusions.

2  Modelling spatial correlation of ground motion intensity measures

Empirical ground motion models (GMMs) provide an estimate of the ground shaking at an 
individual site as a function of explanatory variables describing the source, the propagation 
path and the site conditions (e.g. Douglas and Edwards 2016):

where IMei is the intensity measure of interest at site i due to the event e, whereas �log IMei
 is 

the predicted mean of logIMei . �Be and �Wei are the between-event and within-event residu-
als, respectively, which are assumed to be independent and normally distributed with zero 
mean and standard deviation � and � , respectively. �Be represents the average shift of the 
observed IM of an individual event e from the median predicted by the model and it is 
common for all sites, whereas the various �Wei account for site-to-site differences of obser-
vations from the median event-corrected predictions. GMMs express the IMs of interest as 

(1)log IMei = �log IMei
+ �Be + �Wei
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lognormally distributed random variables, providing only their marginal probability distri-
bution at an individual site. However, for regional seismic hazard and risk assessments, one 
needs to quantify the joint probability of occurrence of IMs at multiple locations over the 
region of interest. Therefore, it is necessary to model the spatial variability of �Wei , namely 
to define how the �Wei vary in space.

2.1  Characterization of the spatial variability of univariate random functions

In geostatistical analysis, the most common tool adopted to describe the spatial correlation 
of a random function is the empirical semivariogram, which measures the average dissimi-
larity of a pair of random variables z

(

xi
)

 and z
(

xj
)

 at locations xi and xj , separated by an 
inter-site distance h:

where E[] denotes the expected value. In seismological applications, the z
(

xi
)

 represent the 
(normalized) within-event residuals:

in which �e is the sample standard deviation of the within-event residuals for earthquake e.
Due to the lack of repeated observations of ground motions at each site from a given 

earthquake, further simplifications are needed to estimate � , and the hypothesis of second-
order stationarity and isotropy are commonly assumed. This means that the correlation 
between any pairs of sites with equal separation distance is the same, independently of the 
source-to-site distance and orientation. Therefore, under these assumptions, Eq. (2) can be 
rewritten as:

where h is the inter-site distance.
To assess the spatial correlation structure on the residuals with semivariograms, the 

main steps are: (1) compute the experimental semivariogram �̂�(h) ; (2) choose a parametric 
function (e.g. exponential and spherical models); and (3) estimate the correlation param-
eters, namely the sill (i.e. the overall variance) and the practical range (i.e. the distance 
beyond which the correlation is negligible) through regression analysis. In this study, the 
experimental semivariogram is computed based on the robust estimator proposed by Cres-
sie (1985) and the exponential function is used to model the sample semivariogram, as this 
is the most commonly-adopted function because it often provides the best fit to the data:

where a represents the sill and b is the practical range. In the case of the exponential model, 
b is the distance at which 95% of the sill is reached. The sill is equal to 1 because of the 
normalization of the within-event residuals and therefore, the range is the only correlation 
parameter to be estimated. We opt for a weighted least-squares regression to fit the sample 
semivariogram, in which the weights depend both on the number of pairs and the separa-
tion distance, following Baker and Chen (2020):

(2)� =
1

2
E
[

(zxi − zxj )
2
]

(3)z
(

xi
)

=
�Wei

�e
=

log IMei−�log IMei
−�Be

�e

(4)� =
1

2
E
[

(zxi − zxi+h)
2
]
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1 − exp
(

−
3h

b
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in which N is the number of pairs in each bin and c is a parameter that describes the decay 
of the weights as the distances increases. We set it equal to 5 km, based on preliminary 
analysis. We note that correlation parameters were also estimated through maximum-likeli-
hood approaches in preliminary analyses. In general, the results were similar in most of the 
cases and therefore we favoured the method that provided a better fit and is more common.

Figure  1 shows examples of experimental semivariograms and the corresponding fit-
ted models obtained by using three different regression approaches. The weights for the 
weighted least squares regression are computed through Eq.  6. As can be observed, the 
exponential function generally fits the empirical data well.

The reader should refer to Schiappapietra and Douglas (2020) and Schiappapietra and 
Douglas (2021) for further details on correlation modelling, including on the choice of the 
exponential function.

2.2  Databases

We employ the European Strong-Motion (ESM) dataset (Lanzano et al. 2019) to develop 
spatial correlation models for Italy. In particular, we apply the selection criteria proposed 
by Kotha et al. (2020) to select only shallow crustal earthquakes and records with an usa-
ble frequency range. Only those events with ≥ 40 records (within a Joyner-Boore distance 
 RJB ≤ 120 km) in the dataset are used to guarantee more robust correlation estimates. We 
further subdivide the dataset into three sub-categories based on macro-regions: (1) North-
ern, (2) Central, and (3) Southern Italy to calibrate ad hoc correlation models tailored to 
the specific macro-region. Figure 2a summarises the characteristics of the three sub-data-
sets, whereas Fig. 2b shows the magnitude-distance scatter plot. We note that the bounda-
ries of these macro-regions are slightly arbitrary and rectangles are used for convenience. 
The boundaries of the macro-regions are not based on clear topographic, geological or cul-
tural differences. The macro-regions encompass the main concentrations of available data 
with no overlap.

The Northern Italy dataset includes 23 earthquakes (1408 records) that mainly occurred 
during the 2012 Emilia seismic sequence (in the Po Plain) with characteristic moment 

(6)wi = N
(

hi
)

exp
(

−
hi

c

)

Fig. 1  Experimental semivariograms and corresponding semivariogram models for three different events 
and IMs. WLS stands for weighted least squares regression, in which the weights are computed by using 
Eq.  6; OLS stands for ordinary least squares regression; REML stands for the maximum-likelihood 
approach. WLS is the preferred method used in this study
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Fig. 2  Set of Italian data: a Location of the epicentres as a function of Mw; and b magnitude-distance scat-
ter plot. JB stands for Joyner-Boore distance. The rectangles (in dashed black) indicate the three sub-regions 
selected in this study: NI: Northern Italy; CI: Central Italy; and SI: Southern Italy
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magnitudes of 4.0–5.0. All the events are recorded on average by 61 stations, which mainly 
belong to the soil class C (according to the EC8 soil classes, CEN (2004)), i.e. soft soil 
characterized by a  Vs30 (average shear wave velocity of the top 30 m of the soil column) 
between 180 and 360 m/s. The prevailing style of faulting is thrust (TF) and only a few 
events have normal (NF) or strike slip (SS) mechanisms.

The Central Italy dataset includes 4363 records from 50 events characterized mainly by 
normal-fault mechanisms (48 NF and 2 SS) in the central Apennines. The majority of data 
belongs to either the 2009 L’Aquila or the 2016 Central Italy sequences, and are from fault 
distances smaller than 70  km, as well as moment magnitudes in the range 4.0–5.0. The 
largest earthquake is the Mw 6.5 30th October 2016 Norcia event. All the earthquakes are 
recorded on average by nearly 90 stations, which are mainly classified as soil class B, i.e. 
stiff soil with a  Vs30 in the range 360–800 m/s.

Finally, the Southern Italy dataset contains only 333 records from six events in the 
southern Apennines. Four out of the six events have a magnitude of 4.5 and a NF mecha-
nism. Each event is recorded on average by 55 stations, which mainly belong to soil class 
B. We are aware that the Southern Italy correlation model is not well constrained due to the 
shortage of data in this area. However, we prefer to distinguish the three macro-regions as 
correlation models are found to be period- and regionally- dependent (e.g. Schiappapietra 
and Douglas 2020).

2.3  Stationarity and isotropy assumptions

We use the test by Bowman and Crujeiras (2013) to verify the suitability of a station-
ary and isotropic model to represent the spatial correlation. The validity of the stationary 
assumption is determined through a test statistic which compares an estimated semivari-
ogram based on separation distance and location with that obtained as a function of only 
separation distance. Analogously, the test of isotropy compares an estimated semivario-
gram based on separation distance and azimuth with that obtained as a function of only 
separation distance. If the P-value of the statistical tests is greater than 0.05, the evidence 
of non-stationarity and anisotropy is not statistically significant (at a 5% significance level, 
a commonly chosen level for hypothesis testing) and therefore the assumption of stationar-
ity and isotropy cannot be rejected.

In this study, we test the validity of such assumptions by using the sm package (Bow-
man and Azzalini 2018) in the R software (R Core Team 2019). We perform the test for 
each event in the database and IM considered (Peak Ground Acceleration, PGA; Spectral 
Acceleration, SA, at 15 periods between 0.1 and 2 s). Figure 3 shows the P-values of the 
statistical tests as a function of Mw considering the events within the Central Italy database 
and for SA for a period of 1 s. The majority of events have a P-value larger than 0.05, sug-
gesting that the hypotheses of isotropy and stationarity are satisfied at a 5% significance 
level. It is noted that the P-values for the stationarity test for the three largest events are 
between 0.1 and 0.2, which provides some evidence for non-stationarity. This could result 
from non-stationarity behaviour in the spatial correlation of path effects. Similar results 
are obtained for the other IMs and events. These figures are not shown here for the sake 
of brevity. In the following, we, therefore, describe the spatial correlation for the different 
regions through stationary and isotropic models. We note that models cannot be extrapo-
lated to other IMs not considered in this study as we cannot guarantee the validity of the 
isotropy and stationarity assumptions.
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2.4  Correlation models for the Mw 6.5 Norcia (Central Italy) event

Here, we propose three different spatial correlation models for the Mw 6.5 Norcia event 
obtained through the methodology explained in Sect. 2.1. The models differ only by the 
reference GMM used to compute the within-event residuals. This makes it possible to 
investigate the effect of the GMM on the spatial correlation and hence on the resulting 
earthquake shaking losses of building portfolios. We choose the Lanzano et  al. (2019) 
(hereinafter ITA18) and the Kotha et al. (2020) (hereinafter K20) models, which mainly 
differ in terms of their underlying datasets. The former is calibrated on Italian data whereas 
the latter includes also European events. We also develop an ad hoc GMM specifically cali-
brated on the observations of the Mw 6.5 Norcia event (136 records within 120 km and 29 
near-source data within 30 km). The latter takes the following form:

where R is the RJB distance and b1,… , b5 are the model coefficients inferred through a one-
stage ordinary regression, which is justified as here we are only using data from a single 
event.

Figure 4 presents the ranges obtained for PGA (T = 0 s) and SA at 15 periods between 
0.1 and 2 s and the corresponding fitted models as a function of period. Generally, the 
three different models have a range that is directly proportional to the period, as previ-
ously observed in the literature (e.g. Schiappapietra and Douglas 2020). At intermediate 
and long periods, the models converge towards very similar values, suggesting that the 
underlying GMM has a negligible effect on the final outcomes. By contrast, at short 
periods (T ≤ 0.4 s), the three models show different trends. An explanation may lie with 
the different sensitivity of high-frequency and low-frequency ground motions to the 
anelastic attenuation. Indeed, Kotha et  al. (2020) found larger regional differences of 
anelastic attenuation at short periods than at longer periods. We believe that the larger 
ranges of the correlation model based on K20 are due to the faster attenuation of the 
Central Italy region with respect to the pan-European average (Kotha et al. 2020). Such 
strong attenuation is not modelled in the ergodic K20 GMM and therefore it manifests 

(7)log10 Yij = b1 + b2 log10

√

R2 + b2
3
+ b4

√

R2 + b2
3
+ b5 log10

(

Vs30

800

)

Fig. 3  P-value as a function of magnitude Mw: a isotropy test; and b stationarity test. Red dashed line indi-
cates the 5% significance level. The results are for the Central Italy dataset and for IM = SA (T = 1 s)
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as apparent spatial correlation. Conversely, the ITA18 and the ad hoc GMMs better cap-
ture the attenuation of high-frequency IMs (e.g. term b4

√

R2 + b2
3
 in Eq. 7), resulting in 

a lower spatial correlation at short periods.
The observed ranges are fitted either with a bilinear (ITA18 and K20) or linear (ad 

hoc GMM) expression to facilitate its implementation in the OpenQuake software, as 
follow:

where T is the period of interest and b is the range in km. The coefficients a0 , a1 , a2 and 
t obtained through a one-stage regression are reported in Table  1 for the three different 
cases. We recall that the model cannot be extrapolated to other periods as we cannot guar-
antee that the hypothesis of isotropy and stationarity holds.

2.5  Correlation models for the three macro‑regions in Italy

It is recognized that the spatial correlation not only varies with geological context (e.g. 
Sokolov and Wenzel 2013; Schiappapietra and Douglas 2020), but also from event 
to event (Goda 2011; Heresi and Miranda 2019). In this study, we propose different 
correlation models depending on the considered region (Northern, Central and South-
ern Italy) and we provide an estimate of the event-to-event variability that should be 
accounted for to obtain more informed regional risk assessments. We follow Heresi and 

(8)b(T) =

{

a0 + a1(T − t), T ≤ t

a0 + a2(T − t), T > t

a0 + a1T

, or

Fig. 4  Spatial correlation models 
obtained for the Mw 6.5 Norcia 
(Central Italy) event. Dots and 
squares represent the ranges as a 
function of period, whereas the 
solid lines represent the fitted 
models. Ad hoc refers to the 
GMM calibrated on the Mw 6.5 
Norcia observations only; ITA18 
refers to the Lanzano et al. 
(2019) GMM; K20 refers to the 
Kotha et al. (2020) GMM

Table 1  Coefficients of the 
equations fitted to the ranges for 
the three GMMs (Eq. 8)

a0 a1 a2 t

ad hoc 9.03 11.62
ITA18 15.96 − 20.89 11.37 0.40
K20 12.65 − 53.62 14.62 0.40
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Miranda (2019), who proposed a simple methodology to include the event-to-event vari-
ability of spatial correlation by providing the median range and its associated disper-
sion. In particular, the main steps are:

(1) compute the spatial correlation for each event in the database and for each considered 
IM, following the methodology described in Sect. 2.1. We use the ITA18 GMM to 
compute the within-event-residuals;

(2) compute the central tendency of the range for each IM as the weighted geometric 
mean. Weights are proportional to the square of the number of stations that recorded 
the earthquake;

(3) compute the dispersion of the ranges for each IM as the weighted standard deviation 
of the natural logarithm of b;

(4) compute the empirical cumulative probability distribution of b for each IM and verify 
that ranges are lognormally distributed through the Kolmogorov–Smirnov statistical 
test; and finally,

(5) fit the computed weighted mean and standard deviation with simple models as a func-
tion of the period using Eq. 8 and the following:

The fitted models for the median and variability are then used in conjunction with 
Eq. (5) to simulate spatially distributed ground motion fields. For each earthquake scenario 
in an event-based PSHA, b is sampled from a lognormal distribution with median and dis-
persion provided by the fitted model. By so doing, the correlation structure of the different 
ground motion field varies each time as would be expected in nature, rather than being 
fixed.

The resulting ranges and their associated variability for the three regions are presented 
in Fig.  5 along with the fitted models, whereas the model coefficients are reported in 
Table 2. We note that the appropriateness of these models is measured based on standard 
criteria, such as the BIC (Bayesian information criteria) and AIC (Akaike’s information 
criterion).

The correlation parameters for the Northern and Central Italy regions are modelled 
through bilinear (range-Eq.  8a) and quadratic (dispersion–Eq.  9) expressions, whereas 
the Southern Italy model for the range value is expressed through a simpler linear equa-
tion (Eq.  8b). We note that the Southern Italy model features a higher dispersion com-
pared to the other two regions. This is due to both the lower number of events available for 
this region and the smaller number of stations that on average recorded those events. The 
Northern Italy region has a lower variability with respect to the Central Italy model. At the 
same time, the former features larger ranges compared to the latter over all the considered 
periods, suggesting that the ground motion is on average correlated over longer distances. 
Such a trend is most likely due to peculiarities of the local site effects and propagation path, 
which may strongly affect the spatial correlation of a region, as demonstrated for instance 
by Jayaram and Baker (2009), Sokolov and Wenzel (2013) and Schiappapietra and Douglas 
(2020). The Central Italy region is indeed characterized by a high degree of heterogeneities 
in terms of local site effects compared to the Po plain (Northern Italy) region, where soil 
conditions are more homogeneous in terms of  Vs30.

Finally, Fig.  6 compares published correlation models with the models proposed in 
this study. Some observations are worthy of remark. Firstly, although Sgobba et al. (2019) 

(9)�Ln(b) = a0 + a1T + a2T
2
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Fig. 5  (Left hand side) Computed weighted geometric mean and fitted model, and (right hand side) com-
puted weighted standard deviation and fitted model. (Top) Northern Italy, (Middle) Central Italy, and (Bot-
tom) Southern Italy

Table 2  Coefficients of the 
equations fitted to the ranges 
(Eqs. 8 and 9) for the three 
different regions

Region a0 a1 a2 t

Northern Italy b [km] 27.48 − 52.20 15.81 0.55
σ 0.75 − 0.30 0.08 –

Central Italy b [km] 17.87 − 8.52 7.85 1
σ 0.8 0.13 − 0.1 –

Southern Italy b [km] 23.25 − 5.44 – –
σ 1.49 − 1.11 0.51 –
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provided correlation parameters of the corrective term (e.g. sum of the repeatable terms of 
variability due to source, path and site effects) and not of the within-event residuals, our 
Northern Italy model is in agreement with their results, suggesting that this region fea-
tures on average ground motions correlated over longer distances. The Huang and Gal-
asso (2019) and Esposito and Iervolino (2012)-ITACA models were developed based on 
events from the entire Italian territory and therefore they provide an average spatial cor-
relation structure. While these models have different trends at shorter periods compared 
to those proposed in this study, differences with the Central Italy model are not significant 
for periods longer than ~ 0.8  s. This may likely be due to the datasets on which the cor-
relation parameters were computed, which are dominated by normal faulting events that 
occurred along the Apennine chain. It is noted that Esposito and Iervolino (2012) proposed 
two different models based on the ITACA (http:// itaca. mi. ingv. it/ Itaca Net_ 31/#/ home) 
and ESD (http:// www. isesd. hi. is) databases, respectively. For comparison, we also show 
the ESD model, which is based on pan-European (and not just Italian) data. For the sake 
of completeness, we also show the correlation model proposed by Heresi and Miranda 
(2019) which is based on 39 well-recorded events from the NGA-West2 database (Ancheta 
et al. 2014). Generally, this study has lower ranges with respect to the models developed 
for Italy, suggesting that regional differences in spatial correlation cannot be neglected 
[although it should be noted that the models of Heresi and Miranda (2019) are based on 
more records per event than those derived here].

3  Openquake‑engine input models

3.1  Hazard component

The OpenQuake engine is used here to perform both deterministic and probabilistic seis-
mic hazard assessments for the region of interest. The following subsections describe the 

Fig. 6  Comparison among 
different correlation models: NI-
Northern Italy; CI-Central Italy; 
SI-Southern Italy; EI12_ITACA-
Esposito and Iervolino (2012); 
EI12_ESD-Esposito and Ierv-
olino (2012); HM19-Heresi and 
Miranda (2019); HG19-Huang 
and Galasso (2019); S19-Sgobba 
et al. (2019)

http://itaca.mi.ingv.it/ItacaNet_31/#/home
http://www.isesd.hi.is


5759Bulletin of Earthquake Engineering (2022) 20:5747–5773 

1 3

input parameters and models required for both the scenario-based PSHA and event-based 
PSHA calculations (Pagani et al. 2014).

3.1.1  Scenario‑based seismic hazard assessment

The computation of ground-motion fields for a specific earthquake scenario requires three 
main inputs: (1) a fault rupture model that defines the location and geometry of the source, 
(2) a GMM, and (3) a model of the local site conditions. We consider a recent earthquake, 
namely the Mw 6.5 30th October 2016 Norcia (Central Italy) event, as the reference to 
define the rupture. The following parameters (https:// esm- db. eu/#/ event/ EMSC- 20161 
030_ 00000 29), along with the fault geometry, are used as input to OpenQuake: epicen-
tre latitude 42.82°; epicentre longitude 13.16°; focal depth 6.8  km; Mw 6.5; rake = 95°; 
strike 151°; and dip 47°. We select the ITA10 GMM (Bindi et al. 2011), which is one of 
the best performing models for shallow active crustal regions in Italy according to Lan-
zano et  al. (2020). We choose an independent GMM compared to the ones used in the 
correlation modelling, so that the correlation model is the only varying input. We calculate 
ground-motion fields at multiple resolution grids with ~ 1  km and ~ 250  m grid spacing. 
The finer grid is used for densely populated area with potential of high IMs values to prop-
erly account for local site effects. Finally, the local site conditions are taken into account 
following Mori et al. (2020), who derived a detailed  Vs30 map for Italy (spatial resolution 
of 50 × 50 m), which also includes data from Italian seismic microzonations.

The OpenQuake engine allows the simulation of multiple spatially-correlated ran-
dom fields to account for the aleatory variability in the ground motion by sampling the 
between- and within-event variability components from the GMM and by considering the 
spatial correlation of the within-event variability. To ensure the convergence of the mean 
and associated standard deviations of the results, we generate 1,000 ground motion fields 
based on the works of Silva (2016) and Costa et al. (2018). The spatial correlation is mod-
elled as mentioned in Sect. 2.4. To investigate to what extent this feature impacts the over-
all economic losses, we consider four different cases. First, we generate ground-motion 
fields without considering the spatial correlation. Thereafter, we employ the three models 
described in Sect. 3. It is noted that the algorithm to simulate spatially-correlated random 
fields has been fine-tuned to reduce the computational cost and to enable a larger number 
of sites to be tested. Instead of the original covariance formulation, which is already imple-
mented in OpenQuake, we use the randomization method of the Python package gstools 
(Müller and Schüler 2021). This method represents the spatial random field through the 
Fourier integral (Wu and Baker 2014) and it evaluates its discretised modes at random 
frequencies.

We generate spatially-correlated ground-motion fields for PGA and SA at T = 0.3, 
0.6 and 1 s. These IMs are used in the vulnerability component to calculate the building 
damage. A building can be sensitive to vibrations of different periods depending on its 
height and material of construction. Figure  7 provides a realization of the spatially-cor-
related ground-motion field for PGA obtained by using the different correlation models. 
The hazard footprint for the case without spatial correlation appears very noisy. Indeed, 
the within-event residuals are randomly generated so that the IMs of interest at each site 
are considered as independent random variables. By contrast, the distribution of PGA val-
ues in the other cases show smoother patterns as a result of the spatial correlation, which 
makes closely-spaced sites likely to experience similar ground-motion levels. The compari-
son between the ad hoc and K20 models is also noteworthy. The latter has a greater range 

https://esm-db.eu/#/event/EMSC-20161030_0000029
https://esm-db.eu/#/event/EMSC-20161030_0000029
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(correlation length) which makes the ground motion correlated over longer distances. Con-
versely, the shorter range in the ad hoc model results in a patchier distribution of the PGA.

The ground-motion fields are then combined with the vulnerability and exposure com-
ponents to calculate the losses of the portfolio. The outcomes of the risk analysis are shown 
in Sect. 4.

3.1.2  Event‑based probabilistic seismic hazard assessment

We use the event-based calculator from the OpenQuake engine to compute PSHA for Italy 
through a Monte Carlo (MC) simulation-based approach (Pagani et al. 2014). The first step 
generates synthetic earthquake catalogues, also called a stochastic event set, by randomly 
sampling all possible ruptures from the input source model (Musson 2000; Atkinson and 
Goda 2013). The events from the catalogue are then used to estimate the ground-motion 
IMs of interest at each site by using a list of suitable GMMs in conjunction with the model 
of the local site conditions. Likewise to the scenario-case, we adopt the  Vs30 map proposed 
by Mori et al. (2020). A logic tree of GMMs is usually employed to describe the ground-
motion field with the aim of capturing the epistemic uncertainty. Finally, the IMs esti-
mates obtained at each site for each event are rearranged so that the seismic hazard curves 
(annual maximum IMs as a function of the probability of exceedance) can be inferred. 
Musson (2000) demonstrated that for a sufficiently large number of simulations the results 
of the event-based PSHA are close to the outcomes of the classical PSHA, which uses the 
numerical integration of the total probability integral. The reader should refer to Atkinson 
and Goda (2013) for further details and advantages of this approach over the classical one.

In our analyses, we implement the SHARE (Woessner et al. 2015) source and ground-
motion models for Italy. In order to account for spatial correlation models for three main 
macro-regions of Italy (see Sect. 2.5) we assume that only the source area can contribute 
to the seismic hazard and risk of the region under study. With regard to the GMMs, we 

Fig. 7  Spatially-correlated ground-motion maps obtained by using different correlation models: a No 
within-event spatial correlation; b Ad hoc spatial correlation model; c ITA18 spatial correlation model; and 
d K20 spatial correlation model. The yellow star represents the Mw 6.5 Norcia epicentre, whereas the black 
rectangle defines the surface fault projection
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slightly modify the GMM logic tree to enable the modelling of the spatial correlation of 
the within-event residuals of the ground motion. Indeed, not all the GMMs included in the 
logic tree (Cauzzi and Faccioli 2008; Toro 2002; Campbell and Bozorgnia 2003) decom-
pose the total aleatory variability into between- and within-event components. For such 
GMMs, we set the within-event standard deviation (�) approximately up to 90% of the total 
standard deviation 

(

�TOT
)

 based on preliminary analyses of the ratio �∕�TOT of the other 
GMMs. We implement in the OpenQuake engine the spatial correlation models developed 
in Sect. 2.5 to evaluate the impact of such features on the risk outcomes. We perform three 
different tests: (1) not taking into account spatial correlation; (2) including the event-to-
event spatial correlation variability as described in Sect.  2.5; and (3) considering only 
the median range to characterise the spatial dependency of the ground motion. Figure 8 
shows an example of hazard curves for the Norcia city obtained for the three different case-
studies. The curves represent the annual probability of exceedance of various PGA levels. 
While hazard curves have the same trend at high probabilities of exceedance independently 
of the correlation structure, the results tend to diverge slightly at lower probabilities of 
exceedance (return periods of ~ 200 year).

3.2  Vulnerability component

The vulnerability component defines loss ratios as a function of IM values depending on 
the building structure class. In our study, we use the vulnerability functions that have been 
developed in the framework of the 2020 SERA (Seismology and Earthquake Engineer-
ing Research Infrastructure Alliance for Europe, http:// www. sera- eu. org/ en/ home/) project. 
Crowley et al. (2020), Martins and Silva (2020) and Silva et al. (2020) developed about 500 
functions to cover the building classes of the European exposure database (Crowley et al. 
2020). The building classes for Italy are shown in Sect. 3.3.

The adopted vulnerability functions employ PGA or SA at 0.3, 0.6 and 1 s as ground 
motion IMs depending on the fundamental period of the different building classes. In gen-
eral, high-rise structures are associated with long-period IMs, whereas low-rise buildings 
are associated with short-period IMs, such as the PGA or SA at 0.3 s. It is noted that, for 
the sake of simplicity, and to highlight the effects of different correlation models, in our 

Fig. 8  a Hazard curves showing the return period of different ground motion levels in terms of PGA for 
three different cases: ground-motion fields are generated without considering correlation; ground-motion 
fields are generated considering correlation; ground-motion fields are generated considering correlation and 
its associated uncertainty. b Ratio of ground motion levels as a function of the return period

http://www.sera-eu.org/en/home/
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analysis, we do not consider the uncertainties associated with the loss ratio. The reader 
should refer to Crowley et al. (2021) and Martins and Silva (2020) for further details on the 
calibration of the vulnerability component.

3.3  Exposure component

In our analysis, we implement the European exposure database (Crowley et al. 2020) for 
Italy, which has been developed within the SERA project. The database reports the distri-
bution of the main residential, industrial and commercial buildings classes along with their 
replacement costs and numbers of occupants. Buildings are classified according to: (1) the 
main construction material (e.g. unreinforced masonry–MUR, confined masonry–MCF, 
reinforced concrete–CR, steel-S); (2) lateral load resisting system; (3) number of stories; 
(4) seismic design code level (e.g. pre-code–CDN, low code–CDL, moderate code–CDM, 
high code, CDH); and (5) lateral force coefficient used in the seismic design. The replace-
ment cost is the value of replacing a building based on the latest building codes of the 
country and it is given by the sum of structural and non-structural costs as well as the cost 
of contents. As an example, Fig. 9a shows the buildings per each building class according 
to the European exposure database, and Fig. 9c provides the percentages of total replace-
ment costs for the structural and non-structural components and the contents. These data 
refer to the area of interest of both the scenario-case and event-based calculations, as pre-
sented in Fig. 9b. The reader should refer to Crowley et al. (2020) for further details on the 
derivation of the exposure database.

4  Risk analysis and discussion

4.1  Scenario‑base loss assessment

In this section, we present the potential economic losses obtained by combining the vulner-
ability and exposure components with the hazard model presented in Sect. 3.1.1. Figure 10 
shows the distribution of losses with respect to the total portfolio value (%TV). We derive 
a loss map for each of the correlation models derived for the Norcia event to highlight the 
potential effects of considering spatially-correlated ground-motion fields. The economic 
portfolio is disaggregated at the grid level, based on the population density, in contrast to 
the original exposure model, which assumes that all the buildings are located at the cen-
troid of each municipality. Indeed, such configurations would mask the actual effects of 
using various correlation models, especially if the inter-site distance among the municipal-
ity centroids is larger than the correlation ranges. In particular, we obtain population den-
sity data for each grid cell starting from the available raster information (https:// www. eea. 
europa. eu/) and we compute weighting factors as population density in a given cell divided 
by population density in the corresponding municipality. Eventually, the total economic 
value in each grid cell is calculated by multiplying the total economic value of the munici-
pality by the corresponding weighting factor.

Although differences in the spatial distribution of losses are discernible among the case 
studies, risk calculations do not seem to be strongly affected by the specific correlation 
model, as also highlighted in Table 3.

We believe that the exposure model, in terms of heterogeneity, plays a critical role 
in determining such results. Indeed, as shown in Fig.  4, the correlation models tend to 

https://www.eea.europa.eu/
https://www.eea.europa.eu/
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converge toward analogous values as the period increases. Despite almost 90% of the 
buildings in the portfolio consisting of low-rise structures, only 16% of those buildings are 
predominantly sensitive to PGA, whereas the remaining 74% are sensitive to longer-period 
IMs (e.g. SA at 0.3 and 0.6 s). This means that although low-rise structures are predomi-
nant within the portfolio, the corresponding losses are similar as a result of ground motions 
being correlated over larger distances.

Such conclusions can also be drawn from Fig. 11, which presents the histograms of 
economic losses computed based on the different hazard models. We do not observe 
significant differences in the loss distributions, in contrast to Wagener et al. (2016), who 
found an increasing coefficient of variation (CV), i.e. the ratio between the standard 
deviation and the mean, with increasing correlation length. The CV is indeed almost 
the same (0.55) for all cases. In addition to the above-mentioned explanations, these 

Fig. 9  a Classification of the building classes according to the European exposure model. For further details 
on the labels, the reader should refer to Crowley et al. (2020); b Area of interest: residential, industrial and 
commercial buildings of graphs (a) and c are within the red rectangle; c Percentage of replacement costs, 
divided into contents and structural and non-structural components
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diverging outcomes could be associated with the portfolio dimension. Park et al. (2007) 
and Weatherill et  al. (2015a, b) demonstrated that the effects of including spatial cor-
relations are greater when smaller portfolios (with a footprint within the correlation 
length) are considered. In such cases, it is much more likely that ground motions are 
substantially higher/lower than the median values at all sites within the exposure data-
base, compared to larger portfolio.

To further highlight the impact of spatial correlation models within the risk assess-
ment, we therefore consider a homogeneous spatially-distributed flat portfolio for each 
IM (e.g. PGA and SA at 1 s). In this case, only one building type is considered at all 
grid points with same building cost.

Fig. 10  Losses (%TV computed based on different hazard models expressed in terms of percentage of total 
value of the portfolio: a Spatial correlation is not considered; b ad hoc correlation model; c ITA18 correla-
tion model; and d K20 correlation model. The yellow star represents the Mw 6.5 Norcia epicentre, whereas 
the black rectangle defines the surface fault projection

Table 3  Overall loss in %TV 
(percentage of total value of the 
portfolio) for the four different 
case studies

Correlation model Overall 
loss in 
%TV

No Correlation 4.56
Ad hoc 4.30
ITA18 4.63
K20 4.26
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We compute loss distribution parameters, such as mean, standard deviation and CV 
(Table 4), for each case to identify trends. In agreement with Wagener et al. (2016), we now 
note that while the mean is almost constant, CV tends to increase as the correlation length 
increases for short-periods IMs. On the other hand, the CVs remain stable for long-period 

Fig. 11  Histograms of economic losses computed based on different hazard models: a Spatial correlation is 
not considered; b ad hoc correlation model; c ITA18 correlation model; and d K20 correlation model. Red 
lines indicate the mean value, whereas the red dashed lines indicate the mean ± std

Table 4  Mean and Coefficient of 
variation of the losses obtained 
from the different correlation 
models for two different IMs

Correlation model Mean 
 (109)-PGA

CV-PGA Mean 
 (109)-SA 
1 s

CV-SA 1 s

No correlation 6.4 0.79 29.2 0.64
Ad hoc 6.1 0.80 29.6 0.65
ITA18 6.4 0.88 30 0.65
K20 6.7 0.91 29.7 0.65
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SAs. Indeed, the correlation models proposed in Sect.  2.4 converge towards comparable 
correlation lengths, thus resulting in similar loss distributions.

4.2  Event‑based probabilistic loss assessment

In this section, we present the potential economic losses obtained by combining the vul-
nerability and exposure components with the hazard model presented in Sect.  3.1.2 We 
focus only on the same geographical area (Central Italy) to better understand the impact 
of including the spatial correlation in our analysis. Risk assessment for the whole Italian 
mainland will be the object of future developments. Figure 12 shows the exceedance prob-
ability (EP) curves in terms of losses for three different case-studies: (1) ground-motion 
spatial correlation is neglected; (2) ground-motion fields are generated by considering a 
median correlation model as presented in Sect. 2.5; and (3) event-to-event spatial corre-
lation uncertainty is taken into account as explained in Sect. 2.5. In general, we observe 

Fig. 12  Left: EP curves in terms of loss in %TV for three different cases: ground-motion fields generated 
without considering correlation; ground-motion fields generated considering correlation; and ground-
motion fields generated considering correlation and its associated uncertainty. TV stands for total value of 
the economic portfolio (2020 SERA exposure model). In the inset, we show EP curves up to a return period 
of 1000 years, which is usually the range of interest for (re)insurance industry. Right: Loss ratio as a func-
tion of the return period for the cases in which ground-motion fields are generated without considering 
correlation and considering correlation. The case in which ground-motion fields are generated considering 
correlation and its associated uncertainty is taken as a reference. In the inset, we show loss ratio curves up 
to a return period of 1000 years
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greater losses at higher return period (lower annual probabilities of exceedance) when spa-
tial correlation and its associated uncertainty are included with respect to the case in which 
the spatial correlation is neglected. When only a median spatial correlation is used, rare 
losses are slightly overestimated compared to when correlation is neglected. Such results 
are in agreement, for example, with Park et al. (2007) and Weatherill et al. (2015a, b), even 
though our study does not show marked differences. An explanation may lie with the heter-
ogeneity of the portfolio along with its dimension, which would also require the considera-
tion of cross-correlation among different IMs to obtain more robust loss estimates. On the 
other hand, for return period of interest for the (re)insurance industry (up to 1000 years), 
EP curves show a similar behaviour, suggesting that overall losses are not strongly affected 
by the different correlation structures. This is in contrast with Park et al. (2007), who dem-
onstrated that for similar return periods losses can be underestimated by 19% when spatial 
correlation is neglected.

We are aware that our outcomes are preliminary because an accurate estimation of the 
likelihood of observing rare and frequent losses would require the definition of the cross-
correlation, especially in case of a heterogeneous portfolio. Nonetheless, such results pro-
vide useful advances to better understand the impact of including not only spatial correla-
tion but also its associated variability. In particular, the consideration of the event-to-event 
spatial correlation variability leads to an overestimation of the rare losses with respect to 
the simple spatial correlation case, whereas a trend cannot be identified for frequent losses. 
We recall that when only a median correlation model is considered, the range is constant 
for each ground-motion field generated. Conversely, the correlation structure of the differ-
ent ground-motion fields varies each time when the dispersion of the range is considered in 
the analysis.

To further highlight the impact of spatial correlation and its associated uncertainty 
within the probabilistic risk assessment, we therefore account for a homogeneous spatially 
disaggregated flat portfolio for different IMs, such as PGA and SA at 0.3, 0.6 and 1 s. In 
this case, only one building type is considered in each grid cell. Figure 13 compares the 
average annual losses (in %TV) obtained for the same three cases as considered for the 
SERA economic portfolio (Fig. 12). The inclusion of spatial correlation (with and without 
the event-to-event variability) makes the risk footprints less noisy and more realistic with 
respect to the case in which spatial correlation is neglected (Fig. 13a). Indeed, the distribu-
tion of losses tends to be very noisy when neglecting spatial correlation as a result of the 
ground motion being independent at neighbouring sites. Therefore, loss estimates are also 
independent owing to the homogeneity of the flat portfolio. In contrast, when the correla-
tion is considered, closely spaced sites are likely to experience similar ground-motion lev-
els, so that the distribution of losses shows smoother patterns. Differences are also evident 
when comparing Fig. 13 b and c, which is when the associated spatial correlation uncer-
tainty is accounted for. Such outcomes demonstrate the importance of considering not only 
spatial correlation, but also the event-to-event spatial correlation variability in seismic 
risk assessments. We note that these results refer to PGA; however, similar outcomes are 
obtained for the other IMs.

For sake of completeness, we show in Fig. 14 the loss EP curves obtained for the 
different IMs. Rare losses are generally underestimated if spatial correlation is not 
accounted for. This is more evident for short period IMs, such as PGA and SA at 
T = 0.3 s, compared to long period IMs (SA at T = 0.6 and 1 s). Indeed, the spatial cor-
relation model for Central Italy presented in Sect.  2.5 features ranges that decreases 
as the period increases up to 1 s. Therefore, the effects of considering spatially-corre-
lated ground-motion fields diminish with increasing period. Besides, we note that both 
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frequent and rare losses are generally higher if the correlation uncertainty is accounted 
for with respect to the simple spatial correlation case for short period IMs. In contrast, 
sound conclusions are difficult to draw at longer IMs, as the EP curves show negligible 
differences. Further analyses are still required to advance the understanding of includ-
ing the event-to-event spatial correlation variability in loss estimates; however, we 
believe that these findings have significant implications for providing more informed 
seismic risk assessments.

Fig. 13  Average annual losses (AAL) for the flat homogenous portfolio (PGA) obtained for three different 
cases: a ground-motion fields are generated without considering correlation; b ground-motion fields are 
generated considering correlation; and c ground-motion fields are generated considering correlation and its 
associated uncertainty. The yellow star represents the Mw 6.5 Norcia epicentre, whereas the black rectangle 
defines the surface fault projection
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5  Conclusions

In this work, we perform both scenario and event-based seismic hazard and risk calcu-
lations to advance the understanding of spatial correlations in the catastrophe modelling 
process. We first derive custom spatial correlation models based on the Mw 6.5 Norcia 
earthquake to better investigate to what extend different input models may affect the overall 
economic losses. Thereafter, we extend our analyses to probabilistic calculations, which 
are often important for decision-making and (re)insurance and underwriting purposes. In 
this context, we develop not only median spatial correlation models, but we also provide an 
estimate of the event-to-event associated dispersion to enable more realistic estimations of 
both the ground motion and corresponding losses.

Deterministic scenario calculations for the Norcia event suggest that the economic port-
folio in terms of both heterogenity and footprint dimension affect the impact of considering 
spatially-correlated ground-motion fields in risk analyses. Indeed, risk calculations for the 
2020 SERA economic portfolio do not seem to be strongly affected by the specific correla-
tion model, even though differences in the spatial distribution of losses may be spotted. 
To further highlight the role of different spatial correlation models, we thus assumed a flat 
portfolio, in which only a single building type is considered at each grid point. In agree-
ment with Wesson and Perkins (2001) and Wagener et al. (2016), we find that the variance 
of losses varies according to the specific spatial correlation structure used in the generation 
of ground-motion fields. We note that Wagener et al. (2016) found a coefficient of variation 

Fig. 14  EP curves in terms of loss in %TV for three different cases: ground-motion fields are generated 
without considering correlation; ground-motion fields are generated considering correlation; and ground-
motion fields are generated considering correlation and its associated uncertainty. Losses are computed for 
flat homogeneous portfolios: a PGA; b SA at T = 0.3 s; c SA at T = 0.6 s; d SA at T = 1 s
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that is 3.6 times higher when spatial cross-correlation is included compared to the case in 
which correlation is neglected, whereas the CV in our analyses (only considering spatial 
correlation) increased by only 1.15 times. Albeit not significantly evident, our outcomes 
suggest that the hypotheses on which spatial correlation models are grounded (e.g. ground 
motion models to compute the within-event residuals) play a crucial role in the estimation 
of the overall potential losses for the area of interest. As a consequence, the implementa-
tion of a unique correlation model calibrated on worldwide databases may represent an 
oversimplification.

Event-based calculations shed light on the importance of considering not only the 
ground-motion spatial correlation, but also its associated uncertainty in risk analyses. Loss 
exceedance probability curves for both the SERA economic and flat portfolios indicate that 
neglecting spatial correlation leads to biases in loss estimates. In particular, smaller losses 
are expected at lower annual probabilities of exceedance. For return periods of interest for 
the (re)insurance industry (up to 1000 years), we note that EP curves show a similar behav-
iour (maximum differences are only about 10% in contrast to Park et al. (2007), who found 
differences up to 20%), suggesting that overall losses are not strongly affected by the differ-
ent correlation structures. Note that results strongly depend on the considered portfolio and 
its relative dimension with respect to the correlation length.

Nonetheless, both hazard and risk footprints in terms of average annual losses feature 
less noisy and more realistic patterns if spatial correlation is taken into account. Therefore, 
this study strengthens the idea that the inclusion of spatial correlation and of its associated 
variability is crucial for enabling more informed risk assessments.

Although our outcomes demonstrate that spatial correlations in probabilistic seismic 
hazard and risk assessments improves per-event and in-location loss estimates for under-
writing purposes, this study presents some caveats. When heterogeneous portfolios are 
of concern, not only it is important to consider the spatial correlation at closely-spaced 
sites, but the cross-correlation among different IMs should also be accounted for at once. 
Neglecting the cross-correlation would lead to independent ground-motion fields for dif-
ferent IMs and thus to inaccurate estimation of the likelihood of observing rare losses. 
The development of a novel approach to simulate spatially cross-correlated ground-motion 
fields indicates features for further developments of this preliminary study.

Finally, the consideration of isotropic spatial correlation models may represent a strong 
simplification. Although the non-parametric tests presented in Sect.  2.3 suggest that the 
hypothesis of isotropy is satisfied at a 5% significance level, several authors (e.g. Chen and 
Baker 2019; Abbasnejadfard et al. 2020; Infantino et al. 2021; Schiappapietra and Smer-
zini 2021) demonstrated that anisotropic models better capture the complex ground-motion 
patterns. Further modelling work should be undertaken to establish the effectiveness of 
including anisotropic spatial correlation structure in risk analyses. It should be noted that 
many of results obtained in this study are based on data from a single Mw 6.5 event. There-
fore, it is recommended that data from other well-recorded events (e.g. the 26th October 
Mw 6.0 earthquake) in the same area be considered to verify the generality of the results 
obtained.
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