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Abstract
The seismic risk assessment of spatially distributed assets requires a seismic hazard that 
considers the spatial correlations of earthquake intensity measures (IMs). Several spatial 
correlation models have been developed to address this concern, but the majority of exist-
ing models are based on the hypothesis of isotropy. Recent investigations revealed that the 
assumption of isotropy is not generally valid, and the anisotropy condition should be taken 
into account when considering the spatial correlations of earthquake IMs. On the other 
hand, it is necessary to investigate the significance of the inclusion of anisotropy in seismic 
risk and resiliency assessment. The main objective of the current study is to address this 
issue using three different spatial correlation models. Two of them are based on the linear 
model of coregionalization method, which describes the spatial correlation of earthquake 
IMs from the isotropy point of view. The third model is based on the latent dimensions 
method, which can take the anisotropy into account. The results of the current study reveal 
that the ignorance of anisotropy of spatial correlations of earthquake IMs causes unrealistic 
loss estimation and leads to inaccurate resilience assessment of spatially distributed assets 
and systems. It is demonstrated specifically that the isotropic models generally overesti-
mate the infrequent loss values which is on the safe side, but underestimate the frequent 
loss values that is non-conservative.

Keywords  Spatial correlation · Anisotropy · Seismic hazard · Risk assessment · Resilience

 *	 Morteza Bastami 
	 m.bastami@iiees.ac.ir

1	 International Institute of Earthquake Engineering and Seismology (IIEES), Tehran, Iran
2	 Department of Statistics, Imam Khomeini Internation University (IKIU), Qazvin, Iran
3	 Department of Civil Engineering, Faculty of Engineering, University of Jiroft, Jiroft, Kerman, Iran

http://orcid.org/0000-0002-7133-0977
http://crossmark.crossref.org/dialog/?doi=10.1007/s10518-021-01203-z&domain=pdf


5792	 Bulletin of Earthquake Engineering (2021) 19:5791–5817

1 3

1  Introduction

Urban areas, as the most significant habitat of human communities, are composed of different 
spatially distributed assets. The urban assets include both the infrastructure systems as life-
lines of communities and assemblies of small properties such as residential buildings with 
considerable aggregated value. Both of these assets are concerned with spatial distribution, 
a central concept in risk assessment and urban planning. These assets are generally impacted 
by a variety of destructive events; the most severe of those would be earthquakes, which can 
cause significant losses. As a result, different stockholders at the city and country levels, insur-
ance companies, and international organizations are interested in assessing the seismic risk 
and resilience of spatially distributed assets.

The seismic risk assessment framework is composed of three modules of 1-seismic hazard, 
2- exposure level, and 3- earthquake vulnerability. The seismic hazard module has a signifi-
cant effect on the estimated loss values. Previous researches have shown that the spatial cor-
relations should be considered in estimating earthquake intensity measures (IMs), and failure 
to incorporate the spatial correlation of earthquake IMs would result in erroneous loss estima-
tions (Bastami 2007; Lee and Kiremidjian 2007; Park et  al. 2007; Goda and Hong 2008b; 
Weatherill et al. 2015). In this regard, different spatial correlation models have been proposed 
by different research works. A comprehensive review of the models published until 2019 
can be found in Schiappapietra and Douglas (2020) and Abbasnejadfard et  al. (2020). The 
main objective of these models is to determine a correlation range for earthquake IMs, which 
is defined as a distance beyond which the values of IMs’ random field could be considered 
uncorrelated. Most of the existing spatial correlation models are based on the hypothesis of 
isotropy, which implies that the spatial correlation range is the same in all directions.

Garakaninezhad and Bastami (2017) demonstrated that the isotropy of spatial correlations 
of earthquake IMs is not generally a valid hypothesis. Taking this finding into consideration, 
Abbasnejadfard et al. (2020) proposed a new spatial correlation model of multiple earthquake 
IMs based on the latent dimensions method. With several isotropic and anisotropic spatial cor-
relation models in hand, the question is how important anisotropy considerations are in the 
spatial correlation of earthquake IMs. The main objective of the current research work is to 
address this question through the employment of various spatial correlation models and differ-
ent scenarios of exposure models of portfolio of buildings and transportation network.

2 � Spatial correlation models of earthquake intensity measure

Ground motion models (GMM) are statistical tools that are employed to estimate earthquake 
IMs. The general form of GMMs are as:

where Yij is the amount of estimated IM at point i given earthquake event j, Yij is the median 
value of IM that is determined by ground motion prediction equation (GMPE) and �ij is the 
residual term of the model that represents the stochastic variability of IM. As demonstrated 
in equation (2), the residual term of equation (1) is comprised of the inter-event ( �j ) and 
intra-event ( �ij ) residual terms.

(1)ln(Yij) = ln(Yij) + �ij,

(2)�ij = �j + �ij.
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The inter-event residual term represents event-to-event stochastic variability of IM that 
can be considered a normal random variable with zero mean and standard deviation of 
� . On the other hand, the intra-event residual term represents the point-to-point stochastic 
variability of IM. According to Jayaram and Baker (2008) a vector of intra-event residuals 
at n spatially distributed location in the earthquake event j ( �� = (�1j, �2j,… , �nj) ) follows a 
multivariate normal distribution and the �� can be considered as a realization of a Gaussian 
random field with a mean of zero and a standard deviation of �.

Different methods can be addressed in order to estimate the values of a random field 
at spatially distributed locations (Cressie 1993); among them, the Cholesky decomposi-
tion method is one of the most used approaches in seismology and earthquake engineering 
(Jayaram 2010; Weatherill et al. 2015). By using this method, the vector of random field 
values ( �n×1 ) at n spatially distributed locations can be modeled as:

 where � =
{
�(�1),… ,�(�n)

}� is the vector of mean values of the random field at spatially 
distributed locations �1,… , �n ; � =

{
�(�1),… , �(�n)

}� is an n-dimensional vector of uncor-
related random numbers with standard normal distribution, and L is an n × n lower trian-
gular matrix that is obtained from Cholesky decomposition of covariance matrix Σ of the 
interested random field as presented in equation (4).

In order to be used in the context of the Cholesky decomposition method, the covari-
ance matrix Σ must be non-negative definite. The requirement for a non-negative definite 
covariance matrix also arises from the fact that the correlation coefficient values between 
different random variables at different locations must always be non-negative, which can 
only be achieved by a positive-semidefinite covariance matrix.

The earliest studies on the spatial correlations of intra-event residuals of earthquake IMs 
were based on the variability of correlation coefficient of intra-event residuals as a function 
of separation distances; hence various models have been proposed addressing this subject 
(Boore et al. 2003; Wang and Takada 2005; Goda and Hong 2008a; Goda and Atkinson 
2009). The principles and methods of spatial statistics, such as variogram, covariogram, 
and correlogram concepts (see Cressie (1993) for more information), have been employed 
in the subsequent studies (e.g., Jayaram and Baker (2009); Esposito and Iervolino (2011, 
2012); Du and Wang (2013), etc.) to achieve a reliable and valid covariance matrix of intra-
event residuals.

Before the study of Garakaninezhad and Bastami (2017), the random field of intra-event 
residuals is assumed to be second-ordered-stationary (Wang and Takada 2005) and iso-
tropic (Jayaram and Baker 2009). Under the assumption of stationarity, 1- the mentioned 
random field is supposed to have an equal mean value regardless of location; 2- the covari-
ance of random field values at two different locations (s1 and s2) depends only on the dis-
tance of interested locations (s1-s2). On the other hand, under the assumption of isotropy, 
the range of spatial correlations is expected to be equal in all directions. Garakaninezhad 
and Bastami (2017), by using the peak ground acceleration (PGA) and spectral accelera-
tions (SA) of record stations of several earthquake events and by employing a non-para-
metric statistical test, demonstrated that the hypothesis of isotropy is not generally valid.

Multiple IMs of a particular earthquake scenario may be required when assessing the 
seismic risk of spatially distributed assets. For instance, a portfolio of buildings generally 
consists of various typologies and heights; therefore, the seismic risk assessment needs 

(3)� = � + �� ,

(4)� = ��T .
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SAs of different periods if the utilized fragility or vulnerability curves are based on SAs. In 
such cases, the spatial cross-correlations of IMs should also be considered, in addition to 
their marginal spatial correlations.

Jayaram and Baker (2008) demonstrated that the set of spatially distributed residuals 
of SAs at multiple periods could be represented by a multivariate Gaussian distribution. 
According to Cressie (1993), the cross-covariance function for the second-ordered sta-
tionary multivariate (k-variate) random field of

can be defined as:

where Cov[.] and E[.] represent covariance and expectation functions, respectively; 
s represents the location, and h is the lag vector. By utilizing equation (6), the cross-
correlation function could be obtained as presented in equation (7).

The covariance C(h) and correlation R(h) matrices are k × k matrices (for a k-variate 
random field) that are composed of the C��(�) and ���(�) for different pairs of compo-
nents α and β. The diagonal elements of these matrixes represent the marginal covari-
ance and correlation functions, and off-diagonal elements represent cross-covariance 
and cross-correlation functions for different pairs of components.

The covariance matrix of an event e for n spatially distributed sites ( �e ) can then be 
generated using the C(h) matrix considering different h values obtained from different 
pairs of locations, as shown in equation (8).

The correlated vector of the k-variate random variable at n spatially distributed sites 
( �� =

{
��(�1)

T, ..., ��(�n)
T
}T

, �� =
{
��
1
, ..., ��

k

}T ) can be simulated by knowing the covari-
ance matrix �e and utilizing equations (3) and (4).

As mentioned in the previous paragraphs, the covariance matrix �e must be non-neg-
ative definite. Generally, generating a non-negative definite covariance matrix �e for a 
multivariate random field is a challenging problem in spatial statistics and its applica-
tions. Several researchers have proposed different cross-correlation models in order to 
generate a valid non-negative definite covariance matrix of multiple intra-event residu-
als of earthquake events. One of the common approaches in this respect is the linear 
model of coregionalization (LMC) method (Loth and Baker 2013; Wang and Du 2013; 
Garakaninezhad and Bastami 2019). This method employs a linear combination of r 
univariate random fields to define a multivariate random field as presented in equation 
(9).

(5)
{
��(�) =

[
��
1
(�), ..., ��

k
(�)

]�
∶ � ∈ ℝ

2
}
,

(6)
C��(�) = Cov(��

�
(�), ��

�
(� + �))

= E
[(
��
�
(�) − E

[
��
�

])(
��
�
(� + �) − E

[
��
�

])]
, �, � = 1, ..., k,

(7)���(�) =
C��(�){

C��(�) × C��(�)
}1∕2

.

(8)�e =

⎡
⎢⎢⎣

�(��1,�1 ) ⋯ �(��1,�n )

⋮ ⋱ ⋮

�(��n,�1 ) ⋯ �(��n,�n )

⎤
⎥⎥⎦
nk×nk
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In equation (9), �(h) could be semivariogram, covariance or correlation matrix of 
the multivariate random field, �l(h) is the lth univariate semivariogram, covariance or 
correlation function, accordingly, and �l is the coregionalization matrix related to lth 
model.

Loth and Baker (2013) utilized the LMC method to define a predictive model for covari-
ance matrix function of different SAs from 0.01 to 1.0 s. In the mentioned study, the pro-
posed covariance matrix function is in the form of:

where Kh=0 is the indicator function that equals to 1 at h = 0 and equals to 0 at h ≠ 0 . Also, 
coregionalization matrices B1, B2, and B3 are obtained based on the average values of fitted 
coregionalization matrices of eight earthquake events. As can be seen in equation (10), the 
covariance matrix function of the multivariate random field proposed by Loth and Baker 
(2013) is mainly composed of two univariate covariance functions with correlation ranges 
of 20 and 70 km. Moreover, the term �3Kh=0 is employed to take account of the nugget 
effect.

The spatial cross-correlation of intra-event residuals of earthquake IMs is also investi-
gated by Wang and Du (2013). Two sets of IMs are considered in the mentioned study. The 
first set is composed of PGA, PGV and IA, and the second set consists of SAs at six periods 
ranging from 0.01 to 5 s. Wang and Du (2013) utilized the LMC method, and the correla-
tion matrix function is proposed as:

The models of Wang and Du (2013) and Loth and Baker (2013) are different in several 
aspects. 1-The correlation range of the short-range basic function of the LMC method is 
considered 10 km in the model of Wang and Du (2013), which is less than the 20 km con-
sidered in Loth and Baker (2013). 2- Wang and Du (2013) concluded that the nugget effect 
is not significant in the correlation function of the intra-event residuals of earthquake IMs, 
and consequently, the nugget effect is not included in the proposed model, but the model of 
Loth and Baker (2013) consists of the nugget effect term. 3- The main difference between 
the mentioned models is that the model of Wang and Du (2013) considers the effects of 
regional site conditions when defining the coregionalization matrices. As a result, the 
coregionalization matrices P1 and P2 are defined as functions of correlation range of VS30 
( RVS30

 ). This is in contrast to the model of Loth and Baker (2013), which ignores local soil 
type conditions and suggests the same covariance function matrices for different sites with 
different correlation ranges.

The previously mentioned multivariate covariance (correlation) models are generated 
based on the isotropy assumption of spatial correlations of earthquake IMs. Abbasnejad-
fard et al. (2020) proposed a predictive model based on the latent dimensions (LD) method 
for defining the covariance matrix of the multivariate random field of intra-event residuals 
of multiple earthquake IMs accounting for spatial anisotropy.

The study of Abbasnejadfard et al. (2020) focused on two sets of earthquake IMs: the 
first set includes PGA, PGV, and PGD, and the second set comprises SAs at multiple 

(9)�(h) =

r∑
l=1

�l�l(h)

(10)�(h) = �1 exp
(
−3h

20

)
+ �2 exp

(
−3h

70

)
+ �3Kh=0

(11)�(h) = �1 exp
(
−3h

10

)
+ �2 exp

(
−3h

70

)
.
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periods. Using the LD method, the multivariate random field, which is originally defined 
in a 2-dimensional space, is considered as a univariate random field with an added latent 
dimension (3-dimensional space). In this regard, the cross-covariance function of two com-
ponents of multivariate random field α and β ( C��(�1, �2) ∶ �1, �2 ∈ ℝ

2 ) is considered as 
C
(
(�1, ��), (�2, ��)

)
 , which is the covariance function of a univariate random field that is 

defined in ℝ2+1 space. Using this conversion, the existing valid covariance functions that 
are defined for anisotropic univariate random fields could be implemented to generate a 
non-negative definite covariance matrix �e . More details about the LD method can be 
found in Apanasovich and Genton (2010). Abbasnejadfard et al. (2020) utilized the covari-
ance function of equation (12) introduced by Apanasovich and Genton (2010), which is 
capable of incorporating the anisotropy.

In equation (12), α and β represent the intra-event residuals of different earthquake 
IMs, � = �i − �j is the distance vector of points i and j, �T =

{
�1,�2

}T is the anisot-
ropy direction vector, ��� is the variance parameter,� ≥ 0 is the anisotropy ratio param-
eter, and a is the parameter of anisotropy range. The anisotropy range represents the 
maximum correlation range of an anisotropic model in different directions, while the 
anisotropy ratio represents the ratio of the highest to lowest correlation range in dif-
ferent directions. Instead of latent dimensions (�� , ��) , the latent distance parameter 
��� = �� − �� is used in the equation (12); therefore, the shorter latent distance parame-
ter ��� represents greater cross-correlation between components � and � , and vice versa. 
By replacing β with α, the auto-covariance function can be developed as per equation 
(13), considering that the latent distance of each variable with itself equals to zero.

According to Abbasnejadfard et al. (2020), the anisotropy properties of the LD model 
presented in equation (12) mainly is a function of anisotropy properties of the local soil 
condition of the investigated site. In this regard, it is demonstrated that the anisotropy 
direction of GMF of earthquake IMs has a strong agreement with the anisotropy direc-
tion of local soil condition and the anisotropy ratio and anisotropy range of the earth-
quake IMs are defined as a function of those parameters of the local soil condition.

However, as noted in Abbasnejadfard et al. (2020), the anisotropy properties of earth-
quake IMs’ GMF may be influenced by some other parameters, including the physi-
cal parameters of the earthquake source or propagation path. For instance, Garakanin-
ezhad and Bastami (2017), by using the directional semivariogram, demonstrated that in 
some cases of recorded earthquake IMs, the physical parameters of earthquake source 
like strike direction have good agreement with the anisotropy direction of the univari-
ate GMF earthquake IMs. As another instance, Schiappapietra and Smerzini (2021), by 
using “a set of broadband physics-based ground motion simulations”, demonstrated that 
the slip direction and geometry of causative fault affect the anisotropy of spatial correla-
tions of earthquake IMs.

(12)

C��(�) = C(�, ��� − ��T�) =
���

������ − ��T�
��� + 1

exp

⎧⎪⎨⎪⎩
−

a‖�‖������� − ��T�
��� + 1

�1∕2

⎫⎪⎬⎪⎭

(13)C��(�) =
���

����T��� + 1
exp

�
−

a‖�‖�����T��� + 1
�1∕2

�
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Despite the mentioned evidence, the effect of source and path on anisotropy proper-
ties of GMF of IMs are not extensively included in the existing predictive models of 
intra-event residuals and the few studies and models that have addressed this subject 
are considered the univariate random field of IMs. According to Abbasnejadfard et al. 
(2020), introducing any new parameter in spatial correlation models necessitates statis-
tical inference; therefore, adequate data should be supplied. This is despite the fact that 
there is now insufficient real-world data from earthquake events to include the effects of 
source and path. For this reason, using the earthquake events simulation method can be 
considered as a reliable treatment of this issue. In this regard, existing models (particu-
larly multivariate models) are expected to be upgraded to include the source and path 
effects on anisotropic properties of earthquake IMs, or new models to be developed to 
consider the effects of source, path, and site simultaneously. According to the discus-
sion mentioned above, a general framework is presented in Fig. 1 on how an anisotropic 
model could be implemented in a Monte Carlo based probabilistic seismic risk assess-
ment process considering the physical characteristics of regional site condition and mul-
tiple source and path scenarios.

3 � A general perspective of the investigation method

As mentioned previously, the main objective of the current study is to investigate how tak-
ing into account anisotropy in spatial correlations of earthquake IMs affects the outcomes 
of seismic risk and resilience assessment of spatially distributed assets. To achieve this 
objective, the spatial correlation model proposed by Abbasnejadfard et al. (2020), which 
is based on the latent dimensions (LD) method, are utilized besides the models proposed 
by Loth and Baker (2013) and Wang and Du (2013), that are based on the linear model of 
coregionalization (LMC) method.

The current study takes into account two types of spatially distributed assets. The first 
consists of various scenarios of a portfolio of buildings distributed across an urban area, 
and the second type of considered assets is a highway-bridge transportation network. The 
main objective of considering the mentioned inventory types is to study the effect of vari-
ous spatial correlation models of earthquake IMs on the outcome of seismic risk assess-
ment. Furthermore, alternative building distribution scenarios in terms of building char-
acteristics are studied in order to investigate the effect of the presence of a trend in the 
spatial distribution of building typologies on the results of seismic risk assessment. The 
second type of asset is used as a representative example of spatially distributed infrastruc-
ture systems that, besides having a spatial distribution feature, forms a linked network of 
components that requires a connectivity analysis. More details about the specifications of 
the mentioned assets are discussed in the following sections.

3.1 � Description of the study area and earthquake source

Figure 2 provides a schematic view of the Study Area, City Area, and the seismic source. 
The City Area borders represent the spatial bounds of the assumed distribution of residen-
tial buildings in the first case study. The wider border, dubbed the Study Area encompasses 
a geographic limit where the assumed transportation network is located.
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Fig. 1   A general framework for an event-based seismic risk assessment considering the physical character-
istics of source, path and site and taking into account the anisotropy of spatial correlations of earthquake 
IMs
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The seismic source in the current investigation is a rupture surface with the geometric 
parameters shown in Table 1. Figure 2 depicts the fault line as the projection of the shal-
lowest part of the seismic source on the ground surface.

The activity of the seismic source is characterized using the bounded Gutenberg–Rich-
ter recurrence law with mmin = 5.5, mmax = 8, λm-min = 0.1, b = 0.52. These parameters are 
delineated from the seismicity of Tehran region as one of the earthquake prone areas 
around the globe (Tavakoli and Ghafory-Ashtiany 1999; Bastami and Kowsari 2014). The 
event-based stochastic seismic hazard simulation method based on the Monte-Carlo sim-
ulation proposed by Crowley and Bommer (2006) is employed to generate the synthetic 
catalog of the assumed seismic source. More than 106 earthquake events have been simu-
lated, and their consequent ground motion field (GMF) of SAs at three different periods 
of 0.5 s, 1.0 s, and 2.0 s are obtained using Campbell and Bozorgnia (2014) GMPE. The 
current study employs four different spatial correlation and cross-correlations models of 
earthquake IMs as:

1.	 Uncorrelated model
2.	 The spatial correlation model proposed by Abbasnejadfard et al. (2020) based on the 

latent dimensions method (LD)
3.	 The spatial correlation model proposed by Loth and Baker (2013) based on the linear 

model of coregionalization method (LMC-LB)
4.	 The spatial correlation model proposed by Wang and Du (2013) based on the linear 

model of coregionalization method (LMC-WD)

Fig. 2   Schematic view of the 
relative location of the seismic 
source, Study Area, and City 
Area

Table 1   Geometric parameters of 
the assumed seismic source

Parameter name Parameter value Unite

Strike Azimuth 90 Degree
Dip Angle 60 Degree
Length 40 km
Width 10 km
Shallowest Depth (X,Y,Z) = (− 5,3,3) km
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All of the correlation models (items no. 2–4) can consider the cross-correlations of mul-
tiple SAs for different periods. Moreover, the models of Abbasnejadfard et al. (2020) and 
Wang and Du (2013) are capable of considering the regional site conditions in terms of 
spatial correlations of VS30 values. Also, among the utilized spatial correlation methods, 
only the LD method can include the anisotropy of spatial correlations in its estimations of 
GMF.

3.2 � Regional site condition scenarios and approaches for implementation 
of different spatial correlation models

Some of the previous studies demonstrated the significance of regional site conditions on 
the spatial correlations of earthquake IMs (see Wang and Du (2013); Abbasnejadfard et al. 
(2020) for more detail). In this regard, three different random fields of soil type (S0, S1, 
and S2) are generated to take into account the effects of regional site conditions. The simu-
lation of soil type random fields is based on estimating the average shear wave velocity of 
the 30-m depth portfolio of soil (Vs30) in spatially distributed locations.

The random field of Vs30 value for all simulated scenarios of soil types has an average 
value of 500 m/s and a standard deviation of 120 m/s. The main difference between the soil 
type scenarios is their spatial correlation ranges, so that scenario S1 has the widest spatial 
correlation range among other scenarios, S2 has the smallest range than the other scenar-
ios, and the correlation range of scenario S0 is between the correlation range of scenarios 
S1 and S2. According to Abbasnejadfard et al. (2020), equation (13) is utilized to gener-
ate the covariance matrix of random fields of soil type scenarios considering anisotropy. 
Table 2 presents the anisotropy parameters of different soil type scenarios, and the variance 
parameter set to unity. The 2D visualization of the different soil type scenarios is present in 
Fig. 3. The random field of the uncorrelated soil type is also demonstrated in Fig. 3 to be 
compared with other scenarios. It should be clarified that the uncorrelated soil type is not 
used in the current study. By knowing the spatial distribution, the correlation range of Vs30 
value for all scenarios is also calculated without considering the anisotropy. This value is 
utilized in the model of LMC-WD.

Each of the spatial correlation models described in the previous section is combined 
with three introduced soil type scenarios to generate 12 scenarios of GMFs, as presented 
in Table 3. These GMF scenarios are used in seismic risk assessment of the case studies of 
the spatially distributed buildings and assumed transportation network. A description of 
correlation models utilized in the current research work has been provided in Sect. 2. As 
discussed in Sect. 2, the elements of coregionalization matrices of the LMC-LB model are 
independent of any other parameters, while the coregionalization matrices of the LMC-WD 
model are functions of correlation range of VS30 values ( RVS30

 ). For this reason, the spatial 
correlation range of different soil type scenarios are utilized in the GMF calculations based 

Table 2   Anisotropy parameters 
of different soil type scenarios

No Scenario ID γ a (km−1) Ani-
sotropy 
direction

1 S0 0.2 0.075 N-S
2 S1 0.2 0.05 N-S
3 S2 0.2 0.1 N-S
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on the LMC-WD models. The regional site condition is also a significant factor in the LD 
model’s GMF estimates. According to the equation (12) different parameters including ani-
sotropy direction ( �T =

{
�1,�2

}T ), anisotropy ratio ( � ), anisotropy range (a), and latent 
distance parameter ( ��� ) must be identified to use the LD model in developing covariance 
functions and calculating multivariate GMF values in spatially distributed locations. Based 
on the procedure introduced by Abbasnejadfard et al. (2020), the anisotropy direction of 
the earthquake IMs’ GMF is aligned with the anisotropy direction of regional soil condi-
tion. In the current study the anisotropy direction of all soil type scenarios is considered in 
N-S direction. Moreover, according to Abbasnejadfard et  al. (2020), the anisotropy ratio 
and anisotropy range of earthquake IMs can be obtained using:

and

(14)� = C��Vs30

Fig. 3   2D visualization of different soil type scenarios in the study area with different correlation ranges: a 
uncorrelated, b scenario S0, c scenario S1, d scenario S2

Table 3   Designating various 
hazard analysis scenarios based 
on soil type scenarios and spatial 
correlation model

Correlation model Soil type scenario

S1 S0 S2

Uncorrelated S1H0 S0H0 S2H0
LD S1H1 S0H1 S2H1
LMC-LB S1H2 S0H2 S2H2
LMC-WD S1H3 S0H3 S2H3
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 respectively, where �Vs30
 and aVs30

 are the anisotropy ratio and anisotropy range of local soil 
conditions (that can be obtained from Table 2) and coefficients C� and Ca are defined by 
Abbasnejadfard et al. (2020) for different pairs of IMs. Also, the latent distance parameters 
defined by Abbasnejadfard et al. (2020) are utilized in the current study for different pairs 
of IMs. In this regard, the ��� is considered as zero for marginal-covariance models and the 
values proposed by Abbasnejadfard et al. (2020) are used for cross-covariance models.

The marginal-covariance and cross-covariance functions for different IMs are obtained 
using the mentioned parameters and equation (12). Then, the event covariance function 
( �e ) is calculated using equation (8). Further steps in calculating GMF values are described 
in Sect. 2.

(15)a = C−1
a
a2

Vs30

Table 4   Description of exposure model scenarios

Scenario ID Description

E3 In this scenario, the construction area of each grid is a random variable with mean and 
standard deviation values of 30,000 and 3000 m2/4 ha, respectively. Both of the building 
typologies (STL01 and CON01) are used. STL01 to CON01 built-up area ratio (BARS/C) 
in each grid has a trend in North–South running direction such that the BARS/C equals 0.2 
in the South and equals 0.8 in the North. The schematic visualization of the built-up area 
of STL01 building typology per grid is presented in Fig. 4a. The built-up area of CON01 
building typology in each grid equals (1- BARS/C) × ( built-up area of the grid)

E4 This scenario is similar to E3, except that the BARS/C trend is in the East–West direction, 
such that the BARS/C equals 0.2 in the East and equals 0.8 in the West part of the City 
Area. (Fig. 4b)

E7 Each grid in Scenario E7 has a built-up area of 30,000 m2/4 ha. Only STL01 building 
typology is used in this scenario (uniform built up area using STL01 typology)

Fig. 4   2D visualization of the defined exposure models, the built-up area of STL01 building per grid are 
demonstrated as m2/4 ha, a scenario E3, b scenario E4
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4 � Seismic risk assessment of the portfolio of buildings

4.1 � Description of exposure and vulnerability models

In addition to the hazard module, the introduction of exposure and vulnerability modules 
is also required to be used in the seismic risk assessment process. In order to achieve the 
goals outlined in Sect. 3, different scenarios of the building exposure models are defined 
in the current section. These scenarios are the portfolio of residential buildings that are 
distributed across a synthetic geographic area known as the City Area (see Figure 1). The 
exposure scenarios are generated by using two different building typologies (STL01 and 
CON01). In order to define exposure models, the City Area, which is a 15  km × 10  km 
region, is divided into 200 m × 200 m grids (4 ha subdivisions). The exposure models are 
then created by changing the built-up area of various building typologies in each grid. 
More information on the various exposure models is provided in Table 4 .

The physical characteristics of the utilized building typologies are described in Table 5. 
Moreover, the vulnerability curves and characteristics of vulnerability models of specified 
building typologies are presented in Fig. 5 and Table 6. The defined building typologies 
and their respective characteristics are selected from the study of Sadeghi et  al. (2015), 
which established the seismic vulnerability curves of typical Iranian building typologies. 
The two specified building typologies are selected as examples of the common building 
typologies in an urban area, but it should be noted that the general findings of the current 

Table 5   General characteristics of the utilized building typologies (Sadeghi et al. 2015)

†  More information on construction quality is available in (Sadeghi et al. 2015)

Building 
typology 
ID

Material type Lateral load resisting 
system

Story range Fundumental 
natural peiod

Construction quality†

STL01 Steel Steel bracing 4–7 0.5 s Low code
CON01 Concrete Concrete shear wall  ≥ 8 1.0 s High Code

Fig. 5   Vulnerability curves of 
utilized building typologies
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Table 6   Vulnerability model 
parameters of the utilized 
building typologies (Sadeghi 
et al. 2015)

Building 
typology ID

Earthquake IM Median SA (g) Log-standard 
deviation (β)

STL01 SA(T = 0.5 s) 1.40 0.92
CON01 SA(T = 1.0 s) 2.18 0.80
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study do not depend on the specifications of the selected typologies, and the same results 
could be achieved by altering the typologies.

4.2 � Investigating the effect of considering different spatial correlation models 
of earthquake IMs on the results of seismic risk assessment of the portfolio 
of buildings

To investigate the effects of different spatial correlation models of earthquake IMs on seis-
mic risk assessment of spatially distributed buildings, the exposure scenario E7 is used in 
conjunction with the GMFs generated based on the seismic hazard models of Table 3. For 
this reason, the Stochastic Event-Based Seismic Risk Calculator of OpenQuake software 
(Silva et al. 2014) is employed.

The aggregated loss curves of exposure model E7 under the assumptions of soil type 
scenario S0 are obtained as demonstrated in Fig. 6. In this figure, H0 represents the spa-
tially uncorrelated hazard model, while H1, H2, and H3 stand for the GMFs derived from 
the LD, LMC-LB and LMC-WD spatial correlation models, respectively. The loss curves 
are normalized to the total asset value. Moreover, Fig. 6 depicts the ratio of loss values 
obtained from various hazard models to the loss values of the LD method for different lev-
els of the annual rate of exceedance (ARoE) to provide a better comparative tool.

Although Fig. 6 shows differences in the loss values calculated by different spatial cor-
relation models, the question is whether the loss ratio of different approaches is always 
equal to what is shown in Fig. 6b and if not then, what factors are primarily responsible for 
the difference.

To address this question, the soil type scenario is changed, and the exposure scenario E7 
is presumed to be located in the soil type environments S1 and S2. As shown in Tables (1, 
2) and discussed in Sect.3.2, the difference between three regional site condition scenarios 
S0, S1, and S2 is in their correlation range. Given that the LD and LMC-WD models are 
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Fig. 6   a Normalized aggregated loss curve of exposure scenario E7 considering soil type S0 derived from 
different seismic hazard models, b The ratio of loss curves obtained from different hazard models to the 
loss curve obtained from the LD method
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functions of the spatial correlation characteristics of soil type (while the Uncorrelated and 
LMC-LB models are not influenced by the soil type conditions), the ratio of loss values 
obtained by different hazard models is expected to differ as soil characteristics changes. In 
this regard, by considering the soil type scenarios S1 and S2, the loss curves of Figs. 7,  8 
are obtained.
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Fig. 7   a Normalized aggregated loss curve of exposure scenario E7 considering soil type S1 derived from 
different seismic hazard models, b The ratio of loss curves obtained from different hazard models to the 
loss curve obtained from the LD method
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Fig. 8   a Normalized aggregated loss curve of exposure scenario E7 considering soil type S2 derived from 
different seismic hazard models, b The ratio of loss curves obtained from different hazard models to the 
loss curve obtained from the LD method
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Figures 6, 7 and 8 show that the results of the Uncorrelated method can be consid-
ered as the lower bound loss values for infrequent events. Moreover, it can be con-
cluded that the more spatially correlated the soil type, the more difference there will 
be between the results of the LD and Uncorrelated models. In such cases, however, the 
loss values obtained using the LD model would be closer to those obtained using the 
LMC-LB model. On the other hand, the more uncorrelated the soil type, the closer the 
loss values of the LD model to the loss values of the Uncorrelated model. Although 
by reducing the spatial correlation range of the soil type, a considerable reduction is 
observed in the results of the LMC-WD model, no significant change can be detected 
in the difference between the results of the Uncorrelated model and the result of the 
LMC-LB model. It is worth noting that the LMC-WD model consistently offers higher 
loss values than the LD model for the loss values with high return periods.

4.3 � Investigating the effect of the presence of trend in the spatial distribution 
of building typologies on the results of seismic risk assessment

One of the potential situations in an urban area is the existence of trends in the type of 
buildings. The effect of trends in building typologies on the outcome of the seismic risk 
assessment of a portfolio of buildings in an urban area is discussed in the current sec-
tion. The findings of the current section could be utilized in disaster risk reduction actions 
through the identification of intervention actions in an existing urban area and risk-sensi-
tive land use planning. For this purpose, the exposure models E3 and E4 are used in combi-
nation with seismic hazard scenarios related to soil type S0. With 50 percent of STL01 and 
50 percent of CON01 building typologies, both E3 and E4 models have equal asset values. 
The main difference between these models is that in scenario E3, the trend in the density of 
building typologies is in the N-S direction, while in scenario E4, it is in the E-W direction.
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Fig. 9   a Normalized aggregated loss curve of exposure scenario E3 considering soil type S0 derived from 
different seismic hazard models, b The ratio of loss curves obtained from different hazard models to the 
loss curve obtained from the LD method
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Figures 9, 10 depict the normalized loss curves of exposure models E3 and E4, respec-
tively. At first, it should be noted that the total aggregated loss ratio of the E3 and E4 expo-
sure models is less than the total aggregated loss ratio of the E7 exposure model, which is 
investigated in the previous section. The reduction in the loss values (in E3 and E4 com-
pared to the E7) is due to the fact that the CON01 building typology, which its vulnerabil-
ity is less than the STL01 building typology, accounts for half of the building stock in the 
E3 and E4 models, while the STL01 building typology accounts for all of the buildings in 
the E7 model.

Also, it is worth mentioning that the anisotropy direction of the regional site condition 
of Scenario S0 is aligned with the exposure model trend direction in the E3 exposure sce-
nario while it is perpendicular to the exposure model trend direction in the E4 scenario.

If we consider the loss values of the LD method as the benchmark, it could be 
inferred from Figs. 9b, 10b that when the anisotropy direction of the regional site condi-
tion is aligned with the exposure model trend direction, the deviation of results obtained 
from other spatial correlation models (i.e., LMC-LB, LMC-WD models), that do not 
account for the anisotropy of spatial correlations of earthquake IMs, from the bench-
mark model (i.e., LD model) will be more than the case which the anisotropy direction 
of soil type and trend direction of exposure model are perpendicular to each other.

For instance, in the specific cases of exposure scenarios E3 and E4 in the current 
study, the loss ratio of LMC-WD (i.e., the ratio of estimated loss value obtained from 
the LMC-WD model to that estimated from the LD model) for 10–4 ARoE is about 
1.44 in the E3 scenario, while it drops to 1.30 in E4 scenario. Also, the loss ratio of 
the LMC-LB model is about 1.16 for 10–4 ARoE in E3 exposure scenario, while it is 
approximately 1.12 in E4 exposure scenario.

The turning point of loss curve ratio charts is another parameter that significantly 
changed by altering the exposure scenario from E3 to E4. The turning point is defined as 
the ARoE at which a change occurs in the direction of the deviations of the loss values 
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Fig. 10   a Normalized aggregated loss curve of exposure scenario E4 considering soil type S0 derived from 
different seismic hazard models, b The ratio of loss curves obtained from different hazard models to the 
loss curve obtained from the LD method
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of isotropic models from the results of the benchmark model (LD model). For instance, 
the turning point of the exposure model E3 located in the S0 soil type scenario is about 
4 × 10–4 in terms of ARoE (Fig. 9b), while the turning point of the exposure model E4 
is about 1.2 × 10–4 (Fig. 10b). As can be seen from Figs. 9b and 10b, the turning point 
of loss curve ratio charts for the case in which the anisotropy direction is aligned with 
the exposure model trend direction is significantly lower than the turning point of loss 
curve ratio charts for the case in which the anisotropy direction is perpendicular to the 
exposure model trend direction.

The results of the current section emphasize the importance of identifying and tak-
ing into account the anisotropy direction of earthquake IMs when assessing the seismic 
risk of a trended exposure model or when renovating or extending an existing portfolio 
of buildings is of interest. This is especially important when the anisotropy direction of 
the regional site condition coincides with the trend direction of the exposure model. As 
a result, a spatial correlation model capable of incorporating the anisotropy of spatial 
correlations of earthquake IM should be employed.

Fig. 11   a Spatial extend of the considered transportation network, b Location of the bridges in the assumed 
study area

Table 7   Characteristics of 
employed bridge typologies

† Natural Logarithm
† Values are derived from HAZAUS Technical Manual (FEMA 2015)

Bridge Type Fundamen-
tal Period 
(s)

LN† of the median value of SAs of differ-
ent damage states†

Slight Moderate Extensive Complete

BT1 0.5 − 0.29 0.18 0.5 0.93
BT2 1.0 − 0.69 − 0.22 0.1 0.53
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5 � Seismic risk and resilience assessment of the transportation network

5.1 � Description of exposure and vulnerability models

The main objective of this section is to investigate the effect of utilizing different spa-
tial correlation models of earthquake IMs on the result of seismic risk and resilience 
assessment of an infrastructure network. For this reason, the transportation network 
of Fig.  11a comprised of 26 bridges and their linking highways is considered. The 
depicted network is a part of the urban transportation network of the Tehran metro-
politan area. Figure 11b shows the location of the considered network in the study area 
that is defined in Fig.  2. Moreover, the four spatial correlation models introduced in 
Sect.3.1   in conjugate with three regional site condition scenarios of S0, S1, and S2 
defined in Sect. 3.2 are employed.

The bridges are classified into two types, and the vulnerability characteristics 
of each are displayed in Table  7. It should be noted that, while the type of bridges 
assumed in this example may differ from what actually exists in the mentioned trans-
portation network, the main findings of the current research work are not dependent on 
the assumed typologies. The Slight, Moderate, Extensive and Complete damage states, 
which are mentioned in Table 7, indicate the mean damage ratio of 2%, 10%, 50% and 
100%, respectively. Figure 11a presents the bridge types assigned to different bridge 
IDs in the assumed transportation network.

5.2 � Investigating the seismic risk assessment results considering different spatial 
correlation models of earthquake IMs

The loss assessment of the introduced transportation network is conducted based on direct 
physical damage of bridge elements. In this regard, for the physical damages less than 50%, 
the direct economic loss value is assumed to be equal to the product of the physical dam-
age ratio and total asset value, and for the physical damages more than 50%, the direct 
economic loss is assumed to be equal to 100% of asset value. The physical damage to links 
between bridges is ignored in this study.

Figure  12 presents the direct loss curves obtained based on the four different spatial 
correlation models considering the S0 soil type scenario. In this figure, the loss ratio is nor-
malized to the total asset value. According to this figure, the LMC-WD model offers more 

Fig. 12   Loss curves of transpor-
tation network considering soil 
type S0
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loss ratios than those calculated by other models for rare events. Also, the loss ratio with 
high return periods calculated by the Uncorrelated model is less than the loss ratio calcu-
lated by other models. On the other hand, the LD model offers loss ratios between those 
proposed by the LMC-LB and Uncorrelated models.

The assumed transportation network is also evaluated under considerations of soil type 
scenarios S1 and S2 to examine the effects of various regional site conditions on the results 
of seismic loss assessment of infrastructure systems considering anisotropy of spatial cor-
relation of earthquake IMs.

Figures  13 and 14 depict the loss curve of the transportation network, taking into 
account the S1 and S2 regional site condition scenarios, respectively. It should be noted 
in this section that by changing the soil type scenarios, considerable changes in the abso-
lute Vs30 value of the bridge locations may occur, resulting in a substantial change in the 
amount of earthquake IMs and, consequently, a considerable change in the amount of the 
loss values. For this reason, we do not compare the absolute loss ratios obtained from dif-
ferent soil type scenarios, but in this section, we are interested in relative loss ratios from 
different spatial correlation models in a single soil type model.

By comparing the results presented in Figs. 12, 13 and 14, it can be inferred that the 
infrequent loss values obtained from the LD model are always less than those obtained 
from the LMC-WD model. This is due to the fact that the LMC-WD model does not incor-
porate the anisotropy of spatial correlations and considers the identical correlation ranges 

Fig. 13   Loss curves of transpor-
tation network considering soil 
type S1
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Fig. 14   Loss curves of transpor-
tation network considering soil 
type S2
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in different directions, while the correlation ranges considered by the LD model are differ-
ent for various directions. As a result, the correlation range in specific directions is smaller 
than that considered by the isotropic model, while it is greater in other directions. This 
difference causes an overall reduction in the calculated loss values for events with a low 
frequency of occurrence.

Findings in Figs. 12, 13 and 14 also indicate that the LD method always offers more loss 
values than the Uncorrelated method (for infrequent events) and that the smaller the cor-
relation range of soil type, the closer result of the LD method to the Uncorrelated method. 
On the other hand, the wider the correlation range of soil type, the closer the LD method 
result to the LMC-LB method results.

5.3 � Investigating the seismic resilience assessment results considering different 
spatial correlation models of earthquake IMs

The current section investigates the effects of different spatial correlations models of seis-
mic hazard IMs on the seismic resilience assessment of the infrastructure systems. For this 
purpose, the seismic resilience of the transportation network, presented in the previous 
section, is calculated using the approach introduced by Stergiou and Kiremidjian (2010). 
According to this approach, the transportation network’s seismic resilience is quantified 
by measuring its after-event performance relative to its original performance (performance 
before the occurrence of the destructive event). The performance of the network is quanti-
fied based on the performance of its link elements. To measure the original performance of 
the network, the average daily traffic (ADT) of the link elements is assumed to be 65′000 
vehicles per day (veh/d), and the average traffic flow speed (TF) is assumed to be 40 km/h. 
Considering the mentioned values for ADT and TF, the normal daily traffic time (NDTT) of 
the entire network can be calculated as:

where Li is the length of link i and ADTi and TFi are average daily traffic and average traffic 
flow speed of link i, respectively. As demonstrated in Eq. (17), the damaged performance 
of each link is considered the worst case of damages of two bridges connected by the inter-
ested link.

In Eq. (17), VulBs and VulBe are the vulnerability ratios of bridges at two ends of the link 
and VulL indicates the vulnerability ratio of the interested link element. In this regard, the 

(16)NDTT =
∑

all links

ADTi × TFi × Li,

(17)VulL = max
{
VulBs,VulBe

}
.

Table 8   Repair/Reconstruction 
time of bridge components

Vulnerability ratio Repair/Recon-
struction time 
(day)

 ≤ 0.01 0
0.01 ≤  < 0.2 4
0.2 ≤  < 0.5 75
0.5 <  250
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travel time in each link is increased according to its vulnerability ratio. The performance of 
the network in its disrupted state can be calculated in terms of the increased travel time as 
presented in Eq. (18).

In Eq. (18), DDTT represents the disrupted daily traffic time, and other variables are 
defined previously. The current study assumes that the network’s traffic demand is constant 
before and after the earthquake event, and investigating the variable traffic demand is out of 
the scope of the study. Based on calculated NDTT and DDTT, the dimensionless function-
ality loss of the entire network can be determined as:

According to Bruneau et al. (2003), the resilience of a system is related to its function-
ality and recovery time. The current study uses the repair/reconstruction times of bridge 
components as a function of their vulnerability ratio, as presented in Table 8, to account 
for the transportation network’s recovery (restoration) time in the calculations of system 
resilience.

In order to quantify the resilience of the transportation network, a time-history analysis 
approach based on the network functionality and restoration progress is conducted. The 
following steps present the employed approach:

1.	 A synthetic catalog with appropriate length is generated using the seismicity character-
istics of the study area.

2.	 The GMF of scenario event i from the previously generated synthetic catalog is calcu-
lated. (To achieve the specific objectives of the current study, this step is carried out 
using four different spatial correlation models of 1-Uncorrelated, 2-LD, 3-LMC-WD, 
4-LMC-LB and four resultant GMFs are obtained for each scenario event. Then, the 
following steps are conducted for each GMF separately.)

3.	 The vulnerability ratio of the bridge elements is calculated.
4.	 The functionality loss (FL) of the system and its functionality level at the first step of 

analysis (F0 = 1-FL) are calculated using Eq. (16) through Eq. (19).
5.	 The repair/reconstruction rate of each bridge is calculated based on its vulnerability 

ratio and repair/reconstruction time presented in Table 8.
6.	 Time-history analysis of network recovery is conducted. In this regard:
6.1	 The vulnerability level of each bridge on day j is obtained based on the bridge’s vulner-

ability level on day j-1 and its repair/reconstruction rate.
6.2	 Based on the updated vulnerability ratio of bridges, the updated vulnerability ratio of 

links and consequently the updated functionality level of the network (Fj) is calculated.
6.3	 The procedure of step 5 is repeated (over the next j + 1 days) until all bridges have 

regained their original functionality level.
7.	 The previous steps are repeated until all scenario events from the generated synthetic 

catalog are included.

In the current study, three different soil type scenarios, described in the previous sec-
tions, are also employed, and consequently the entire time-history process is carried out 

(18)DDTT =
∑

all links

(1 + VulLi) × ADTi × TFi × Li.

(19)FL =
1

NDTT
(DDTT − NDTT).
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4 × 3 = 12 times, taking into account different spatial correlation models and soil type 
scenarios.

Step 5 of the above-mentioned procedure provides the time-dependent functional-
ity of the system (resilience diagram) for all scenario events of the synthetic catalog. 
Since the entire procedure is based on the Monte-Carlo simulation method, the expected 
functionality level of the system on the jth day after occurrence of the destructive event 

Fig. 15   2D visualization of a sample of resilience surface

Fig. 16   Resilience curve of the 
considered transportation system 
with 2475 years of return period 
under the assumption of S0 soil 
type scenario
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Fig. 17   Resilience curve of the 
considered transportation system 
with 2475 years of return period 
under the assumption of S1 soil 
type scenario
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can be determined for various ARoEs. In this regard, a 3D surface of functionality-time-
ARoE is obtained as the "resilience surface". Figure 15 presents 2D visualization of a 
sample of resilience surface.

To investigate more precisely the effects of utilizing different spatial correlation 
models on the results of resiliency assessment of the system, resilience curves with a 
return period of 2475 years (ARoE of about 0.0004 or 2% probability of occurrence in 
50 years) are extracted from resilience surfaces obtained from different spatial correla-
tion models and are assessed in the following. Figure 16 presents the resilience curve 
of the considered transportation network with a return period of 2475 years for the case 
of the S0 soil type scenario. Also, Figs. 17 and 18 present the resilience curves of the 
transportation network considering S1 and S2 soil type scenarios, respectively.

According to the mentioned figures, by increasing the spatial correlation range of 
soil type (changing soil type scenario from S0 to S1), the resilience curve obtained from 
the LD method shifts away from results obtained from the Uncorrelated model toward 
the curve obtained from the LMC-LB model. Increasing the spatial correlation range of 
soil type also causes an increase in the difference between the results of LMC-WD and 
LMC-LB models. The main reason for this observation is that the LD and LMC-WD 
models include the spatial correlation range of soil type as a prerequisite factor in their 
estimation of GMF, while the Uncorrelated model and LMC-LB model estimate GMF 
without taking local soil type condition into account.

On the other hand, decreasing the spatial correlation range of soil type (changing the 
soil type scenario from S0 to S2) led the results of the LD method to be closer to the 
Uncorrelated model. Although the resilience curve obtained from the LMC-WD method 
has become closer to that obtained from the LMC-LB method and the Uncorrelated model, 
there is still a significant difference between the results obtained from the LMC methods 
(LMC-WD and LMC-LB) and the Uncorrelated model.

Suppose we consider the LD approach as the most accurate method among the utilized 
methods, capable of considering anisotropic spatial correlations and regional soil condi-
tions. Consequently, it can be inferred from the obtained results that for the case of the low 
amount of spatial correlations of soil conditions, both of the LMC methods (LMC-WD and 
LMC-LB) overestimate the loss values and restoration time of the entire system that results 
in a low level of resilience curve. On the other hand, it can be concluded that the LMC-LB 
approach provides fairly reliable results in the case of a wide spatial correlation range of 
soil conditions, and the reliability of findings of the LMC-LB approach declines as the cor-
relation range of soil type decreases.

Fig. 18   Resilience curve of the 
considered transportation system 
with 2475 years of return period 
under the assumption of S2 soil 
type scenario
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6 � Conclusion

The effect of considering anisotropy of spatial correlations of earthquake IMs on seismic 
risk and resilience assessment of spatially distributed assets is investigated in the current 
study. Three different multivariate spatial correlation models and an uncorrelated model 
are utilized. One of them is the latent dimension (LD) model proposed by Abbasnejad-
fard et  al. (2020) that is capable of considering the anisotropy of spatial correlations of 
IMs and regional site conditions. The other models which are proposed by Loth and Baker 
(2013) (LMC-LB) and Wang and Du (2013) (LMC-WD) are based on the linear model of 
coregionalization (LMC) and isotropic consideration. The LMC-WD model also can also 
account for the regional site conditions. For this reason, three different soil type scenarios 
are generated, each with different spatial correlation properties of VS30 values. For the risk 
and resilience assessment objectives, the portfolio of residential buildings in a synthetic 
urban area and a transportation network are used.

Event-based probabilistic risk and resilience assessment conducted in the current 
study revealed that ignoring the anisotropy of spatial correlations of earthquake IMs 
would lead us to unrealistic results for loss and resilience values of spatially distributed 
assets and systems. It could be concluded that the isotropic models generally overesti-
mate the rare loss and resilience values and underestimate the frequent results, particu-
larly in the cases of heterogeneous soil conditions where the spatial correlation range of 
the VS30 is not substantial. The difference between isotropic and anisotropic models is 
due to the fact that the isotropic models consider the same correlation ranges in different 
directions, while the anisotropic models can incorporate the variable correlation ranges 
in different directions simultaneously. Consequently, for cases with a low anisotropy 
ratio, which is expected to occur in homogenous local site conditions, the results of the 
isotropic models will be closer to those of the anisotropic models.

From the practical usage point of view, it could be noted that if the objective of the 
risk and resilience assessment is to obtain only the consequences of infrequent events, 
the isotropic models present conservative results, although the results of isotropic mod-
els may be significantly erroneous, especially in the case of heterogeneous soil condi-
tion. However, if the objective of risk and resilience assessment is to obtain risk/resil-
ience curves, calculate the results for a single scenario event, or calculate the average 
loss values across a specific time period, the isotropic models may provide unreliable 
results considering the fact that they underestimate the frequent losses.

It is worth mentioning that the LD and LMC-WD models mainly are functions of 
local site conditions, and utilizing these models needs the spatial correlation properties 
of local soil conditions to be identified. However, as mentioned in Abbasnejadfard et al. 
(2020) and based on the evidence provided by other research works (e.g., Garakanin-
ezhad and Bastami (2017) and Schiappapietra and Smerzini (2021)), earthquake source 
and path physical characteristics may have considerable effects on the anisotropy of the 
spatial correlations of IMs. In this regard, the mentioned parameters should be included 
in spatial correlation models based on the newly recorded data or earthquake simulation 
methods.

The current study also used different scenarios of exposure models of a building 
portfolio to evaluate how the configuration of the exposure models influences the degree 
of impact of incorporating anisotropy on risk assessment outcomes. The mentioned sce-
narios mainly focus on the presence of trend in building typologies which is prevalent in 
some of the urban areas where the city is extended or renovated in a particular direction. 
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It is demonstrated that when the anisotropy direction of IMs coincides with the trend 
direction of the exposure model, the deviation of isotropic spatial correlation models 
from the anisotropic model is more significant.
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