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Abstract
This paper proposes a novel seismic vulnerability model for the classification of the exist-
ing residential building stock. The vulnerability model rests on a data-driven approach, tak-
ing advantage of observed seismic damages detected on several Italian building typolo-
gies, struck by the 2009 L’Aquila earthquake. Unsupervised machine learning techniques 
are exploited for clustering empirical damage data and objectively identifying vulnerabil-
ity classes of decreasing vulnerability. The cascading use of different strategies, involving 
clustering analysis and probability theory, results in a comprehensive vulnerability model, 
which allows for determining, into a probabilistic framework, the degree of belonging of a 
given building typology to multiple vulnerability classes. The adoption of the peak ground 
acceleration for characterising the ground shaking is a further advantage of this study, 
overcoming several limitations related to the use of macroseismic intensity.

Keywords  Vulnerability classes · Clustering analysis · Macroseismic approaches · Fragility 
curves · Post-earthquake damage data · L’Aquila seismic event

1  Introduction

Depending on the nature of the available data, procedures for seismic vulnerability assess-
ment can be classified into empirical, analytical, expertise-based and hybrid. Among 
expertise-based methods, macroseismic approaches (e.g. Lagomarsino and Giovinazzi 
2006; Bernardini et al. 2008, 2011) allow to classify the vulnerability of the exposed build-
ings by referring to the six vulnerability classes of the EMS-98 (Grünthal et al. 1998) and 
considering the uncertainty in the attribution of a given building typology to vulnerability 
classes by means of the fuzzy set theory. The operational implementation of macroseis-
mic approaches takes place via closed-form analytical relations, correlating seismic input 
and the expected damage, as a function of the assessed vulnerability (e.g. Lagomarsino 
et al. 2021). Seismic input is represented by macroseismic intensity, which is however a 
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descriptive parameter resulting from the observation of the effects of an earthquake on the 
surrounding environment. Consequently, macroseismic intensity is affected by the charac-
teristics, and thus by the vulnerability, of the existing building stock (e.g. Tertulliani et al. 
2011; Graziani et al. 2019; Rossi et al. 2019). The identification of building typologies and 
their association to vulnerability classes can be limited by the regional variability of the 
built environment, driven by locally available construction materials, construction period 
and field experience gained over the centuries from the observation of damages caused by 
past earthquakes (e.g. Masi et al. 2021; Tocchi et al. 2021).

In Italy, the AeDES post-earthquake survey form (Baggio et al. 2007) is currently used 
for damage and usability assessment of ordinary buildings. Besides damage and usability 
information, the AeDES survey form allows for detecting metrical and typological attrib-
utes of buildings surveyed in the aftermath of an earthquake. Therefore, it can be an effec-
tive tool for supporting the definition of typological classification systems (e.g. Rota et al. 
2008; Del Gaudio et al. 2017; Rosti et al. 2018) and capturing regional distinctive features 
of the building stock, which may affect seismic vulnerability. In this context, the interview-
based CARTIS form (Zuccaro et al. 2015) can be also exploited for supporting the defini-
tion of building portfolios and vulnerability models (e.g. Polese et al. 2019, 2020; Brando 
et al. 2021).

Despite their methodological consistency and mathematical “elegance”, macroseismic 
methods are limited by the need of resorting to uncertain and approximate laws to corre-
late intensity values and peak ground motion parameters (e.g. Bernardini et al. 2011; Maio 
et  al. 2015) and make these models easily usable for vulnerability and risk applications 
(e.g. da Porto et al. 2021; Dolce et al. 2021).

Based on the above considerations, this study proposes an innovative and comprehen-
sive empirical vulnerability model for masonry and RC buildings representative of the Ital-
ian building stock. Given the notable amount of available damage data and the possibility 
of suitably accounting for the negative evidence of damage, the L’Aquila (2009) post-earth-
quake damage database (Dolce et al. 2019) is exploited. The proposed approach preserves 
the main conceptual framework at the basis of the macroseismic approach (Lagomarsino 
and Giovinazzi 2006), which allows for an exhaustive vulnerability classification of the 
building stock by referring to vulnerability classes and by considering the uncertain associ-
ation of building typologies to vulnerability classes. Novelties of this work are the adoption 
of the peak ground acceleration as physical parameter for the characterisation of ground 
motion severity, which makes the application of the proposed vulnerability model handy 
from the engineering perspective, and the use of unsupervised machine learning techniques 
for removing the subjectivity in the definition of vulnerability classes, by clustering seis-
mic damages observed on the Italian built environment. The use of the AeDES survey form 
for the L’Aquila (2009) post-earthquake building inspections also allows for an enhanced 
definition of building typologies representative of the Italian building stock.

This paper is structured as follows. The adopted post-earthquake damage dataset 
is first described (Sect.  2), together with the main assumptions and interpretations, 
regarding the characterisation of the ground motion severity experienced at each 
building location, the classification of the observed seismic damage and the adopted 
building taxonomy. Typological fragility and mean damage curves are derived, as a 
function of the peak ground acceleration, by means of a suitable statistical model and 
fitting procedure. Empirically-derived mean damage data are then partitioned into a 
predefined number of clusters based on a data-driven approach. In this context, a soft 
clustering technique is used, permitting each data point to belong to multiple clus-
ters with different membership degree (Sect. 3). This strategy allows for an objective 
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identification of vulnerability classes of decreasing vulnerability, for which fragility 
functions are subsequently derived. A total of ten vulnerability classes (i.e. A1, B1, 
C1, C2, D1, D2, E1, E2, F1 and F2) is considered, six of which refer to masonry build-
ings (i.e. A1, B1, C1, D1, E1 and F1) and four to RC buildings (i.e. C2, D2, E2 and 
F2). The expedient of distinguishing masonry from RC vulnerability classes arises 
from the different distance among damage states emerged from typological fragility 
functions.

A probabilistic framework is then set up allowing for the attribution of a given 
building typology to multiple vulnerability classes, based on an ad-hoc strategy, 
involving the use of probability theory and using empirically-derived typological fra-
gility functions as a target (Sect. 4). Similarly to the EMS-98, a vulnerability table is 
proposed to differentiate the seismic vulnerability of the exposed built environment 
based on selected building attributes. In this context, the synthetic binomial param-
eter, representing the weighted mean vulnerability class, is indicated for each consid-
ered building typology, allowing for easily categorising the seismic vulnerability of 
masonry and RC buildings depending on their typological features. The feasibility of 
the proposed vulnerability model is then demonstrated by a case study application with 
reference to two selected building typologies (Sect. 5).

Final remarks and conclusions of this work are discussed in Sect.  6. The results 
obtained in the different methodological phases of this study, including the parameters 
of the fragility functions derived for both building typologies and vulnerability classes, 
the degrees of belonging of building typologies to vulnerability classes and the pro-
posed vulnerability table, can be used in varied applications in the field of seismic 
vulnerability and risk, provided the similarity of seismic hazard and built environment.

2 � Post‑earthquake damage database

This work takes advantage of a robust post-earthquake database, gathering damage 
data of residential buildings hit by the 2009 L’Aquila seismic event (Dolce et al. 2019). 
Although the availability of several post-earthquake damage databases, the L’Aquila 
database represents a good candidate for different aspects, among which the significant 
number of inspected buildings and the considerable number of completely-surveyed 
municipalities (Fig.  1), identified by a completeness ratio (i.e. number of surveyed 
residential buildings over the total number of buildings evaluated from national build-
ing census, ISTAT 2001) higher than 90% (Rosti et  al. 2021a, b). The possibility of 
accounting for the negative evidence of damage in the municipalities less affected by 
the ground shaking is a further advantage related to the use of this post-earthquake 
damage database. In this context, non-surveyed residential buildings, sited in 176 non-
surveyed and 49 partially-surveyed (completeness ratio < 10%) municipalities of the 
Abruzzi region (Fig. 1), are reasonably assumed to be undamaged and used to integrate 
the post-earthquake damage database (Rosti et  al. 2021a, b). Following these opera-
tions, the considered post-earthquake dataset includes damage data of 37′406 residen-
tial (masonry: 28′713 and RC: 8′693) buildings. Non-inspected residential buildings, 
from non-surveyed and partially-surveyed municipalities and assumed undamaged, are 
175′152 (masonry) and 22′376 (RC).
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2.1 � Ground motion characterisation

Consistently with the aim of this study, the ground motion severity experienced 
at each building location is quantified by PGA (e.g. Rosti et  al. 2020a), extrapolated 
from updated INGV shakemap (Michelini et al. 2020). With respect to Michelini et al. 
(2008), the new shakemap configuration involves the use of recently developed ground 
motion models, selected based on a ranking procedure, an updated Vs30 map for local 
site effects and the adoption of the newly developed USGS-ShakeMap version 4 (v.4) 
software (Worden et  al. 2020). Also, the new shakemap defines isoseismic units of 
0.02 g, allowing for a rather accurate seismic input characterisation of buildings subse-
quently involved in the fragility assessment (Fig. 2).

2.2 � Classification of the observed seismic damage

Starting from the damage description provided by the post-earthquake survey form, 
grading the seismic damage observed on different building components based on 
both damage severity and extent, a unique global level of damage is assigned to each 
inspected building. Damage descriptions available from the post-earthquake survey 
form are mapped to the discrete damage levels of the EMS-98 using the damage con-
version rules by Rota et  al. (2008) and Del Gaudio et  al. (2017) in case of structural 
and non-structural (i.e. masonry infills/partitions) damage, respectively. Global damage 
levels of masonry buildings are then given by the maximum level of damage detected 
on the vertical structure, intermediate diaphragms and roof (e.g. Rota et al. 2008; Rosti 
et  al. 2018). In case of RC buildings, global damage levels are instead given by the 

Fig. 1   Identification of the Abruzzi surveyed and non-surveyed municipalities. Colours denote the com-
pleteness ratio of each municipality
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maximum level of damage observed on the vertical structure and masonry infills/parti-
tions (e.g. Del Gaudio et al. 2017; Rosti et al. 2018).

Figure 3 shows the resulting damage distributions of residential masonry (a) and RC (b) 
buildings, with reference to the completely-surveyed municipalities.

2.3 � Typological classification of the residential building stock

The typological classification of the residential building stock accounts for the main 
building attributes retrievable from the AeDES post-earthquake survey form and 

Fig. 2   INGV PGA shakemap of the 2009 L’Aquila seismic event (Michelini et al. 2020)

Fig. 3   Damage classification of the residential masonry (a) and RC (b) building stock for L’Aquila com-
pletely-surveyed municipalities
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affecting the buildings’ seismic behaviour. A first distinction is made based on the con-
struction material (i.e. masonry/RC) and the number of storeys (i.e. 1, 2, 3 and ≥ 4 sto-
reys for masonry buildings and 1, 2, 3, 4, ≥ 5 storeys for RC buildings). Masonry build-
ings are further classified based on the texture and quality of the masonry fabric (i.e. 
IRR: irregular layout or poor-quality; REG: regular layout and good-quality), in-plane 
flexibility of intermediate floor diaphragms (i.e. F: flexible; R: rigid) and presence (or 
lack) of connecting devices, such as tie-rods and/or tie-beams (i.e. CD: with connecting 
devices; NCD: without connecting devices), similarly to Rota et al. (2008).

Besides the building height, the typological classification of the RC building stock 
accounts for the level of seismic design (i.e. buildings seismically designed pre-1981 
and post-1981, being 1981 a key date for the enforcement of relatively modern seismic 
design rules). Most of the municipalities in the L’Aquila region were classified as seis-
mic prone in early twentieth century, hence RC buildings designed to gravity loads (and 
wind loads) only are basically missing in the dataset.

The considered building taxonomy leads to the identification of a total of 42 build-
ing typologies, 32 of which refer to masonry buildings and 10 to RC buildings. The 
higher level of detail of the adopted typological classification system is aimed at detect-
ing possible differences or similarities in the observed seismic vulnerability of the exist-
ing building stock, given the presence (or absence) of specific building attributes or 
constructive details.

Masonry and RC buildings represent 77% and 23%, respectively, of the considered 
post-earthquake damage database. Irregular layout or poor-quality masonry constitutes 
about 68% of the considered masonry buildings, 32% of which are instead character-
ised by good-quality materials with regular layout. About 70% of the masonry build-
ings have flexible intermediate diaphragms, whereas 30% of the horizontal structures 
are rigid. Aseismic devices are present in 41% of the considered masonry buildings. 
Focusing on RC constructions, 36% and 64% are seismically designed pre- and post-
1981, respectively.

Referring to the completely-surveyed municipalities, Fig.  4a shows the subdivi-
sion of the existing building stock based on the construction material. Figure  4 sub-
divides masonry (b) and RC buildings (c) based on the number of storeys. In Fig. 4d, 
e, f masonry buildings are classified based on the masonry type, in-plane stiffness 
of the intermediate diaphragms, presence (or lack) of aseismic devices (i.e. tie-rods/
tie-beams).

The post-earthquake damage database is then enlarged by undamaged buildings from 
non-surveyed and partially-surveyed municipalities. As the building attributes considered 
by the national building census are construction material, construction age and number of 
storeys, the integration of undamaged RC buildings is straightforward. Conversely, map-
ping of undamaged masonry buildings to the predefined building typologies is carried out 
based on the typological composition of the masonry macro-categories, identified based 
on the age of construction (i.e. < 1919, 1919–45, 1946–61, 1962–71, 1972–81, 1982–91 
and > 1991) and number of storeys (1, 2, 3, ≥ 4), as depicted in Fig. 5. Frequency values 
reported in Fig. 5, obtained by classifying residential masonry buildings of the considered 
post-earthquake damage dataset based on typological and census building attributes, both 
available from the AeDES survey form, are then applied to the undamaged building stock, 
for which only census-based information is available.

Table 1 reports the building typologies identified based on the adopted building taxon-
omy, together with the indication of the sample size, including both damaged and undam-
aged buildings.
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Fig. 4   Typological classification of the residential building stock for L’Aquila completely-surveyed munici-
palities. Construction material (a); subdivision of masonry (b) and RC (c) buildings based on the number of 
storeys; subdivision of masonry buildings based on the masonry type (d), in-plane stiffness of intermediate 
diaphragms (e), presence or absence of aseismic devices (f)
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2.4 � Seismic fragility assessment

Empirical fragility curves are derived for quantifying the seismic vulnerability of prede-
fined building typologies, as a function of the ground motion severity. The cumulative log-
normal distribution (e.g. Rossetto and Elnashai 2003; Rota et al. 2008; Del Gaudio et al. 
2017; Ader et al. 2020; Rosti et al. 2020b) is employed for describing the probability of 
reaching or exceeding a given level of damage, P(ds ≥ DSi|PGA), as a function of PGA:

where θDSi is the median PGA value associated with damage level DSi and β is the logarith-
mic standard deviation.

The buildings’ subdivision in the different damage states, nij, given the jth PGA thresh-
old, is approximated by the multinomial distribution (e.g. Agresti 2002; Charvet et  al. 
2014; Ioannou et al. 2021; Rosti et al. 2021a, b):

where Nj is the total number of buildings at the jth PGA threshold and P(ds = DSi|PGAj) is 
the conditional probability of occurrence of damage level DSi, defined as:

A common value of β is assumed to guarantee the ordinal nature of damage and pre-
venting intersecting fragility functions (e.g. Lallemant et al. 2015; Ader et al. 2020; Rosti 
et al. 2021a, b). The same value of dispersion (β) is also enforced to all building typologies 
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(e.g. Coburn and Spence 2002; Karababa and Pomonis 2011). These conditions are met by 
simultaneously fitting the fragility curves on all damage levels and building typologies via 
the maximum likelihood estimate (MLE) approach:

where nTyp is the number of building typologies, nPGA is the number of PGA thresholds, 
nDS is the number of damage levels, Njk is the total number of buildings of the kth building 
typology at the jth PGA threshold, nijk is the number of buildings of the kth building typol-
ogy with damage level DSi at the jth PGA threshold.

For each building typology, Table 2 summarises the parameters of the resulting lognor-
mal fragility curves (i.e. θDSi, median PGA values and β, logarithmic standard deviation).

In line with existing studies (e.g. Braga et  al. 1982; Dolce et  al. 2003; Lagomarsino 
and Giovinazzi 2006), the mean level of damage, μD, attained at a given PGA threshold is 
defined as:

where nDS is the number of damage states and P(ds = DSi|PGAj) is the probability of occur-
rence of the ith damage level, obtained from the previously determined fragility functions.

3 � Identification of vulnerability classes and derivation of fragility 
curves via unsupervised machine learning techniques

The definition of vulnerability classes has been extensively addressed in the literature (e.g. 
Goretti and Di Pasquale 2004; Di Pasquale et al. 2005; Dolce et al. 2006; Dolce and Goretti 
2015; Masi et al. 2021; Rosti et al. 2021a; Saretta et al. 2021). Most of those studies (e.g. 
Goretti and Di Pasquale 2004; Di Pasquale et al. 2005; Dolce et al. 2006; Dolce and Goretti 
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Table 1   Identification of building typologies based on the adopted building taxonomy. Numbers into brack-
ets indicate the sample size

No of 
storeys

Masonry
RCIrregular layout or poor-quality (IRR) Regular layout and good-quality (REG)

Flexible diaphragms

(F)

Rigid diaphragms

(R)

Flexible diaphragms

(F)

Rigid diaphragms

(R) Seismic design

NCDa CDb NCD CD NCD CD NCD CD Pre81 Post81

1
IRR-F-NCD-1

(11314)

IRR-F-CD-1

(2522)

IRR-R-NCD-1

(1344)

IRR-R-CD-1

(1537)

REG-F-NCD-1

(6909)

REG-F-CD-1

(3253)

REG-R-NCD-1

(2697)

REG-R-CD-1

(9101)

RC-Seismic-Pre81-1

(1426)

RC-Seismic-Post81-1

(1936)

2
IRR-F-NCD-2

(36704)

IRR-F-CD-2

(11243)

IRR-R-NCD-2

(5018)

IRR-R-CD-2

(7916)

REG-F-NCD-2

(10383)

REG-F-CD-2

(7486)

REG-R-NCD-2

(6886)

REG-R-CD-2

(28734)

RC-Seismic-Pre81-2

(5546)

RC-Seismic-Post81-2

(7691)

3
IRR-F-NCD-3

(15609)

IRR-F-CD-3

(5725)

IRR-R-NCD-3

(2062)

IRR-R-CD-3

(3124)

REG-F-NCD-3

(3099)

REG-F-CD-3

(2429)

REG-R-NCD-3

(1949)

REG-R-CD-3

(9595)

RC-Seismic-Pre81-3

(3612)

RC-Seismic-Post81-3

(5489)

4
IRR-F-NCD-4+

(2197)

IRR-F-CD-4+

(1091)

IRR-R-NCD-4+

(335)

IRR-R-CD-4+

(479)

REG-F-NCD-4+

(367)

REG-F-CD-4+

(282)

REG-R-NCD-4+

(429)

REG-R-CD-4+

(2056)

RC-Seismic-Pre81-4

(1635)

RC-Seismic-Post81-4

(1930)

5+
RC-Seismic-Pre81-5+

(1091)

RC-Seismic-Post81-5+

(713)
a NCD: without connecting devices (i.e. tie-rods and tie-beams)
b CD: with connecting devices (i.e. tie-rods and/or tie-beams)

Sample size ≤ 1000 > 1000
≤ 2000

>2000
≤4000

>4000
≤8000

>8000
≤16000

>16000
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2015) resort to the association rule between structural typologies and vulnerability classes 
proposed by Braga et  al. (1982), resulting from the best agreement between the Irpinia 
(1980) empirical damage data and the MSK scale. To remove possible subjectivity in the 
definition of vulnerability classes, Rosti et al. (2021a) employed a hierarchical agglomera-
tive clustering algorithm for objectively merging predefined building typologies into three 
vulnerability classes of decreasing vulnerability. However, the methodological apparatus 
was not set into a probabilistic framework, as a univocal correspondence between struc-
tural typologies and vulnerability classes was proposed.

Aware of the advantage of removing subjectivity in the attribution of some choices 
and requiring a limited intervention of the expert in the definition of a suitable number 
of clusters in which partitioning the dataset, unsupervised machine learning algorithms 
have been used in disparate applications of earthquake engineering and seismology (e.g. 
Weatherhill and Burton 2009; Jayaram and Baker 2010; Rehman et  al. 2014; Kotha 
et al. 2018; Mascandola et al. 2020; Xie et al. 2020). Clustering is one of the most com-
mon unsupervised machine learning algorithms, employed for drawing inferences from 
datasets of input data without labelled responses, based on some measures of similar-
ity. In this context, K-means (Lloyd 1982) is an iterative algorithm, splitting data into 
a predefined number of mutually exclusive clusters. In other words, each observation 
is assigned to exactly one of the clusters, by minimising the distance between the data 
point and the centroid of the assigned cluster.

Fuzzy c-means (FCM) clustering (Bezdek 1981) is instead a soft version of K-means, 
where each data point has a fuzzy degree of belonging (uij) to each cluster. FCM is 
based on minimising the objective function, Jm:

where D is the total number of data points, N is the number of clusters, uij is the member-
ship degree of xi to the jth cluster, xi is the ith data point, m controls the fuzzy overlapping 
among different clusters and cj is the centroid of the jth cluster.

The algorithm proceeds as follows:

1.	 The uij values are randomly initialized
2.	 The centroids, cj, of the clusters are computed as:

3.	 The uij values are updated:

4.	 The objective function, Jm, is computed
5.	 Steps 2–4 are repeated until Jm improves by less than a specified minimum threshold or 

until after a specified maximum number of iterations.
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Table 2   Parameters (i.e. median and logarithmic standard deviation) of the typological lognormal fragility 
curves

Building typology θDS1 (g) θDS2 (g) θDS3 (g) θDS4 (g) θDS5 (g) β (-)

IRR-F-NCD-1 0.198 0.261 0.296 0.379 0.569

0.705

IRR-F-NCD-2 0.134 0.190 0.228 0.304 0.490
IRR-F-NCD-3 0.102 0.160 0.194 0.265 0.464
IRR-F-NCD-4 +  0.090 0.144 0.176 0.239 0.442
IRR-F-CD-1 0.191 0.298 0.349 0.451 0.655
IRR-F-CD-2 0.141 0.217 0.265 0.366 0.586
IRR-F-CD-3 0.108 0.178 0.220 0.304 0.500
IRR-F-CD-4 +  0.081 0.140 0.176 0.247 0.463
IRR-R-NCD-1 0.215 0.329 0.363 0.425 0.696
IRR-R-NCD-2 0.160 0.240 0.287 0.371 0.590
IRR-R-NCD-3 0.126 0.200 0.242 0.337 0.560
IRR-R-NCD-4 +  0.107 0.175 0.209 0.264 0.490
IRR-R-CD-1 0.250 0.394 0.462 0.644 0.831
IRR-R-CD-2 0.195 0.322 0.377 0.499 0.757
IRR-R-CD-3 0.146 0.247 0.296 0.409 0.670
IRR-R-CD-4 +  0.111 0.168 0.211 0.314 0.675
REG-F-NCD-1 0.311 0.457 0.546 0.725 0.943
REG-F-NCD-2 0.185 0.305 0.361 0.494 0.800
REG-F-NCD-3 0.146 0.266 0.324 0.427 0.678
REG-F-NCD-4 +  0.115 0.220 0.294 0.358 0.648
REG-F-CD-1 0.405 0.711 0.903 1.301 1.857
REG-F-CD-2 0.239 0.469 0.538 0.704 1.154
REG-F-CD-3 0.187 0.359 0.439 0.558 0.981
REG-F-CD-4 +  0.149 0.318 0.369 0.462 0.945
REG-R-NCD-1 0.336 0.561 0.764 0.966 1.043
REG-R-NCD-2 0.271 0.429 0.504 0.688 0.971
REG-R-NCD-3 0.231 0.387 0.462 0.590 0.806
REG-R-NCD-4 +  0.189 0.352 0.409 0.582 0.748
REG-R-CD-1 0.408 0.730 0.956 1.170 2.165
REG-R-CD-2 0.366 0.661 0.822 0.945 1.248
REG-R-CD-3 0.319 0.596 0.733 0.959 1.254
REG-R-CD-4 +  0.263 0.548 0.677 0.837 1.722
RC-Seismic-Pre81-1 0.315 0.459 0.690 1.063 2.578
RC-Seismic-Pre81-2 0.283 0.516 0.719 0.981 1.655
RC-Seismic-Pre81-3 0.195 0.386 0.573 0.816 1.450
RC-Seismic-Pre81-4 0.157 0.313 0.453 0.754 1.369
RC-Seismic-Pre81-5 +  0.128 0.226 0.337 0.743 1.545
RC-Seismic-Post81-1 0.379 0.738 1.112 2.907 2.907
RC-Seismic-Post81-2 0.303 0.681 0.958 1.390 2.230
RC-Seismic-Post81-3 0.231 0.543 0.824 1.285 4.072
RC-Seismic-Post81-4 0.187 0.400 0.663 1.098 2.290
RC-Seismic-Post81-5 +  0.142 0.270 0.502 1.128 2.354
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In this study, fuzzy c-means clustering is employed to split mean damage values, 
observed at preselected ground motion intensity levels, into a predefined number of 
clusters, representing the vulnerability classes. Differently from K-means clustering, the 
use of the FCM algorithm allows each observational mean damage data point to belong 
to multiple vulnerability classes with different membership degree.

According to the number of vulnerability classes considered by the EMS-98 
(Grünthal et  al. 1998), six vulnerability classes of decreasing vulnerability (from A 
to F) are considered, each split into two subgroups based on the construction material 
(i.e. masonry and RC). The reason of separating masonry from RC vulnerability classes 
derives from the different distance among damage levels observed in the fragility func-
tions obtained for the two families of structural typologies (Table 2). Six vulnerability 
classes are considered for masonry (i.e. A1, B1, C1, D1, E1, F1) whereas four out of six 
vulnerability classes are introduced for RC buildings (i.e. C2, D2, E2, F2), for which 
higher vulnerable vulnerability classes (i.e. A2 and B2) lack. Vulnerability classes A2 
and B2 could indeed refer to RC buildings without seismic design (i.e. RC buildings 
designed for gravity loads only), which are not available from the L’Aquila post-earth-
quake dataset, or to other more vulnerable RC building typologies not contemplated by 
the adopted building taxonomy.

Based on the above considerations, FCM clustering is separately applied to empirical 
mean damage values associated with masonry and RC building typologies. An overlapping 
coefficient, m, equal to 2 is considered, as higher values imply fuzzier boundaries among 
the different vulnerability classes, leading to less distinct fragility curves.

Considering the masonry dataset, the outermost vulnerability classes A1 and F1 are first 
defined, by respectively pooling together mean damage values of the two most vulnerable 
(i.e. IRR-F-NCD-4 + and IRR-F-CD-4 +) and less vulnerable (i.e. REG-F-CD-1 and REG-
R-CD-1) building typologies. The most and least vulnerable building typologies are iden-
tified by comparing observational typological mean damage values and then considering 
the two building typologies with higher and lower mean damage values, respectively. The 
remaining typological mean damage values are then split into four clusters (i.e. B1, C1, 
D1, E1) via FCM clustering. In this way, the presence of building typologies more and less 
vulnerable than the outermost vulnerability classes (i.e. A1 and F1) is avoided. A similar 
strategy is applied for the definition of the vulnerability classes for RC buildings. In this 
case, the number of clusters in which partitioning the RC mean damage dataset is set equal 
to two, allowing for the identification of the inner RC vulnerability classes (i.e. D2 and 
E2). The outermost vulnerability classes (i.e. C2 and F2) are instead obtained by consider-
ing empirical mean damage values of the most (i.e. RC-Seismic-Pre81-5 +) and least (i.e. 
RC-Seismic-Post81-1) vulnerable RC building typologies.

The implementation of FCM clustering provides, for a given PGA threshold, the mem-
bership degree of each mean damage value to different vulnerability classes. The highest 
membership degree denotes the most probable vulnerability class. As a result, empirical 
mean damage data points (Fig. 6a) are attributed to the most likely vulnerability class (i.e. 
the one with the higher membership degree) and to the other vulnerability classes, with dif-
ferent membership degree (Fig. 6b).

By interpreting the membership degree of a given mean damage value to the different 
vulnerability classes in terms of frequency, the number of buildings within a given building 
typology belonging to each vulnerability class is obtained, for each PGA threshold. Repeti-
tion of this procedure for all mean damage values and PGA thresholds leads to the defini-
tion of damage probability matrices of vulnerability classes, then approximated by fitting 
fragility functions (Fig. 7). Median PGA values associated with the different damage levels 
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are obtained via the maximum likelihood approach, by imposing the same dispersion value 
(β) resulting from the typological fragility curves (Sect. 2.4). Table 3 collects the param-
eters (i.e. θDSi, median PGA values and β, logarithmic standard deviation) of the fragility 
curves of the ten vulnerability classes. For each level of damage, resulting fragility curves 
are compared in Fig. 8, showing a clear hierarchy among the different vulnerability classes.

4 � Proposed vulnerability model

Besides fragility functions, providing the expected damage distribution in the different 
levels as a function of the ground motion severity, a thorough vulnerability model should 
supply indications on the vulnerability classification of the exposed building stock. In this 
context, an ad-hoc strategy is built up to determine the degree of belonging of each build-
ing typology to multiple vulnerability classes. Fragility functions derived for vulnerability 
classes are linearly combined and optimal coefficients of the linear combination, represent-
ing the degrees of belonging of the selected building typology to vulnerability classes, are 
obtained by using typological fragility curves as a target.

Based on this procedure, the fragility curve associated with the ith damage level of the 
jth building typology can be approximated as:

where θDSij is the median PGA value of the fragility function of the ith damage level of the 
jth building typology, NClasses indicates the total number of the considered vulnerability 
classes, wjk denotes the degree of belonging of the jth building typology to the kth vulner-
ability class, θDSik is the median PGA value of the fragility function of the ith damage level 
of the kth vulnerability class and β is the logarithmic standard deviation, which is constant 
among damage levels, building typologies and vulnerability classes.

The definition of the linear combination coefficients, wjk, results from an optimisation 
problem, minimising the global deviation between the sets of approximating and empiri-
cally-derived typological fragility curves. As the optimisation problem aims at providing 
the coefficients of the linear combination better reproducing target fragility functions, opti-
mal coefficients may refer to non-adjacent vulnerability classes. This issue is counteracted 
by introducing a probability distribution for describing the trend of the wjk values. Con-
sidering the advantage of being fully described by a single parameter, the binomial model 
is selected. As two sets of different vulnerability classes are defined for masonry and RC 
typologies, two binomial distributions are introduced. One binomial distribution refers to 
masonry vulnerability classes and is fully described by the binomial parameter, ymas, with 
kmas ranging from 0 (F1) to 5 (A1), as indicated in Eq. (10). The other one refers to RC vul-
nerability classes and is fully determined by the binomial parameter, yRC, with kRC varying 
from 0 (F2) to 3 (C2), as per Eq. (11). The degree of belonging of the jth building typology 
to the kth vulnerability class, wjk, is then expressed by jointly using the binomial distribu-
tions defined in Eqs. (10) and  (11), suitably scaled by the factor cmas (Eq. (12)). The scal-
ing coefficient, cmas, which is unknown together with the binomial parameters ymas and yRC, 
indicates the weight that the binomial distribution of “masonry” vulnerability classes takes 
in the global distribution of the wjk coefficients. To ensure that the wjk coefficients add up 
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to 1, the “RC” binomial distribution is scaled by the complementary to 1 of the cmas coef-
ficient (Eq. (12)).

The joint use of two binomial models for describing the wjk distribution allows for more 
flexibility. Besides the cases where masonry (cmas = 1) and RC (cmas = 0) vulnerability 
classes are used only, the combined use of masonry and RC vulnerability classes can be 
convenient for some building typologies, to suitably account for a different distance among 
the fragility curves of the different damage states.

By substituting Eqs. (10) and (11) into Eq. (12) and then replacing Eq. (12) into Eq. (9), 
the fragility curve of damage level DSi of the jth building typology can be approximated as:
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kmas!
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5 − kmas

)
!

(
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5

)kmas
(
1 −

yj,mas

5
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)
!

(
yj,RC

3
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(
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3
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(
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)
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Fig. 6   Empirically-derived mean damage values of masonry and RC building typologies versus PGA (a) 
and identification of the most probable vulnerability class (i.e. higher membership degree) based on FCM 
clustering algorithm (b)
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Fig. 7   Fragility curves of the ten vulnerability classes, resulting from FCM clustering of the observed mean 
damage values of Masonry (1) and RC (2) building typologies. Numbers in the legend indicate the sample 
size

Table 3   Parameters (i.e. median and logarithmic standard deviation) of the lognormal fragility curves of the 
ten vulnerability classes, resulting from FCM clustering of the observed mean damage values

Construction material Vulnerabil-
ity class

θDS1 (g) θDS2 (g) θDS3 (g) θDS4 (g) θDS5 (g) β (–)

Masonry A1 0.087 0.143 0.176 0.241 0.447

0.705

B1 0.109 0.175 0.215 0.294 0.497
C1 0.146 0.216 0.255 0.339 0.534
D1 0.191 0.301 0.352 0.459 0.702
E1 0.286 0.499 0.600 0.751 1.034
F1 0.406 0.714 0.921 1.156 1.771

RC C2 0.128 0.226 0.337 0.741 1.544
D2 0.175 0.350 0.542 0.886 1.579
E2 0.255 0.538 0.795 1.179 2.149
F2 0.375 0.716 1.021 1.576 1.576
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For each building typology, the unknowns to be determined are three, i.e. the param-
eters of the binomial distribution defined for masonry, ymas, and RC, yRC, vulnerability 
classes and the fraction of the masonry binomial distribution, cmas, to be considered within 
the global wjk distribution. Optimal values of the parameters ymas, yRC and cmas result from 
a constrained optimisation problem minimising the global deviation between the sets of 
approximating and target typological fragility functions. Parameters ymas, yRC and cmas are 
constrained between 0 and 5, 0 and 3 and 0 and 1, respectively.

Table 4 collects the parameters cmas, ymas, yRC which allow for defining the degrees of 
belonging of each building typology to vulnerability classes. Figures 9, 10 and 11 show 
the distribution of the degrees of belonging of building typologies to vulnerability classes. 
Figures also compare the approximating fragility curves (continuous lines) resulting from 
linearly combining the fragility functions of the different vulnerability classes, suitably 
accounting for their degree of belonging, with the empirically-derived typological fragility 
curves (dotted lines). Vertical dashed lines represent the weighted mean vulnerability class 
of the binomial distribution.

Fragility curves derived from the linear combination of the fragility functions of the 
vulnerability classes and accounting for the membership degree of the building typology 
to the vulnerability classes (continuous lines) generally well approximate the empirically-
derived typological fragility curves (dotted lines), suggesting the suitability of the adopted 
strategy (Figs.  9, 10 and 11). In case of some masonry building typologies (i.e. IRR-R-
CD-3/4 + , REG-F-NCD-2/3/4 + , REG-F-CD-2/3/4 + , REG-R-NCD/CD-4 +), the com-
bined use of vulnerability classes defined for both masonry and RC buildings allows for 
better reproducing target typological fragility functions.

In line with the EMS-98, Fig. 12 provides the vulnerability classification of the exist-
ing building stock, resulting from the adopted procedure. The proposed vulnerability 
table supplies a synthetic vulnerability representation of each building typology, in 
terms of the weighted mean vulnerability class of the binomial distribution (squared 
markers), fully describing the degree of belonging of a given typology to multiple 
vulnerability classes. In the figure, black squared markers indicate the weighted mean 
“masonry” vulnerability class, whereas white squared markers denote the weighted 
mean “RC” vulnerability class. Bars, associated with each building typology, indicate 
the fraction of “masonry”/“RC” binomial distributions to be considered within the 
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global wjk distribution. Grey solid hatch provides the value of the cmas coefficient. In 
other words, fully grey bars correspond to the case of cmas = 1 (i.e. only “masonry” vul-
nerability classes are considered), totally empty bars refer to the case of cmas = 0 (i.e. 
only “RC” vulnerability classes are accounted for) whereas partially-filled bars corre-
spond to the case of 0 < cmas < 1 (i.e. both “masonry” and “RC” vulnerability classes are 
considered). The proposed vulnerability table also permits to categorise and compare 
the seismic vulnerability of buildings based on the presence or absence of specific typo-
logical building attributes.

Results show that the layout and quality of the masonry fabric significantly affect the 
seismic vulnerability of masonry buildings, being irregular layout or poor-quality masonry 
building typologies more vulnerable than those made of good-quality materials with regu-
lar texture. Besides the characteristics of the masonry fabric, other building attributes, such 
as the in-plane stiffness of intermediate diaphragms and the presence of aseismic devices, 
impact the seismic vulnerability of masonry buildings. The presence of rigid diaphragms 
indeed improves the seismic behaviour of masonry constructions with respect to those with 
flexible horizontal structures. Also, the presence of connecting devices (i.e. tie-rods and/or 
tie-beams) has a beneficial effect on the seismic vulnerability of masonry buildings. Build-
ing code evolution improves the seismic response of RC buildings. Given the building 
height, RC buildings seismically-designed after 1981 are indeed less vulnerable than those 
seismically-designed according to obsolete (pre-1981) seismic prescriptions. The number 
of storeys strongly impacts the seismic vulnerability of both masonry and RC buildings, 

Table 4   Parameters required for defining the degrees of belonging of each building typology to vulnerabil-
ity classes

Building typology cmas ymas yRC Building typology cmas ymas yRC

IRR-F-NCD-1 1 2.583 – REG-F-CD-2 0.558 1.266 1.243
IRR-F-NCD-2 1 3.690 – REG-F-CD-3 0.543 2.040 1.807
IRR-F-NCD-3 1 4.477 – REG-F-CD-4 +  0.546 2.781 2.061
IRR-F-NCD-4 +  1 4.980 – REG-R-NCD-1 1 0.454 –
IRR-F-CD-1 1 2.191 – REG-R-NCD-2 1 1.125 –
IRR-F-CD-2 1 3.117 – REG-R-NCD-3 1 1.459 –
IRR-F-CD-3 1 3.967 – REG-R-NCD-4 +  0.662 2.023 1.827
IRR-F-CD-4 +  1 5.000 – REG-R-CD-1 1 0.000 –
IRR-R-NCD-1 1 2.020 – REG-R-CD-2 1 0.243 –
IRR-R-NCD-2 1 2.842 – REG-R-CD-3 1 0.463 –
IRR-R-NCD-3 1 3.464 – REG-R-CD-4 +  0.296 0.956 0.897
IRR-R-NCD-4 +  1 4.223 – RC-Seismic-Pre81-1 0 – 0.856
IRR-R-CD-1 1 1.349 – RC-Seismic-Pre81-2 0 – 0.873
IRR-R-CD-2 1 1.957 – RC-Seismic-Pre81-3 0 – 1.739
IRR-R-CD-3 0.801 2.876 2.90 RC-Seismic-Pre81-4 0 – 2.307
IRR-R-CD-4 +  0.730 4.638 3.00 RC-Seismic-Pre81-5 +  0 – 2.999
REG-F-NCD-1 1 0.918 – RC-Seismic-Post81-1 0 – 0.000
REG-F-NCD-2 0.796 2.079 2.684 RC-Seismic-Post81-2 0 – 0.411
REG-F-NCD-3 0.739 2.885 2.351 RC-Seismic-Post81-3 0 – 1.002
REG-F-NCD-4 +  0.701 3.846 2.423 RC-Seismic-Post81-4 0 – 1.616
REG-F-CD-1 1 0.000 – RC-Seismic-Post81-5 +  0 – 2.391
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Fig. 9   Degrees of belonging of irregular layout or poor-quality masonry building typologies to vulnerability classes
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Fig. 10   Degrees of belonging of regular layout and good-quality masonry building typologies to vulnerability classes
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suggesting the need and the importance of accounting for building height in the vulnerabil-
ity classification of the existing building stock.

5 � Example of application

To better clarify the steps involved in the application of the vulnerability model, let us 
consider two typologies of 3-storeys masonry buildings, both subjected to a PGA of 
0.20 g:

•	 The first typology is made of undressed stone masonry, timber floor diaphragms, with-
out suitable connections like steel ties or RC ring beams (i.e. belonging to the IRR-F-
NCD-3 typology);

•	 The second one is made of clay brick masonry, timber floors and steel tie-rods (i.e. 
REG-F-CD-3 typology).

The probability of exceeding the five damage states for a PGA equal to 0.2 g for the dif-
ferent vulnerability classes is reported in Table 5. It is simply obtained using the lognormal 
model with parameters set in Table 3.

Table  4 provides for the first typology cmas = 1 and ymas = 4.477, whereas for the sec-
ond one cmas = 0.543, ymas = 2.040 and yRC = 1.807. The resulting weights resulting from the 
application of Eq. (12) are reported in Table 6.

Fig. 11   Degrees of belonging of RC building typologies to vulnerability classes
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The weighted combination of the probabilities reported in Table 5 provides the follow-
ing probabilities of exceeding the five damage states:

•	 PDS1 = 0.83, PDS2 = 0.62, PDS3 = 0.51, PDS4 = 0.34, and PDS5 = 0.11 for IRR-F-NCD-3;
•	 PDS1 = 0.51, PDS2 = 0.25, PDS3 = 0.16, PDS4 = 0.08, and PDS5 = 0.03 for REG-F-CD-3.
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The expected distribution of the buildings belonging to the two considered building 
types among the different damage states can be immediately deduced from the probabili-
ties of exceedance. The results reported in Fig. 13 show the significant difference in vul-
nerability between these masonry building typologies subject to the same level of seismic 
shaking (PGA = 0.2 g).

6 � Conclusions

This paper presents a novel and comprehensive vulnerability model for masonry and 
RC buildings, representative of the Italian built environment, relying on a data-driven 
approach. The proposed vulnerability model is based on the definition of classes charac-
terised by fragility curves in PGA and on the relationship of belonging to the different 
vulnerability classes of structural types identified by essential attributes such as verti-
cal and horizontal structure, structural details, level of seismic design and number of 
stories.

With respect to previous studies, peak ground acceleration, extrapolated from updated 
INGV shakemaps (Michelini et  al. 2020), is employed for the seismic input definition, 
making the present model easily usable for vulnerability and risk applications. A robust 
post-earthquake damage database (Dolce et al. 2019), collected after the L’Aquila (2009) 
seismic event, is employed, allowing for suitable consideration of the completeness of the 
post-earthquake field surveys and for the negative evidence of damage in the municipalities 
less affected by the ground shaking. Attention is first devoted to data processing, involving 
seismic input characterisation, typological classification of the exposed building stock and 
definition of a damage metric based on the EMS-98 damage states. A suitable statistical 
model and fitting technique are then employed for deriving typological fragility curves and 
mean damage values, as a function of the selected intensity measure.

One of the original contributions of this work is the use of machine learning techniques 
for the objective identification of ten vulnerability classes, starting from seismic damages 

Table 5   Probability of exceeding the 5 damage states for the 10 vulnerability classes at PGA = 0.2 g

A1 B1 C1 D1 E1 F1 C2 D2 E2 F2

PDS1(0.2g) 0.881 0.805 0.672 0.526 0.306 0.158 0.737 0.575 0.365 0.186
PDS2(0.2g) 0.683 0.575 0.457 0.281 0.097 0.036 0.431 0.214 0.080 0.035
PDS3(0.2g) 0.572 0.459 0.365 0.211 0.060 0.015 0.230 0.079 0.025 0.010
PDS4(0.2g) 0.396 0.292 0.227 0.119 0.030 0.006 0.032 0.017 0.006 0.002
PDS5(0.2g) 0.127 0.098 0.082 0.037 0.010 0.001 0.002 0.002 0.000 0.002

Table 6   Weights for the combination of the fragility curves associated with the different vulnerability 
classes for the two building typologies considered in this sample application

Building Typology wA1 wB1 wC1 wD1 wE1 wF1 wC2 wD2 wE2 wF2

IRR-F-NCD-3 0.576 0.336 0.079 0.009 0.000 0.000 – – – –
REG-F-CD-3 0.006 0.045 0.129 0.188 0.136 0.039 0.100 0.198 0.130 0.029
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observed on several Italian building typologies. Soft clustering is applied to empirically-
derived mean damage values of the different building typologies, at preselected PGA 
thresholds. Damage distributions are hence obtained for each vulnerability class and then 
fitted by fragility functions. The adoption of a constant dispersion value for all damage lev-
els and vulnerability classes ensures the hierarchy among the different damage levels, given 
the vulnerability class, and among the different vulnerability classes, which appear distinct 
and separated one from the other. In this study, vulnerability classes derived from masonry 
and RC building data are distinguished to account for the different distance among damage 
levels observed in the empirically-derived typological fragility functions.

In line with the conceptual framework of the macroseismic method (Lagomarsino 
and Giovinazzi 2006), accounting for the uncertainty in the attribution of building types 
to vulnerability classes, the degrees of belonging of each building typology to multiple 
vulnerability classes are determined. To this aim, a constrained optimisation problem, 
using empirically-derived typological fragility curves as a target, is set up. For a given 
building typology, the weighted mean vulnerability class is provided, allowing to fully 
characterise the distribution of the degrees of belonging to vulnerability classes, under 
the assumption of binomial distribution. Comparison of approximating and empirically-
derived fragility functions of the considered building typologies shows the appropriate-
ness of the adopted strategy, which results in a thorough vulnerability model consist-
ently defined for both masonry and RC buildings.

Similarly to the EMS-98, a vulnerability table provides parameters to model the 
uncertain association of buildings belonging to typologies identified by selected struc-
tural features with the different seismic vulnerability classes. In this context, the avail-
ability of a robust post-earthquake database gathering both typological and damage 
information (Dolce et al. 2019) allows for improving the definition of structural types 
typical of the Italian building stock.

Comparison of the weighted mean vulnerability class of the different building typol-
ogies points out the higher vulnerability of irregular layout or poor-quality masonry 
buildings with respect to those with regular layout and good-quality materials, in line 
with observations from post-earthquake field surveys (e.g. Saatcioglu and Bruneau 
1993; Penna et  al. 2014; Sorrentino et  al. 2019). The presence of rigid horizontal 

Fig. 13   Expected damage distribution for buildings belonging to IRR-F-NCD-3 (a) and REG-F-CD-3 (b) 
structural typologies subject to PGA = 0.2 g
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structures as well as the presence of aseismic devices (e.g. appropriate wall-to-wall and 
wall-to-diaphragm connections) enhances the seismic response of masonry buildings. 
The level of seismic design has a clear beneficial effect on the seismic vulnerability of 
RC constructions, being RC buildings seismically-designed before 1981 more vulner-
able that the corresponding ones complying with updated seismic design criteria. In line 
with other studies (e.g. Rota et al. 2011), the obtained results point out the role of the 
number of storeys on the empirical seismic vulnerability of both masonry and RC build-
ings, also suggesting consideration of this parameter as a possible future improvement 
of existing macroseismic scales.

Results provided in this paper (i.e. parameters of fragility curves derived for building 
typologies and for vulnerability classes, degrees of belonging of building typologies to 
vulnerability classes and the proposed vulnerability table) can be used for varied seis-
mic vulnerability and risk applications, provided the similarity in the seismic hazard 
and exposed building stock of the area selected for application.

The availability of new damage data from post-earthquake observations will allow 
to further strengthen the vulnerability model and to verify or adapt its applicability to 
different territories and built environments. In particular, the integration of data on RC 
buildings without seismic design would allow completing the model towards the classes 
and types of greater vulnerability for which, in the current version, classes A2 and B2 
have been envisaged.
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