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Abstract
The evaluation of the aggregate risks to spatially distributed infrastructures and portfolios 
of buildings requires quantification of the estimated shaking over a region. To characterize 
the spatial dependency of ground motion intensity measures (e.g. peak ground accelera-
tion), a common geostatistical tool is the semivariogram. Over the past decades, different 
fitting approaches have been proposed in the geostatistics literature to fit semivariograms 
and thus characterize the correlation structure. A theoretically optimal approach has not yet 
been identified, as it depends on the number of observations and configuration layout. In 
this article, we investigate estimation methods based on the likelihood function, which, in 
contrast to classical least-squares methods, straightforwardly define the correlation without 
needing further steps, such as computing the experimental semivariogram. Our outcomes 
suggest that maximum-likelihood based approaches may outperform least-squares meth-
ods. Indeed, the former provides correlation estimates, that do not depend on the bin size, 
unlike ordinary and weighted least-squares regressions. In addition, maximum-likelihood 
methods lead to lower percentage errors and dispersion, independently of both the num-
ber of stations and their layout as well as of the underlying spatial correlation structure. 
Finally, we propose some guidelines to account for spatial correlation uncertainty within 
seismic hazard and risk assessments. The consideration of such dispersion in regional 
assessments could lead to more realistic estimations of both the ground motion and cor-
responding losses.
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1 Introduction

Many authors (e.g. Iervolino 2013; Weatherill et al. 2015; Sokolov and Ismail-Zadeh 2016; 
Sokolov and Wenzel 2019) have demonstrated the importance of considering regional haz-
ard estimates when evaluating the aggregate risks to spatially-distributed infrastructure 
and building portfolios. The assessment of the seismic hazard over a geographical region 
requires the quantification not only of the expected ground shaking at a single location, 
but also how this shaking could vary over distances of a few kilometres. This variation 
is captured within spatial-correlation models. Spatial correlations have been increasingly 
studied over the last 20 years and many researchers have aimed to identify the factors that 
most affect the spatial dependency of earthquake ground motions. Schiappapietra and 
Douglas (2020) provide a thorough literature review, shedding light on the dependence of 
correlation on: (1) the estimation approach and fitting method; (2) earthquake magnitude; 
(3) structural period; (4) regional and local site-effects; and (5) ground motion prediction 
equations (GMPEs). Baker and Chen (2020) propose a novel approach to quantify both the 
uncertainty in the correlation estimation and the underlying correlation variability among 
different earthquakes. Further insights into the spatial correlation of ground motions are 
given by studies on numerical ground motion simulations. In this regard, Stafford et  al. 
(2018), Chen and Baker (2019), Huang et al. (2020), Infantino et al. (2021) and Schiap-
papietra and Smerzini (2021) provide valuable contributions on the factors that cause the 
spatial dependency of earthquake ground motion to vary from case to case, with particular 
emphasis on the earthquake rupture process. In general, studies suggest that the spatial cor-
relation structure is period-, regionally- and scenario-dependent.

Spatial correlation models are usually calibrated on a set of multiple events due to the 
shortage of ground motion observations from each single earthquake. Using data from a 
single event would often lead to poorly constrained correlation parameters and models that 
have limited applicability for future earthquakes. Although it is recognized that the cor-
relation varies from event to event, only few studies (e.g. Goda 2011; Heresi and Miranda 
2019) have taken into account such event-to-event correlation variability. The considera-
tion of this dispersion in regional probabilistic risk assessment could lead to more realistic 
estimations of both the ground motion and corresponding losses. Baker and Chen (2020) 
demonstrated that the true variability in correlation estimates of poorly-recorded events 
does not significantly differ from that of well-recorded events and that the differences in 
terms of apparent total variability are exclusively due to the larger estimation uncertainty 
of poorly-recorded earthquakes.

In this broad framework, the research question we would like to answer is whether it is 
best to have a local correlation model, even though it is not well constrained, or to imple-
ment a global correlation model, characterized by a lower uncertainty but calibrated on 
worldwide databases? We, therefore, focus our attention on improving the estimation of 
correlation parameters by using alternative approaches. This study is a continuation of our 
previous work (Schiappapietra and Douglas 2020) and it aims to provide guidelines for 
developers and users of spatial-correlation models. To achieve this goal, we use simula-
tions of spatially-correlated ground motion fields which, as opposed to real data, provide a 
controlled environment where the true model is known.

Section  2 summaries spatial correlation modelling theory and it introduces the 
approaches for correlation estimation we use throughout this study. Section 3 describes the 
steps to generate spatially correlated random fields. We propose here two different studies: 
(1) ground-motion fields simulated on a fine grid, and (2) ground-motion fields simulated 
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only at recording locations corresponding to those of past earthquakes. Finally, Sects. 4, 5 
and 6 discuss the main results and the implications of this work.

2  Spatial correlation modelling

Traditional seismic hazard and risk analysis tools usually employ GMPEs to estimate the 
earthquake ground motion at a given site. The earthquake ground motion of interest to 
engineering is often the transient ground shaking that occurs during an earthquake. This 
ground motion is invariably evaluated in terms of one or more scalar intensity measures 
(IMs), such as the peak ground acceleration, the peak ground velocity and, occasionally, 
the peak ground displacement. The ground motion is also often expressed in terms of 
response spectral acceleration, which represents the maximum response of a single degree-
of-freedom system of a given oscillator period and damping subject to the ground motion 
time-history. GMPEs provide the marginal probability distribution of the IM at a single site 
as a function of a set of parameters describing the earthquake source, such as the magni-
tude, the propagation path and local site conditions (e.g. Douglas and Edwards 2016): 

where Yij is the IM of interest at the  jth site due to the  ith event, whereas Yij is the predicted 
median function of magnitude (M), distance from the source (R), local-site conditions (S) 
and other explanatory variables ( � ). �ij and �i are the within-event and between-event resid-
uals terms, respectively. �ij represents systematic deviations between observed and median 
predicted values due to path and local site effects, whereas �i denotes systematic devia-
tions associated to an event. For this reason, while �ij is site-dependent, �i is common for 
all sites. Both residual terms are assumed to be normally distributed with mean zero and 
standard deviations � and � , respectively. To fully characterise � , it is necessary to describe 
how the within-event residuals vary in space, namely to model the spatial dependence of 
�ij and �ik . Baker and Jayaram (2008) demonstrated that spatially distributed within-event 
residuals are jointly normally distributed. Therefore, their spatial dependence can be com-
pletely defined by the covariance matrix, which reflects their correlation structure.

2.1  Spatial variability of within‑event residuals

In geostatistics, a common tool to describe the dependence structure of spatial distributed 
random variables (i.e. the within-event residuals) is the semivariogram, which measures 
the average dissimilarity of a pair of �ij and �ik separated by an inter-site distance h:

in which Var indicates the variance. The semivariogram is empirically evaluated from 
observations by pooling all data with a given inter-site spacing h and then using either the 
robust estimator proposed by Cressie (1985) or the classic method of moments proposed 
by Matheron (1962). Usually, the individual separation distances between pairs of observa-
tions are grouped into bins, so that the semivariances are computed for each pair of sites 
whose inter-site distance falls in the interval [h − Δ, h + Δ]. The hypotheses of second-
order stationarity and isotropy are generally assumed due to the lack of repeated ground 
motion observations from the same event at a given site. Therefore, the correlation between 

(1)log10 Yij = log10 Yij(M,R, S, �) + �ij + �i

(2)�̂�(h) =
1

2
Var

[
𝜀ij − 𝜀ik

]
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any pairs of sites with equal separation distance is the same, independently of the source-
to-site distance and orientation. Under such assumptions, the semivariogram and the cor-
relation are equivalent and the following relation holds (Diggle and Ribeiro 2007; Oliver 
and Webster 2014):

where COV is the covariance matrix and �� the correlation function. The reader is referred 
to Schiappapietra and Douglas (2020) for further details.

2.2  Fitting methods for semivariogram models

The experimental semivariogram of Eq.  (2) is a discrete function, describing the spatial 
continuity of the random variable � . Parametric functions are used to fit the experimental 
semivariogram to retrieve semivariogram models for any separation distance h. In the lit-
erature, a number of admissible models (e.g. spherical, Gaussian and exponential) exist; 
however, we choose the exponential function to model the correlation structure, as it is the 
most widely adopted (e.g. Jayaram and Baker 2009; Esposito and Iervolino 2012; Baker 
and Chen 2020) functional form in engineering seismology. The general form of the expo-
nential function is:

where a and b are the sill and the practical range of the semivariogram, respectively. The 
sill represents the variance of the random variable, whereas the practical range is the sepa-
ration distance at which �(h) equals 95% of the sill value. An illustration of an empirical 
and fitted semivariogram model is presented in Fig. 1a. Different fitting approaches have 
been proposed in the geostatistics literature. In general the model coefficients are chosen so 
that the misfit between observed and predicted values is minimised. Baker and Chen (2020) 
provide a useful summary of the most common techniques, such as the ordinary (OLS) and 

(3)�(h) = �2 − COV
(
�ij, �ik

)
= �2

[
1 − ��(h)

]

(4)�(h) = a
[
1 − exp

(
−

3h

b

)]

Fig. 1  Empirical and fitted semivariogram models: a different techniques to estimate the semivariogram 
parameters as introduced in this work. The solid line is the exponential fitted model, whereas squares rep-
resent the experimental semivariogram. The numbers close to the squares indicate the number of pairs used 
to compute the semivariances within each bin. b Different bin sizes to compute the experimental semivari-
ogram. The exponential models are fitted by using the OLS approach
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weighted (WLS) least squares, and they suggest a new weighting function to weight the 
values from small distance more within the fitting step. A trial-and-error (manual fitting) 
approach has been chosen by different authors for its versatility in fitting the data. Never-
theless, we discourage performing a visual fit due to its high degree of subjectivity.

In our analysis, we implement the R (R Core Team (2019)) package gstat (Pebesma 2004) 
to compute the experimental semivariogram and obtain semivariogram model coefficients by 
means of the OLS and WLS regression techniques.

2.3  Maximum likelihood estimation

The above-described method of least squares to fit semivariogram models is not direct because 
it requires the computation of the experimental semivariogram as an intermediate step (Li 
et al. 2018). Moreover, the final modelling outcomes depend on different assumptions such as 
the variogram estimators (Oliver and Webster 2014) and weighting functions (Baker and Chen 
2020; Schiappapietra and Douglas 2020), and on the introduction of arbitrary parameters such 
as the bin size. For instance, we plot in Fig. 1b the empirical semivariograms computed by 
using different bin widths and the corresponding fitted exponential models. Nonetheless, this 
methodology is the most widely used to determine the dependence structure of spatially dis-
tributed random variables and many geostatistical software packages (e.g. R packages geoR 
(Ribeiro et al. 2020), gstat (Pebesma 2004), georob (Papritz 2020) and MATLAB functions 
variogram (Schwanghart 2021a), variogramfit (Schwanghart 2021b)) allow the user to 
obtain semivariogram parameter estimates easily (Li et al. 2018). On the other hand, estima-
tion methods based on the likelihood function have increasingly gained influence in geosta-
tistics, particularly in the presence of trends (Oliver and Webster 2014). The parameters of 
the correlation structure model are directly estimated by maximising a log-likelihood function 
without needing further steps, such as computing the experimental semivariogram. Despite 
such an advantage, maximum-likelihood approaches have not been commonly used in engi-
neering seismology. To the authors knowledge, only Ming et al. (2019) employed the maxi-
mum-likelihood method to simultaneously estimate the GMPE and correlation function coef-
ficients. One of the main drawbacks of the maximum-likelihood estimation is that it requires 
the data (e.g. within-event residuals) to be normally distributed. Normality of within-event 
residuals has been shown to hold, at least within ± 3 standard deviations of the mean (e.g. 
Strasser et al. 2009).

In our analyses, we take advantages of different techniques, such as the Gaussian maximum 
likelihood (ML) and the restricted maximum likelihood (REML). In general, the model for 
a set of geostatistical data Yi = Y

(
xi
)
[i = 1,… , n] at locations xi is defined as the following:

where D
(
xi
)T
� is the spatial trend, B

(
xi
)
 is the Gaussian random field with zero mean and 

covariance R
(
h, �2, �

)
 and �i is an independent distribution error with zero mean and vari-

ance �2 (nugget effect) . �2 and � are the sill and range parameters of the covariance func-
tion, whereas � is the vector of regression parameters of the spatial trend. For a normally 
distributed Y, the log-likelihood for the estimation of �2, � and � is defined as:

(5)Y
(
xi
)
= D

(
xi
)T
� + B

(
xi
)
+ �i

(6)
L
(
�, �2, �2, �

)
= −0.5

{
n log (2�) + log

{
|||
�2R + �2I

|||

}
+ (y − D�)T

(
�2R + �2I

)
(y − D�)

}
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Therefore, the model parameters are obtained by maximising the function L
(
�, �2, �2, �

)
 . 

The reader should refer to Diggle and Ribeiro (2007) and Künsch et al. (2013) for deeper 
insights into likelihood-based methods. We implement both the R packages geoR and 
georob for the parameter estimation through maximum-likelihood approaches.

3  Simulations set up

We generate spatially-correlated ground-motion fields (i.e. the within-event residuals at 
each station location), using a multivariate normal distribution, defined by a zero mean 
and a covariance function, which reflects the correlation of the within-event residuals. The 
(unconditional) simulations of Gaussian random fields for given covariance parameters are 
generated by using the R package geoR. We opt for an exponential correlation model with 
correlation length h0 and we choose different values of h0 [5, 10, 15, 20, 30, 40 km] to 
cover the typical estimates reported from ground-motion observations. Such a broad range 
mainly depends on magnitude, fault mechanism and source effects as well as regional and 
local-site conditions, even when the same seismic region is considered (e.g. Schiappapie-
tra and Douglas 2020; Infantino et al. 2021; Schiappapietra and Smerzini 2021). A Monte 
Carlo approach is adopted to generate 1000 simulations of ground-motion residuals for 
each h0 to obtain more stable and robust outcomes. Figure 2 illustrates two out of the 1000 
simulations generated by imposing correlation lengths of 5 and 15 km, respectively.

For each Monte Carlo simulation (i.e. for each within-event residual distribution), we 
follow these steps to assess the performance of the different estimation approaches and the 
influence of different parameters such as the bin size and number of available stations:

• Randomly locate strong-motion recordings stations throughout the region. We select 
a different number of stations [20, 40, 60, 80, 100] for each h0 to cover the number of 
strong-motion stations that earthquakes are usually recorded by.

• Estimate the empirical semivariogram and derive a semivariogram model (Eq. 4) using 
both least-squares regression and maximum-likelihood techniques.

• Compare the set of range estimates with the imposed initial range h0.

It is noted that for each h0 , the simulated ground-motion fields are the same throughout 
the analyses that consider different numbers of stations. Therefore, the number of avail-
able stations is the only varying parameter. At the same time, the stations layout does not 
change throughout the analyses for different h0 . This means that, for equal number of sta-
tions, the correlation structure is the only varying parameter among the different h0.

The ground-motion fields are generated on a 150 km × 150 km grid with a 1 km resolu-
tion. We believe this grid dimension represents a good trade-off between computational 
cost and the risk of boundary effects on the results. As shown in Fig. 3, the grid dimension 
affects the distance cut-off (i.e. the maximum separation distance in the semivariogram 
computation). In particular, we observe, as expected, a sharp drop of the number of sta-
tions at around 50 km when a grid of 100 km is used. By contrast, the number of stations 
pairs increases for larger separation distances when a grid of either 150 km or 200 km is 
chosen. Such maximum usable distance has an impact on the range estimates and their 
variability, particularly when larger values of h0 are considered. As a matter of fact, we plot 
in Fig. 4 the median along with the first and third quartiles values of the range estimates as 
a function of the grid dimension, for two different estimation approaches. The 150 km grid 
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shows the minimum bias with respect to the initial h0 and the lowest dispersion (as indi-
cated by the first and third quartile) compared to the 100 km grid.

Fig. 2  Examples of Gaussian random fields characterized by a correlation length of 5  km (top row) and 
15 km (bottom row)

Fig. 3  Number of stations pairs as a function of the separation distance for different grid sizes: a 100 km; b 
150 km; c 200 km. The black solid line is the mean value computed over the 1000 simulations, whereas the 
black dashed lines represent the mean ± the standard deviation. The red dashed line indicate the minimum 
number (30) of station pairs required per bin to obtain more robust estimates (see Schiappapietra and Doug-
las 2020 for further details)
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4  The effect of bin size

We present here some preliminary analyses performed by varying the bin size from 3 to 
10 km. For each h0 and for an equal number of stations, the bin width is the only varying 
parameter. This allows the lower range value that is resolvable to be determined and to 
demonstrate how the bin size and range are interconnected. Figures 5 and 6 show the per-
centage error and the interquartile range (IQR) computed by:

where ĥ is the range estimate for each simulated ground motion field and Q3 and Q1 are the 
third and first quartiles, respectively. 

Independently of the technique employed to estimate the semivariogram coefficients (in 
this case, the range), the lower the bin size, the lower the bias and the variability are. Because 

(7)%error =
ĥ−h0

h0
⋅ 100

(8)IQR = Q3 − Q1

Fig. 4  Range as a function of 
the grid dimension. Solid lines 
represent the median values com-
puted over the 1000 simulations, 
whereas dashed lines indicate the 
first and third quartile. OLS and 
REML refer to the two different 
approaches we use to estimate 
the range. The black dotted line 
indicates the initial range value 
(30 km) imposed in the simula-
tion

Fig. 5  Bias median (a) and interquartile IQR (b) values as a function of the number of stations for different 
bin widths and for two different approaches (OLS, WLS). We impose an initial range value of 5 km
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the estimated range value tends to increase with wider bins, we believe that this apparent cor-
relation comes exclusively from the bin size, which thus has a strong impact on the lower 
range that can be retrieved. Particularly, if the width is too wide, the correlation structure of 
ground-motion fields correlated over shorter distances may be masked. Consequently, we opt 
for a bin size of 3 km in the following analyses.

Such a strong dependency on bin size and other choices has motivated us to seek different 
approaches for the estimation of the correlation coefficients that do not depend on arbitrary 
parameters like the bin size, the distance cut-off and semivariogram estimator. Hereafter, we 
present a comparison of the outcomes obtained by means of the different techniques proposed 
in Sect. 2, namely least-squares regression and the maximum-likelihood approach.

4.1  Least‑squares regression versus maximum‑likelihood method

We carry out a comparison between range estimates obtained by means of least-squares 
regression (OLS and WLS) and maximum-likelihood methods (ML and REML). The results 
of this preliminary analysis are summarised in Fig. 7. It is noted that for each pair of h0 and 
number of stations, the bin size is the only varying parameter, so that the comparison is 
straightforward. Not only do the two maximum-likelihood approaches (ML and REML) pro-
vide the lowest bias and variability in the range estimates, but they also return the same out-
comes regardless of the bin size. By contrast, OLS and WLS feature increasing median values 
as the bin becomes wider, as already shown in Figs. 5 and 6. We believe that such results are 
promising, since ML and REML do not add additional sources of uncertainty related to the 
choice of the bin width.

Fig. 6  Bias median (a) and interquartile IQR (b) values as a function of the number of stations for different 
bin widths and for two different approaches (OLS, WLS). We impose an initial range value of 15 km. Note 
that the y axis scale is different to that used in Fig. 5
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5  Dependence on the number of stations

To obtain robust estimates of the correlation structure from ground-motion observa-
tions, ideally one would use a large number of closely-spaced data. Although the num-
ber of earthquake recordings has dramatically increased over the last decades, seismic 
stations are not homogeneously distributed, making it difficult to assess the spatial cor-
relation in regions characterized by sparse seismic networks. Baker and Chen (2020) 
and Schiappapietra and Douglas (2020) already demonstrated that the correlation esti-
mation uncertainty is inversely correlated to the number of available stations. Here, we 
propose two different studies on the impact of the number of stations that consider both 
random station locations and station locations based on real networks. The main goal 
is to illustrate how the maximum-likelihood approaches outperform the least-squares 
methods especially in terms of estimation uncertainty.

Fig. 7  Boxplots for range estimates obtained by using different bin size, different h
0
 (5 and 15 km) and dif-

ferent number of available stations (40 and 100)
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5.1  Randomly simulated locations

We present the results of the simulations performed as described in Sect. 3 for different 
values of the initial range h0 [5, 10, 15, 20, 30, 40 km] and different number of stations 
[20, 40, 60, 80, 100]. Figure 8 (and Figure S1 in the supplementary material) illustrates the 
median value of the percentage error along with the IQR, which is taken as a measure of 
the dispersion of the range estimates.

Four main observations can be highlighted. First, independently of h0 , the maximum-
likelihood approaches (ML and REML) generally show a lower dispersion compared to 
the least-squares methods (OLS and WLS). At the same time, ML and REML provide 
smaller median % error values, especially when few stations are available. This is a prom-
ising result, particularly for those regions characterized by fewer data. Second, median % 
error values tend to zero as the number of available stations increases. Similarly, the IQR 
decreases, halving its value as the number of stations rises from 20 to 100. Such outcomes 
corroborate the findings of Baker and Chen (2020) who demonstrated that the estimation 
uncertainty is larger for poorly-recorded events and that at least 100 stations are required 
to provide robust correlation estimates. Third, when a large number of stations is avail-
able both least-squares and maximum-likelihood approaches converge towards the same 
% error and IQR, independently of the h0 . Fourth, we observe that major differences exist 
among the proposed estimation techniques for smaller h0 , compared to the largest ones. We 
believe that smaller correlations are more difficult to detect as they require a large number 
of observations at very closely spaced stations. By contrast, earthquake ground motions are 
often recorded by a limited number of stations separated by many kilometres, with aver-
age inter-station distances in the range of 10–20 km, making it easier to measure ground 
motion correlated over larger distances. As further evidence of such a trend, we plot in 
Fig. 9 (and Figure S2 in the supplementary material) the % error and the IQR as a function 
of h0 for different number of stations considered. It is evident that all the approaches tend to 
a % error of zero when residuals are correlated over larger distances, independently of the 
number of stations. Besides, ML and REML provide smaller % error compared to OLS and 
WLS especially for poorly-recorded events and smaller h0. Such behaviour is mainly due to 
the semivariogram computation, which is required in the least-squares approaches.

Finally, we report in Fig. 10 the boxplots of the range estimates for different numbers of 
stations and for a given h0 . Not only do the ML and REML feature narrower boxes (limited 
by the first and third quartiles, i.e. those used in the computations of IQR) compared to the 
OLS and WLS boxes, but they are also characterized by smaller whiskers and more con-
fined outliers. The latter are defined as the estimate values that are larger than 1.5 times the 
IQR. Similar outcomes are obtained also for all other h0 . For the sake of brevity, we do not 
show all the figures here.

We recall that for an equal number of stations, the station layout is the same for differ-
ent h0 . Therefore, the variability among the different approaches only lies with the different 
correlation structure used in the simulation.

5.2  Station layouts of past earthquakes

We perform similar Monte Carlo simulations to those presented in Sect. 5.1, but here 
the ground-motion fields are simulated only at stations that recorded past earthquakes. 
We take four different stations layouts as references, corresponding to four events 
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Fig. 8  Bias (left panel) and Interquartile (right panel) range values as a function of the number of stations. 
The different rows refer to the different initial h0 values. Different colours refer to the approaches employed 
in the correlation estimation
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selected within both the ESM (Lanzano et  al. 2018) and NGA-West2 (Ancheta et  al. 
2014) strong-motion flat-files. We consider only well-recorded earthquakes with more 
than 100 observations within 100 km from the epicentre. Figure 11 show the four station 
layouts: (1) ESM1 is the  Mw 6.0  29th May 2012 Emilia (Italy) event; (2) ESM2 is an  Mw 
4.3 event that occurred on  23rd September 2016 in Central Italy; (3) NGA1 is the  Mw 
6.9  13th June 2008 Iwate (Japan) event; NGA2 is a  Mw 4.7 event that occurred on  18th 
May 2009 in California. We believe such layouts are a good sample of the type of sta-
tion distributions often seen in practice. We adopt a Monte Carlo approach, generating 
1000 simulations of ground motion residuals for each h0 [10, 20, 30, 40] and for differ-
ent numbers of stations [20, 40, 60, 80, 100], which are randomly selected within each 
configuration. We note that for each correlation structure (e.g. each h0 ), the only varying 
parameter is the number of selected stations, so that the comparison is not affected by 
other factors. We also imposed the same seed, which sets  the starting number used to 
generate a sequence of random numbers. Hence, the underlying residuals distribution is 

Fig. 9  Bias (left panel) and Interquartile (right panel) range values as a function of h0. The different rows 
refer to the different number of stations considered. Different colours refer to the approaches employed in 
the correlation estimation
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the same, although the station configurations are different in each layout. This allows us 
to isolate the effect of the station layout.

Figures 12 and 13 compare the median % error and the IQR computed for the different 
station layouts and h0 = 10 km by using the different methodologies proposed in this study. 
Three main observations can be highlighted. Generally, ML and REML have the small-
est median % error and they lead to lower uncertainties compared to the OLS and WLS 
approaches, independently of the correlation structure imposed. Such outcomes agree with 
the findings presented in Sect. 5.1, where residuals are simulated on a fine grid and stations 
are randomly selected. Similar conclusions can be drawn for the other h0 values (20, 30, 
40 km, Figure S3 and Figure S4 in the supplementary material).

Furthermore, ML and REML feature similar values both in terms of median and vari-
ability among the different station layouts. By contrast, OLS and WLS show a strong vari-
ability among the four layouts. This applies to all h0 values, although differences are less 
pronounced for ground motions correlated over larger distances (i.e. higher h0). We believe 
that such behaviour is mainly due to the semivariogram computation, whose robustness 
depends on both the bin size, as demonstrated in Sect. 4, and the number of stations within 
each bin. These parameters are strictly related to the station layout so that more homogene-
ous station distributions would provide more reliable range estimates.

Fig. 10  Boxplots of range estimates for different number of stations and h0 = 20 km: a 20 stations; b 40 sta-
tions; c 80 stations: d 100 stations



5429Bulletin of Earthquake Engineering (2021) 19:5415–5438 

1 3

Finally, we note that generally the NGA2 configuration has the lowest median % error 
and IQR among all the considered layouts. We believe that this result lies with the more 
homogeneous and denser distribution of stations with respect to the other three layouts, 
which leads to more accurate range estimates. To demonstrate this, we plot in Fig.  14 
the number of station pairs within 12  km as a function of the number of stations. Sys-
tematically, the NGA2 configuration has the largest number of pairs in the first four bins 
(12  km/3  km = 4), independently of the number of available stations. Conversely, the 
NGA1 layout has the lowest number of pairs and as a consequence it features the highest 
median % error and IQR, especially when lower h0 are considered. Such observations apply 
to the OLS and WLS approaches, whereas the ML and REML are not strongly affected 
by the different station layouts. This is a promising outcome and demonstrates how maxi-
mum-likelihood methods may outperform the least-squares approaches.

Fig. 11  Station layouts for the four selected events: a ESM1—event id ’IT-2012–0011’; b ESM2—event id 
’ESMC-20160903_0000063’; c NGA1—event id ’279’; d NGA2—event id ’1011’. Dots are colour-coded 
based on the within-event residuals (one out 1000 simulated ground-motion fields). Coordinates are nor-
malized with respect of the epicentre of each event
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6  Discussion

In this study, we show that there is uncertainty in modelling the spatial correlation and 
the size of this uncertainty depends on the availability of data as well as the deriva-
tion technique. Specifically, spatial correlation models for areas with limited data (e.g. 
regions without dense strong-motion networks and/or low seismicity) are more uncer-
tain than those with extensive observations. Consequently, regional seismic hazard 
models should account not only for the spatial correlation, but they should also capture 
its associated uncertainty, which depends on the region.

This regional-dependent uncertainty leads to the following two questions. Which 
correlation model or models should we use for regions with sparse observations? Is a 
global model truly able to capture the correlation of that specific area? These are similar 
questions faced by hazard analysts concerning the selection, modification or develop-
ment of ground-motion models (e.g. Douglas 2018).

Fig. 12  Median % error of the range estimates for the four different stations layouts as a function of the 
number of stations. a OLS; b WLS; c ML; d REML. The initial value of the range is set to 10 km
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Here, we propose some guidelines to model the spatial correlation uncertainty based 
on the availability of recordings. In particular, we propose a logic tree with symmetrical 
lower, middle and upper branches using a standard three-point distribution with weights 
equal to 0.185, 0.63 and 0.185, respectively (Keefer and Bodily 1983). Table 1 reports the 
5%, 50% and 95% percentile values of the range estimates as a function of both the number 
of stations and h0 for the different approaches used in this study. This logic tree should cap-
ture the spread in the correlation estimates, thus leading to a more informed seismic risk 
assessment.

We are aware that this table does not cover all possible stations-h0 combinations, but 
its aim is to provide a first-order estimate of the spatial correlation uncertainty that one 
should consider when modelling spatial correlations for both regions where observations 
are abundant and for those characterized by sparse recordings.

We show here an example in which we compute the spatial correlation for six dif-
ferent earthquakes recorded by 40 (3 events) and 80 (3 events) stations. The events are 
selected within the ESM (Lanzano et al. 2018) flat-file and we use the OLS and REML 

Fig. 13  IQR of the range estimates for the four different station layouts as a function of the number of sta-
tions. a OLS; b WLS; c ML; d REML. The initial value of the range is set to 10 km
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approaches to estimate the range. We note that the scope of this section is to discuss 
correlation uncertainty and not the optimal method that best estimates the range.

Figure 15 presents the experimental semivariograms and the theoretical models com-
puted on the residuals of three different events recorded by 40 stations. If we look at 
the REML estimates, the three events feature ranges equal to 41, 15 and 5.5 km. Based 
on our simulations, such median estimates have the following confidence intervals, 
given the number of available stations: (1) [15–80] km, (2) [1–40] km, and (3) [0.6–28] 
km. At the same time, OLS provides median estimates equal to 21, 16.1 and 12.1 km, 
respectively, which correspond to the following confidence intervals: (1) [1.9–67.2] km, 
(2) [1.3–64.8] km, and (3) [1.1–60.3] km.

Baker and Chen (2020) provide estimates of the correlation computed for a set 
of events within the NGA-West2 database (Ancheta et  al. 2014) and the correspond-
ing number of stations that recorded each event. For instance, the  Mw 6.5 Big Bear-
01 (1992) event has a range equal to 15.7  km computed based on 45 observations. 
According to Table 1 (WLS,  h0 = 15 km, 40 stations), the range estimate is within the 
[1.1–55.7] km confidence interval. Analogously, the Mw 6.2 Christchurch (2011) event 
features a range of 18.9  km evaluated on the basis of 80 stations. The corresponding 
confidence interval from Table  1 is [3.6–41] km. These confidence intervals appear 
wide but it should be recalled that these are for the 5 to 95th percentiles.

While the median range estimates of the considered events differ from each other, the 
confidence intervals overlap, suggesting that these earthquakes may, in fact, have simi-
lar correlation structures. Similar conclusions can also be drawn from Fig. 16, where we 
show the results for three different events recorded by 80 stations.

These findings, while preliminary, may help us to answer the second question posed 
at the beginning of this section about global versus local models. A global model cali-
brated on data from multiple events may be suitable to describe the correlation structure 
of a region for which observations are currently sparse since denser datasets would pro-
vide more constrained range estimates. On the other hand, pooling data from multiple 
earthquakes would not enable the study of the correlation due to a particular event to be 

Fig. 14  Number of stations pairs 
within 12 km as a function of the 
number of stations for the four 
station layouts. The dots indicate 
the number of stations pairs in 
each simulation, whereas the 
solid lines represent the average 
number of pairs as a function of 
the number of stations
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investigated and therefore it would increase the uncertainty in the estimates related to 
the specificity of the region of interest.

While investigating the estimation uncertainty related to a single event, in this study 
we have not explored multiple earthquakes uncertainties. Heresi and Miranda (2019) 
computed the central tendency and the dispersion of the range values from well-
recorded NGA-West2 events. For instance, the spectral acceleration at T = 0.1s shows 
an average range of 14.3 km and a standard deviation computed on the natural logarithm 
of the range values equal to 0.83. We performed similar analysis for the Central Italy 
region, and we obtained an average range of 27.8  km and a standard deviation equal 
to 0.75 for the same IM. While these studies account for the event-to-event dispersion, 
they do not investigate the estimation uncertainty. Therefore, further work is required 

Table 1  5%, 50% and 95% percentile values of the range estimates for different  h0 and different number of 
stations for the approaches used in this study. Estimates are in km

OLS WLS ML REML

h0 # Stations 5% 50% 95% 5% 50% 95% 5% 50% 95% 5% 50% 95%

5 km 20 1.3 11.8 131.7 1.2 13.5 91.0 0.2 6.7 46.5 0.9 9.4 70.6
40 0.8 8.2 39.5 0.8 9.3 35.9 0.1 6.2 24.9 0.6 6.8 27.9
60 0.6 7.5 26.2 0.6 8.6 26.9 0.1 5.2 18.8 0.5 5.7 21.1
80 0.6 6.5 19.7 0.5 7.1 20.1 0.1 4.9 13.7 0.4 5.1 14.4
100 0.6 6.4 16.3 0.5 6.6 16.6 0.1 4.7 12.0 0.4 5.0 12.6

10 km 20 1.6 14.0 319.1 1.3 17.9 154.4 0.2 10.0 48.7 1.0 12.4 65.8
40 1.1 13.1 60.3 0.8 14.0 50.7 0.2 9.8 28.7 0.7 10.8 32.4
60 0.8 11.3 34.3 0.7 12.6 33.1 0.2 9.3 21.6 0.8 9.9 23.5
80 0.7 10.7 24.2 0.7 11.8 26.1 0.2 9.5 18.1 0.8 9.8 19.2
100 0.8 10.8 22.6 0.8 11.5 24.0 2.5 9.5 17.1 2.5 9.9 17.8

15 km 20 1.6 19.7 196.5 1.4 24.6 121.6 0.3 14.6 56.5 1.1 17.2 80.4
40 1.3 16.3 64.8 1.1 17.8 55.7 0.2 14.3 34.3 1.0 15.6 39.6
60 1.1 16.2 41.0 0.9 18.2 41.3 1.9 14.4 28.0 2.2 15.2 30.9
80 4.1 15.9 33.2 1.4 16.7 33.5 5.3 14.2 25.1 5.8 15.0 26.7
100 5.2 15.2 29.0 3.4 16.3 29.1 7.2 14.3 22.5 7.4 14.8 23.9

20 km 20 2.1 23.0 175.3 1.6 28.1 110.3 0.3 16.2 53.8 1.5 19.9 74.9
40 1.9 21.0 67.2 1.4 22.8 59.0 0.4 18.3 38.5 1.5 19.8 43.9
60 4.9 20.5 49.2 1.7 21.7 47.3 7.2 18.6 33.7 7.7 19.9 37.6
80 6.3 20.0 41.4 3.6 20.9 41.0 8.3 18.4 30.9 8.4 19.4 33.1
100 9.1 19.9 36.2 6.0 20.8 36.3 11.1 18.5 28.8 11.4 19.3 30.4

30 km 20 2.7 31.0 340.9 1.7 35.3 148.3 0.4 24.1 67.4 1.8 29.5 103.3
40 5.3 29.2 93.6 1.6 31.4 79.9 5.6 25.6 52.7 6.5 28.6 61.6
60 10.8 28.8 70.6 7.9 31.6 66.7 11.9 27.1 47.2 12.3 28.9 53.1
80 13.2 28.7 59.5 11.4 30.2 55.7 15.6 27.1 44.2 16.5 28.7 48.2
100 15.4 28.9 53.8 13.4 30.6 53.7 16.7 27.4 41.6 17.5 28.7 45.1

40 km 20 3.6 39.1 578.8 2.4 42.1 207.2 0.5 30.8 78.8 2.2 38.1 123.7
40 10.2 39.2 144.2 3.1 42.3 104.7 12.8 34.6 65.4 15.1 39.2 79.9
60 16.7 39.2 105.4 14.7 40.9 84.9 18.9 34.4 58.8 20.1 37.6 67.2
80 19.8 38.7 94.2 18.4 40.6 77.7 20.9 35.8 58.8 21.9 38.3 65.6
100 21.8 39.3 80.4 20.3 39.8 72.4 24.1 36.5 57.5 25.1 38.8 63.4
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to establish the fraction of uncertainty which derives from pooling data from different 
events.

Finally, we report here a scheme showing the application of the proposed logic tree for 
a median  h0 = 20 km. We consider the estimates obtained by using the REML approach 
when 60 stations are available. Based on the correlation estimates in Table 1, we simulate 
n spatially correlated random fields for each range to use in conjunction with predicted 
median ground motions. The different branches (after assessing the risk, e.g. after estimat-
ing the corresponding losses for each range) would then be averaged with weights equal 
to 0.185, 0.63 and 0.185, respectively, to obtain the final risk assessment (e.g. resulting 
losses) which account for the uncertainties in the correlation estimates (Fig. 17).

7  Conclusions

In this work, we introduce alternative methods to classic least-squares regression for the 
estimation of the correlation structure of earthquake ground motions. In particular, we 
employ two maximum likelihood-based approaches, namely the Gaussian maximum likeli-
hood (ML) and the restricted maximum likelihood (REML). These have gained increas-
ing importance in geostatistics, particularly when spatial trends exist in the data (Diggle 
and Ribeiro 2007; Oliver and Webster 2014; Li et al. 2018). However, estimation methods 

Fig. 15  Experimental semivariograms and theoretical models for three different events recorded by 40 sta-
tions. The number of pairs in each bin is reported close to each semivariance estimate (black dots)

Fig. 16  Experimental semivariograms and theoretical models for three different events recorded by 80 sta-
tions. The number of pairs in each bin is reported close to each semivariance estimate (black dots)
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based on the likelihood function have not been commonly used to assess ground-motion 
correlation. One of the main advantages of such approaches is that they are straightforward 
and do not require further steps for the estimation of the correlation parameters.

We first showed that ML and REML estimates do not depend on the bin size, unlike 
ordinary and weighted least-squares regression (OLS and WLS). Indeed, the latter 
requires the definition of the experimental semivariogram, whose robustness depends on 

Fig. 17  Application of the proposed logic tree for  h0 = 20  km and number of stations equal to 60 to use 
within a seismic risk assessment study. We use the estimates obtained by using the REML approach. The 
graphs on the left-hand side correspond to n spatially correlated random fields simulated for each range 
value, 7 km, 20 km and 37 km, respectively
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both the bin width and the number of stations within each bin. Our outcomes are prom-
ising as they show how ML and REML may outperform the least-squares approaches. 
There is a trade-off between the bin width and the estimate robustness: wider bins 
include a larger number of residuals pairs, which increases the robustness of the semi-
variance estimates, but at the same time wider bins may mask shorter correlation 
lengths.

We then performed two different studies to show the dependence of the correlation on 
the number of available stations and on the station layout. Firstly, we carried out simula-
tions of within-event residuals on a fine grid, varying both the h0 and the number of sta-
tions available. Generally, ML and REML feature lower percentage errors and dispersion 
compared to OLS and WLS, independently of the number of stations and of the underlin-
ing spatial correlation structure (h0). This is a rather interesting result, especially for those 
regions characterised by sparse strong-motion networks. Second, we carried out simula-
tions of within-event residuals only at recording stations of past earthquakes. We chose 
four different station layouts, which are considered as good examples of the type of station 
distributions often seen in practice. Our outcomes suggest that OLS and WLS are more 
affected by the station configuration because their estimates are based on the computation 
of the experimental semivariogram. Thus, more homogeneous station layouts would pro-
vide more reliable range estimates. By contrast, ML and REML seem to be less influenced 
by the station layout both in terms of median percentage error and interquartile range.

This article intends to be a continuation of the work of Schiappapietra and Douglas 
(2020), as it further analyses the dependency of correlation on different factors such as the 
bin size and the station configuration. We shed light on alternative approaches to character-
ize the spatial correlation structure of earthquake ground motions, providing useful insights 
for users and researchers interested in investigating ground-motion spatial correlation.

Finally, we proposed some guidelines to model the spatial correlation uncertainty based 
on the availability of recordings, following a logic-tree approach. The main idea is to pro-
vide hazard and risk assessment by using the median range estimate and the lower and 
upper bounds range values (5% and 95% confidence intervals). The resulting risk analy-
sis accounting for the correlation uncertainties is eventually obtained by averaging all the 
branches with suitable weights (0.185, 0.63 and 0.185, respectively).

These findings, while preliminary, may help researchers to model the spatial correlation 
uncertainty that one should consider when performing regional seismic hazard and risk 
assessment. Application of the proposed logic-tree to a specific case study may indicate 
features for further developments.
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