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Abstract
The aim of this paper is to identify the ground motion models (GMMs), applicable in 
active shallow crustal regions (ASCRs) and subduction zones (SZs), to be used for the new 
release of the seismic hazard model of Italy (MPS19) for peak ground acceleration and 12 
ordinates of the acceleration response spectra (5% damping) in the period range 0.05–4 s. 
The steps to achieve such goal are: (1) a pre-selection of the GMMs that takes into account 
the suitability for the application to the Italian territory and the fulfillment of the new haz-
ard model requirements; (2) the assessment of a proper scoring of the pre-selected GMMs 
using strong-motion data recorded in Italy; (3) the selection of the GMMs to be used in 
the hazard calculation. The final set of GMMs describes satisfactorily the epistemic uncer-
tainty of the ground shaking process, privileging the simplicity and flexibility of the func-
tional form. Finally, the weights of the selected GMMs are assigned combining the results 
of the scoring and the weights obtained through an experts’ elicitation.
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1  Introduction

The new Italian seismic hazard model, MPS19 (in Italian Modello di Pericolosità Sismica, 
Meletti et al. 2017) is a broad research initiative, launched by the Seismic Hazard Center 
(Centro Pericolosità Sismica, CPS) of the Istituto Nazionale di Geofisica e Vulcanologia 
(INGV) in 2015 and supported by the Italian Civil Protection Department (Dipartimento 
della Protezione Civile, DPC), that aims to produce a new seismic hazard model for Italy, 
to update the current one released in the period 2004–2006, named MPS04 (Stucchi et al. 
2011). The latter is adopted as input for the seismic actions by the Italian Building Code 
(NTC08 2008; NTC18 2018) providing the uniform hazard spectra for each location of the 
national territory across a regular 5 km equally-spaced grid.

The main objective of the update of MPS04 is to exploit, as much as possible, all the 
recent progress in seismology, seismotectonics, seismic engineering and engineering seis-
mology, in terms of data, models, methods and numerical tools. The requirements of the 
MPS19 model are: (1) uniform cover of the national territory and the surrounding areas; 
(2) rock site conditions1 in flat topographic setting; (3) hazard estimates in terms of hori-
zontal component of Peak Ground Acceleration, PGA, and 12 ordinates of the acceleration 
response spectra (5% damping), at periods T 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50, 0.75, 
1.0, 2.0, 3.0, 4.0 s; (4) geometrical mean of the horizontal components; (5) range of return 
periods between 30 and 2475 years.2

One of the tasks of MPS19 is focused on the prediction models for strong motion param-
eters, named Ground Motion Models (GMMs), and for macroseismic intensity to be used 
in the hazard calculations. In MPS04, the GMMs selected for shallow active crustal seis-
micity were those proposed for the maximum of the horizontal components by Sabetta and 
Pugliese (1996) for Italy and by Ambraseys et al. (1996) for Europe (see Montaldo et al. 
2005). The selected models were also scaled according to Bommer et al. (2003) to account 
for different style of faulting and distance metrics. In addition, local GMMs derived from 
weak motions (Malagnini et al. 2000, 2002; Morasca et al. 2006) were included, in order 
to account for regional attenuation features in different areas of Italy (see Montaldo et al. 
2005).

The GMMs selection for MPS04 was not supported by an objective measurement of 
the performance of the candidate models against the data, also because the available 
accelerometric records of strong events in Italy before 2004 are very few and the num-
ber of available GMMs was limited. Nowadays, considering the dramatic growth of the 
seismic networks in Italy and the occurrence of three major sequences in the past last 
ten years (L’Aquila, MW 6.1,3 2009, Emilia, MW 6.0, 2012 and Central Italy, MW 6.0 and 
6.5, 2016–2017), the number of recorded data available to test the GMMs has increased 

1  The rock site conditions correspond to the definition of site category A in the NTC08, i.e. rock or rock-
like formations with average shear wave velocity VS,30 > 800  m/s, with the exception of maximum 3  m 
of weaker material at the surface. This description is partially modified in the latest release of the Ital-
ian Building Code (NTC18), where category A is defined as rock or rock-like formations with shear wave 
velocity VS > 800 m/s, with the exception of maximum 3 m of soil with VS lower than 800 m/s.
2  The range of return periods is coherent with the requirements of the Italian Building Code (NTC18) for 
the seismic design of the structures (reference periods from 50 to 100 years). The corresponding annual 
probabilities of exceedance are in the range 3 × 10–2–4 × 10–5.
3  All the values of the local and moment magnitudes, reported in this paper, are derived from ITACA (ITal-
ian ACcelerometric Archive, itaca.mi.ingv.it) database.
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exponentially. The availability of this great volume of data allows us to prepare a very 
large and qualified dataset of accelerometric recordings for the GMMs testing.

The strategy followed in the selection of the GMMs mimics the procedure imple-
mented by Delavaud et  al. (2012) to construct the ground-motion logic tree for the 
Probabilistic Seismic Hazard Assessment (PSHA) in Europe, in the framework of the 
EU project SHARE (Woessner et al. 2015, https​://www.share​-eu.org/). In particular, the 
final outcome is given by the combination of both objective models testing and expert 
judgment: the first approach aims at minimizing the role of subjectivity in PSHA, which 
has been often the main target for criticism (Roselli et  al. 2016) and the second one 
should compensate some limits derived from the use of the data only and help in the 
evaluation of the predictive power of the GMMs (Bindi 2017). As a matter of fact, 
strong motion data are relatively few especially for the seismic scenarios that mainly 
contribute to the hazard, i.e. strong earthquakes and sites located in near field condi-
tions. We believe that this approach could return a hazard model that captures “the 
center, the body and the range” of possible ground motions in Italy.

In the following, the procedure to pre-select and rank the GMMs for the Active 
Shallow Crustal Regions (ASCRs) and Subduction Zones (SZs) in Italy is detailed. On 
the basis of the scoring results, few models are finally selected to be implemented in 
the new Italian hazard model. None of the available GMMs for the volcanic areas are 
able to satisfactorily predict the ground motion amplitudes observed recently in Italy 
(2018–2019 Mount Etna sequence, mainshock 26/12/2018  MW 4.9, and 2017 Ischia 
event, 21/08/2017  MW 3.9), especially in near-source conditions (Lanzano and Luzi 
2020). For this reason, the selection of the models for the volcanic earthquakes and 
the relative weights assignment were completely carried out on the basis of the expert 
judgement.

2 � Preliminary selection of the GMMs for ASCRs

The candidate GMMs are obtained from the list compiled by Douglas (https​://www.gmpe.
org.uk; the database was accessed in 2016), who reports the main features of more than 300 
empirical GMMs, published in literature. As a first criterion, we select models for ASCRs 
that calibrate GMMs both for PGA and Spectral Acceleration (SA) ordinates, using the 
same dataset. To restrict the number of empirical GMMs available, we adopt the criteria 
by Cotton et al. (2006) and, more recently, by Bommer et al. (2010), rejecting models: (1) 
derived for an inappropriate tectonic regime; (2) not published in a peer-reviewed journal; 
(3) with insufficient documentation on the calibration dataset; (4) superseded by a more 
recent publication; (5) with the period range not appropriate for engineering applications; 
(6) with inappropriate functional form (i.e. lacking either non-linear magnitude depend-
ence or magnitude-dependent decay with distance); (7) obtained with inappropriate regres-
sion method. We then add further criteria, that are project-specific, i.e. we reject models: 
(8) not applicable on the whole national territory (avoiding local models); (9) based on 
magnitudes different than moment magnitude MW; (10) with the range of applicability too 
small for the requirements of MPS19 (narrow range of magnitude or distance); (11) with 
intensity measures (IMs) not defined as the geometrical mean (GM) of the horizontal com-
ponents or the RotD50 (Boore 2010); (12) with the range of response periods incompatible 
with the requirement of MPS19, chosen to be from 0.05 to 4 s, or for very few periods.

https://www.share-eu.org/
https://www.gmpe.org.uk
https://www.gmpe.org.uk
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The candidate models after the pre-selection are given in Table 1, where the character-
istics of the GMMs are reported in terms of magnitude and distance ranges, period ranges 
and site classes.

The proposed 12 rules are easy-to-use for the pre-selection, but the strict application 
leads to the exclusion of several models. Some caveats, that lead us to allow some excep-
tions in the pre-selection, are:

•	 Models versioning (criterion 4): when same (or a part of the) authors decided to pub-
lish an update of a GMM, the new one not necessarily replaces and supersedes the pre-
vious model. As a matter of fact, the increase of the dataset, a new functional form and 
more modern procedure to calibrate the equations could lead to results that could not 
improve the predictions of the previous model;

•	 Inadequate range of periods (criterion 12, sub-criterion #1): few models (i.e.  ITA10, 
AB10 and BND14) are available for a range of periods which is slightly narrower than 
that required by MPS19 (0.05–4 s). As a matter of fact, such models were calibrated 
on a significant amount of analog records, with high pass filter generally higher than 
0.3 Hz (T = 3 s);

•	 Inadequate number of periods (criterion 12, sub-criterion #2): some models, especially 
with innovative functional forms and regression procedures, were proposed in literature 
for few illustrative spectral ordinates. The model application to other ordinates is pos-
sible via linear interpolation of the nearest periods. However, such interpolation could 
be rough if the period sampling is large. In our study, the lower limit is represented 
by the KS15 model, calibrated on 7 (+ 1 outside the MPS19 range) spectral ordinates 
(T = 0.01, 0.05, 0.1, 0.5, 1, 2, 3 and 4 s).

The pre-selection includes GMMs derived at different scales: (a) global, from world-
wide datasets; (b) pan-European, from datasets including European and Middle-East 
records; (c) regional, from national datasets, i.e. Italy. We also include models developed in 
other regions (e.g. Japan), that could be applied in Italy, because of the similar attenuation 
crustal properties (Boore et al. 2014). Moreover, we take into account that several so-called 
global or European models are often constrained by the data of the regions that mostly con-
tribute to the calibration datasets, such as the RESORCE models, which are Italian-biased 
(especially BND14), and CZ15, which is Japanese-biased.

Some models in Table 1 were developed for different distance metrics and/or for dif-
ferent parameters of the site effects modelling (VS,30 or site categories). In order to limit 
the number of the investigated models, we decide to include all the GMMs for different 
distances in the test, but to select only the predictive equations with site effect term that 
exhibits the best performance against the data (see §4 for the procedure). In particular, the 
model ASB14 by Akkar et al. (2014b) is proposed in terms of epicentral, Repi, hypocentral, 
Rhyp, and Joyner–Boore (RJB) distances; BND14 proposed predictive equations both for 
RJB and Rhyp.

Figure 1 shows the trellis plots of the spectral predictions of the candidate GMMs, assum-
ing rock site conditions (EC8 site category ‘A’ or VS,30 = 800 m/s) and normal faulting. The 
distances metrics (RJB and Rrup) are calculated following the procedure by Kaklamanos et al. 
(2011) and using the well-known empirical relations by Wells and Coppersmith (1994) for the 
fault geometry with a fixed dip of 45° and focal depth of 10 km. The epicentre is positioned 
at half-length and half-width of the surface fault projection. The recording site is assumed to 
be in hanging wall conditions, with RX > 0 and RY = 0 (see Ancheta et al. 2014 for distance 
notation in NGA-West2). The basin depth is not available for all the recording stations in Italy 
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located in alluvial plains and, for simplicity, is set as “unknown” for all the predictions of 
NGA-West2 models.

The trellis charts have been used by Stewart et al. (2015) to display the multidimensional 
predicted ground motion space to provide insight into the preselected GMMs. The plots of the 
median values allow the identification of outliers or models with similar behaviour. There are 
no anomalous predictions among the pre-selected GMMs, except for the model DBC14 (Der-
ras et al. 2014) for short distances (10 km) and high magnitudes (MW = 7.0).

In order to guide the selection of models to capture epistemic uncertainty, Fig. 2 shows the 
trend of the total standard deviation, σ, with period, considering two different magnitudes. The 
NGA-West2 models are heteroskedastic and the corresponding standard deviations decrease 
with increasing magnitudes; in the other cases, σ is constant. Note that the BND14 model in 
hypocentral distance exhibits large variabilities at long periods.

Fig. 1   Trellis plot of the median values of the GMMs pre-selected for ASCRs
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3 � ASCRs datasets

The dataset of recordings is derived from ITACA (ITalian ACcelerometric Archive https​://
itaca​.mi.ingv.it; Luzi et al. 2008, Pacor et al. 2011a) and ESM (Engineering Strong Motion 
Database https​://esm.mi.ingv.it; Luzi et  al. 2016) databases. The Active Shallow Crustal 
Regions (ASCRs) dataset matches the following criteria:

–	 The events have focal depth shallower than 30 km;
–	 Style of faulting and MW determined by moment tensor inversion, using the Regional 

Centroid Moment Tensor (Pondrelli et  al. 2011), or, when not available, the Time 
Domain Moment Tensor (Scognamiglio et al. 2009; Krieger and Heimann 2012).

Starting from the dataset used to derive the GMM by Bindi et al. (2011) we exclude sev-
eral analog records of poorly sampled events or lacking the style of faulting. We also add 
all the events, since 2009, with MW ≥ 5 and the well-sampled events (more than 15 records) 
with 4 ≤ MW ≤ 5, uniformly distributed on the national territory.

The events having MW ≥ 6.5 in Italy are represented only by the 1980 Irpinia (MW 6.9) 
and the Norcia earthquakes, which is the 2nd mainshock of the 2016 Central Italy sequence 
(MW 6.5). We increase the dataset in order to extend the maximum magnitude by adding 
well-sampled foreign events with MW up to 7.5 and known fault geometry. In particular, 
we select three events in Japan and three pan-European earthquakes (one in Greece, one 
in Turkey and one in Iran). The metadata of the foreign events are derived from the NEar-
Source Strong-motion (NESS) flatfile (Pacor et al. 2018).

The parametric table (named flatfile) of the testing dataset is available in csv format in 
the electronic supplement ESUPP1. The table is organised following the template of the 
Engineering Strong Motion (ESM) flatfile (https​://esm.mi.ingv.it/flatf​ile-2018/; Lanzano 
et al. 2019) and contains event and station metadata and intensity measures of the records. 
The meaning of the different fields (columns) of the flatfile is given in a supporting pdf 
document in the ESUPP1.

The location of the Italian events selected for the models scoring is shown in Fig. 3.
The shallow active crustal seismicity in Italy is mainly represented by events located 

along the Apennine chain, characterized by normal style of faulting and focal depth 

Fig. 2   Standard deviation versus period of the GMMs pre-selected for ASCRs at Mw = 4.0 (left) and 
Mw = 7.0 (right)

https://itaca.mi.ingv.it
https://itaca.mi.ingv.it
https://esm.mi.ingv.it
https://esm.mi.ingv.it/flatfile-2018/
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lower than 10 km (1980 Irpinia; 1996–1997 Umbria-Marche; 2009 L’Aquila; 2016–2017 
Central Italy).

The largest events in Northern Italy (Po Plain and Eastern Alps) are characterized by 
thrust faults and are related to two major seismic sequences (1976–1977 Friuli; 2012 
Emilia). Despite the large hazard in Southern Italy (i.e. Calabria and Eastern Sicily 
according to the MPS04 model), no events with MW > 6.0 occurred in the past 50 years, 
with the exception of the offshore MW 6.0 1978 Patti earthquake, characterized by 
strike-slip faulting.

The pan-European and Japanese events, included in the flatfile, are reported in Fig. 4.
The largest event is the 1999  MW 7.6 Izmit (Turkey) earthquake, characterized by 

strike-slip focal mechanism, while the reverse fault event with the largest magnitude is 
the 2008 MW 6.9 Eastern Honshu earthquake in Japan. The 1980 Irpinia (MW 6.9) earth-
quake is still the largest normal fault event in this dataset, as well as in the NGA-West2 
dataset.

Figure 5a shows the magnitude-distance distribution of the dataset: the records are 
4658, for 137 events and 1187 stations. Figure 5b reports the percentage contributions 
of different data into the testing dataset. The latest seismic sequences (2009 L’Aquila, 
2012 Emilia and 2016 Amatrice-Central Italy) contribute to about half of the dataset 

Fig. 3   Maps of the shallow crustal earthquakes in Italy, selected for the scoring of candidate GMMs as a 
function of moment magnitude, event depth and style of faulting

Fig. 4   Maps of the pan-European (a) and Japanese (b) shallow crustal earthquakes selected for the scoring 
of candidate GMMs
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(47%). The 6 foreign events have been recorded by 274 stations for a total of 266 wave-
forms, corresponding to the 6% of the total dataset.

The testing dataset partially overlaps those used to derive the selected GMMs of 
Table 1. In particular, there is a 17% overlap with Bindi et al. (2011), 10% overlap with the 
RESORCE dataset (Akkar et al. 2014a), used to derive several models such as Bindi et al. 
(2014) and Akkar et al. (2014b), and approximately 5% overlap with NGA-West2 database 
(used to derive Boore et al. 2014, Abrahamson et al. 2014 among others). The percentage 
is less than 5% for the models by Zhao (2006) and Cauzzi et al. (2015).

4 � Scoring methods

In decision theory, a scoring rule measures the accuracy of probabilistic predictions. It is 
applicable to problems in which predictions must assign probabilities to a set of mutually 
exclusive outcomes. A scoring rule should be also proper, i.e. the forecaster model maxi-
mizes the score for the set of data used to generate the model itself. It is also strictly proper 
if the maximum is unique (Gneiting and Raftery 2007).

For the purpose of measuring the performances of GMMs, the scoring is based on the 
residuals, calculated as the logarithmic difference between observations and predictions 
and normalized by the total standard deviations, which are assumed to be normally dis-
tributed. Since scoring methods already used for GMMs selection may have limitations 
(Arroyo et al. 2014; Roselli et al. 2016), we decide to adopt multiple scoring techniques 
to measure the performance of the models, since they should capture different aspects, rel-
evant for the hazard modelling, and help in capturing the epistemic uncertainty associated 
to GMMs.

We consider the following scoring methods: (1) Log-likelihood (LLH); (2) parimutuel 
gambling score; (3) quantile score. The latter two have never been used for this purpose 
and are detailed in the following sections. Additional details for scoring rules implementa-
tion are provided in the Appendix.

(b)(a)

3% 4%

10%

21%

16%
6%

9%

8%

23%

Before 1997 Umbria-Marche L'Aquila
Emilia Amatrice Foreign
M>=5 M=4.5-5.0 M=3.8-4.5

Fig. 5   a Moment magnitude–distance distribution; b Pie chart of the composition of the dataset. Distance is 
RJB for the events in Table 2, otherwise Repi
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4.1 � Log‑likelihood

For the first time, Scherbaum et  al. (2004) proposed an objective method to select and 
weight the GMMs using scores based on likelihoods. This proposal and following adjust-
ments (Scherbaum et al. 2009) have become very popular and have been promptly used for 
the selection of models in the framework of PSHA (Delavaud et al. 2012).

In particular, Scherbaum et  al. (2009) derived the selection procedure from an infor-
mation-theoretic perspective. In this context, the main issue is to determine the distance in 
the model space between the unknown model, representing the reality, and the candidate 
model, based on the concept of likelihood for a set of observations. The likelihood gives 
the probability of the observed data under a model.

Let us assume that we want to measure the likelihood of a model, described by a con-
tinuous probability density function g(x), given the set of independent observations x = {xi}
with i = 1…N. The log-likelihood of the model, given the sample set x is:

where N is the number of observations and the base b of the logarithm is set to 2 to obtain 
the results in bit. This method calculates the average log-likelihood for x, given by a nor-
mal density function characterized by its median and corresponding variance. The method 
is implemented for minimizing the LLH value when the model has the best performance.

The quality of LLH depends on the relationship between the model g and the set of 
observations x. If x has been used for the derivation of the model (e.g. for determination of 
the parameters), usually by maximizing the likelihood, the estimator is known to be biased 
or overfitted (Akaike 1973; Forster and Sober 1994). In this case the log-likelihood will 
underestimate the true information loss (the model will appear better than it really is) by an 
amount that depends on the degree of freedom of the model. Overfitting can be corrected 
by subtracting n/N to the LLH estimate, where n is the complexity of the model (here, 
the degree of the polynomial) and N the sample size. Moreover, Kale and Akkar (2013) 
observed that LLH method may lead to assigning an artificially better performance score 
to the predictive models with larger sigma if the observed data are accumulated away from 
the median estimations, because models with larger standard deviations can predict outlier 
observations with higher probabilities. Finally, Arroyo et  al. (2014) pointed out that the 
introduction of N in Eq. (1), included by Scherbaum et al. (2009) to obtain a measure that 
is independent of the sample size, is acceptable for model ranking, but it may be critical for 
model weighting (see also discussion in Delavaud et al. 2012).

4.2 � Parimutuel gambling score

The comparison of the performance of several GMMs can be considered in terms of gam-
bling or betting. Suppose that there are m bettors (or m models) and that at the end of every 
game they split the total sum of the bets (m, because each of them plays 1) in a way that 
reflects their forecast skill. The return of each bettor is the ratio of the amount that the bet-
tor wagered on the outcome to the total amount wagered on the outcome, multiplied by the 
size of the ‘pot’; hence the net return for the j-th forecast/model is denoted as the parimu-
tuel gambling score (Zechar and Zhuang 2014):

(1)logbL(x) = −
1

N

N
∑

i=1

logb
(

g
(

xi
))
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where N is the number of observations, pij = (1 − Φ) is the probability of the normalized 
residual of being exceeded and is evaluated from the cumulative normal distribution func-
tion (Φ).

The original parimutuel gambling score of Zhuang (2010) has been adapted for scoring 
GMMs in a way that the probabilities of exceedance are calculated for the absolute value of 
the residuals. Hence, the probability pij becomes 2(1 − Φ). The gambling scores can be pos-
itive or negative and the best performance is reached for the largest positive values. Differ-
ently from LLH, gambling scores can be regarded as probabilities, since the results depend 
on the number of the models (bettors) and the sum of the results of each bet is always 0.

4.3 � Quantile method

We consider probabilistic forecasts of a continuous quantity (e.g. strong motion variable) 
that take the form of predictive quantiles. Let assume that α is the desired quantile, r is 
the forecaster quantile and ω the observed value, the scoring rule is (Gneiting and Raftery 
2007):

The original quantile method has been adapted for scoring GMMs in a way that we 
account for the absolute value of the residuals. Hence, the quantile α becomes α1 = (1 + α)/2 
and r1 is relative to α1. In order to reward the models with positive highest scores, we mod-
ified Eq. (3), as:

The quantile is introduced because it penalizes the residuals on the tails of the distri-
bution to a greater extent than those in the body of the distribution are rewarded. In this 
analysis, we assume a quantile of level α = 95%.

5 � Results for ASCRs

The three scoring metrics are applied to four different testing datasets in order to verify the 
stability of the forecasting skill of each GMM and to examine the behavior of the predic-
tive models on the basis of the specific requirements of the MPS19. In particular, the sets 
of data, derived by initial one, are: (1) the complete dataset (named All); (2) a subset of 
records with stations classified as soil class ‘A’ according to EC8 (CEN 2003), i.e. with 
VS,30 > 800 m/s (named EC8-A); (3) a subset of events with magnitude larger than 5.0 and 
stations located at RJB < 50 km (named MR), since these magnitude and distance ranges are 
those mostly affecting the hazard estimates in Italy; (4) a validation subset without the Ital-
ian records preceding 2009 (named After 2009), in order to obtain a dataset independent 
by that used to calibrate the regional model ITA10. The latter subset is included in order 
to check the overfitting or bias-variance trade-off in the scoring analysis (Forster and Sober 
1994). In particular, if a predictive model is tested using the same set of data used to derive 
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it (or part of the dataset), its performance tends to be overestimated. Table 2 reports the 
number of records, stations and events in the testing sets.

The percentage of data of EC8-A and MR is about the 19% and 23% of the dataset All, 
respectively. In particular, 235 stations are installed at rock sites, according to geophysical 
measurements or topography proxies, and about 66 events have magnitude larger than 5.0. 
Moreover, thanks to strong increase of the permanent and temporary monitoring networks 
in the last years, the records of the After 2009 subset account for the 78% of All, though 
they are taken from only 61 events out of a total.

The scoring values for each IM (PGA and 12 SA ordinates) and each GMM (see 
Table 1) are reported in the ESUPP2 for each scoring rule (LLH, gambling and quantile). 
Figure 6 shows the scoring results as a function of vibration period for the candidate mod-
els for All and After 2009 datasets.

The largest differences in model performance can be observed at short periods, around 
T = 0.1–0.2  s, where the best performing GMM is ITA10. At longer periods the perfor-
mances are similar among models. Indeed, the dataset of ITA10 comprises a significant 
amount of analog records (more than 50%) and the high pass filter is generally equal or 
larger than 0.3 Hz (Pacor et al. 2011b). The results of the subsets All and After 2009 are 
very similar: this evidence reassures us that the overfitting effects are limited and the 
results are not significantly affected by the partial overlap between the testing and calibra-
tion datasets.

Figure  7 shows the results of the candidate GMMs for EC8-A and MR datasets. The 
results of EC8-A mirror and emphasize the results of All and After 2009. In particular, the 
gap between the best and the worst performing models is greater, especially at longer peri-
ods. The scores calculated using MR are lower and more similar than those observed for 
the other subsets: this evidence is not surprising, since the variability of the ground motion 
is generally lower at large magnitudes, as observed in the heteroskedastic models for alea-
tory variability (see for example the GMMs of NGA-West2 in Fig. 2). Finally, in relation 
to the caveats of the exclusion criteria discussed in the pre-selection section (see Sect. 2), 
KS15 seems to be not influenced by the linear interpolation of the nearest periods, since no 
bumps are observed in the scoring trend with period.

6 � Final selection for ASCRs and weights assignment

For the final selection of the GMMs to be used in MPS19, we consider only the results for 
EC8-A and MR subsets, since the two subsets highlight the GMMs performance on the 
basis of the fundamental requirements of the MPS19 model.

To obtain a global estimate of the performance of each model over all IMs and scoring 
rules, the scores are averaged considering five ordinates of the acceleration response spec-
tra at periods T = 0.1, 0.2, 0.5, 1 and 2 s. The choice of the ‘control’ periods is similar to 

Table 2   Records, events and 
stations of the four datasets for 
the scoring of the candidate 
GMMs

Dataset # Records # Events # Stations

All 4658 137 1187
EC8-A 891 109 235
MR 1072 66 427
After 2009 3636 61 1051
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Fig. 6   Scoring of the candidate GMMs (see Table 1 for the abbreviations). LLH (a, b), gambling (c, d) and 
quantile (e, f) for All (a, c, e) and After 2009 (b, d, f) datasets
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Fig. 7   Scoring of the candidate GMMs (see Table 1 for the abbreviations). LLH (a, b), gambling (c, d) and 
quantile (e, f) for EC8-A (a, c, e) and MR (b, d, f) datasets



3501Bulletin of Earthquake Engineering (2020) 18:3487–3516	

1 3

that proposed by Delavaud et al. (2012) and is necessary to equally account for the contri-
bution of different periods of interest for engineering applications.

In order to combine, in an objective way, the three different scoring metrics, an ordi-
nal un-normalized weight for each scoring metric is used, accounting for their cardinal-
ity. Moreover, our goal is to select few well-fitting models that capture the epistemic 
uncertainty, and sometimes the tested models exhibit very similar scores (few centesimal 
points of difference), that makes difficult to express a preference. In such sense, although a 
weighting scheme based on the cardinality enlarges the differences between the models, it 
is useful to produce a global rank and to support the final selection.

In particular, we assign 16 points to the best performing GMM and 1 point to the worst, 
on the basis of the scoring results for each method. The total un-normalized weight for each 
GMM (and for each subset) is then the sum of these three ordinal un-normalized weights. 
Tables 3 and 4 provide the average values of the scores, the un-normalized weights and the 
sum of each GMM for EC8-A and MR subsets, respectively.

ITA10 has a much better performance than the other models for EC8-A sites and it is 
particularly evident from the results of the gambling score. The GMMs that are mostly 
penalized are the European AB10 and the Japanese ZHA06. AB10 was calibrated only up 
to 100 km and for magnitude larger than 5.0 and, in addition, is characterized by a total 
σ lower than the other models. The performance of ASB14 (supposed to be an update of 
AB10) is generally better than AB10, with the exception of dataset MR. It suggests that 
ASB14 better captures the data attenuation with distance (distances larger than 50  km), 
while AB10 predicts well the large magnitude earthquakes in near fault conditions. In the 
case of ZHA06, the poor performance is probably related to the characterization of the 
sites: ZHA06 is based on a simplification of the NEHRP classification (BSSC 2001), i.e. it 

Table 3   Final rank of candidate GMMs for the dataset EC8-A 

UNW un-normalized weight
* The scores are averaged over 5 periods of the SA (0.1, 0.2, 0.5, 1 and 2 s)

GMMs LLH Gambling Quantile Total

Mean* UNW Mean UNW Mean UNW UNW

ITA10 1.888 16 0.329 16 1.143 16 48
ASB14 Repi 1.918 15 0.015 12 1.096 13 40
BND14 Rhypo 2.004 10 0.088 15 1.113 15 40
CZ15 1.979 12 0.040 13 1.098 14 39
ASB14 Rhypo 1.926 14 0.006 10 1.093 12 36
ASB14 Rjb 1.926 13 − 0.005 8 1.088 11 32
DBC14 2.095 6 0.053 14 1.041 9 29
BND14 Rjb 2.015 8 0.004 9 1.079 10 27
KS15 2.055 7 0.007 11 1.025 6 24
ASK14 1.985 11 − 0.084 3 1.028 7 21
CY14 2.014 9 − 0.046 4 1.032 8 21
BSSA14 2.127 5 − 0.037 5 0.967 5 15
CB14 2.167 4 − 0.017 7 0.965 4 15
IDR14 2.297 3 − 0.036 6 0.964 3 12
AB10 2.771 2 − 0.188 1 0.889 2 5
ZHA06 2.889 1 − 0.129 2 0.790 1 4
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merges classes that in the other models are separated (EC8-A up to 1100 m/s and EC8-B 
are in the same class). Conversely, the CZ15 classification is coherent with Italian and 
European classification schemes and the model exhibits a good performance, despite the 
calibration dataset is composed by many Japanese earthquakes.

As previously highlighted, the performance of the different models against MR subset 
is almost equivalent and the differences are small. This is also expected, since the near 
fault data are less affected by regionalization (Pacor et al. 2018). The relatively poor per-
formance of the NGA-West2 GMMs (ASK14, BSSA14, CY14, CB14 and IDR14) for MR, 
emphasized by the score’s cardinal assignment, is mainly due to the lower heteroskedastic 
σ at largest magnitudes (see Fig.  2), but it could be also related to the fact that several 
parameters (fault geometries, basin depths) of such models are not available in Italy and 
have been set as unknown or inferred from other parameters (according to Kaklamanos 
et al. 2011).

Summing up the total un-normalized scores of EC8-A and MR subsets, the grand-total 
score is obtained: (#1) ITA10 (93 points); (#2) BND14 Rhypo (82 points); (#3) CZ15 
(75 points); (#4) BND14 RJB (74 points); (#5) ASB14 Repi (66 points); (#6) DBC14 
(61 points); (#7) ASB14 RJB (58 points); (#8) ASB14 Rhypo and KS15 (57 points); (#9) 
CY14 (36 points); (#10) BSSA14 (30 points); (#11) ASK14, IDR14 and ZHA06 (29 
points); (#12) AB10 (25 points); (#13) CB14 (19 points).

The first three models (in bold) are selected for the seismic hazard estimation: worthy of 
note, without any a priori imposition, the selected GMMs are calibrated on different data-
sets, since the first one is regional (Italian), the second one is European, and the third one is 
global. The fourth-scoring GMM is a version close to the BND14 Rhypo, but considering a 
different distance metric, and the fifth one (ASB14 Repi) has a nonlinear description of the 

Table 4   Final rank of candidate GMMs for the dataset MR 

UNW un-normalized weight
* The scores are averaged over 5 periods of the SA (0.1, 0.2, 0.5, 1 and 2 s)

GMMs LLH Gambling Quantile Total

Mean* UNW Mean UNW Mean UNW UNW

BND14 Rjb 1.724 16 0.136 15 1.171 16 47
ITA10 1.760 15 0.151 16 1.154 14 45
BND14 Rhypo 1.835 13 0.127 14 1.165 15 42
CZ15 1.836 12 0.068 11 1.138 13 36
KS15 1.812 14 0.016 8 1.110 11 33
DBC14 1.861 11 0.032 9 1.114 12 32
ASB14 Rjb 1.925 6 0.082 13 1.060 7 26
ZHA06 1.883 8 0.007 7 1.082 10 25
ASB14 Repi 1.975 4 0.079 12 1.057 6 22
ASB14 Rhypo 1.994 2 0.038 10 1.061 9 21
AB10 1.880 10 − 0.094 5 1.042 5 20
IDR14 1.993 3 − 0.035 6 1.061 8 17
BSSA14 1.883 9 − 0.144 3 1.019 3 15
CY14 1.920 7 − 0.136 4 1.027 4 15
ASK14 1.948 5 − 0.164 1 1.013 2 8
CB14 2.021 1 − 0.164 2 0.989 1 4



3503Bulletin of Earthquake Engineering (2020) 18:3487–3516	

1 3

site effects but is calibrated on the same dataset of BND14. We propose to select the first 
three GMMs because, besides to show the best forecasting skill, they use different metrics 
for the distance.

Figure  8 shows the three selected GMMs with respect to the unselected models: for 
epicentral distances of 30 and 150 km, the median prediction of the selected GMMs (red 
lines) describes quite well the variability of all GMMs except for the worst performing 
ones (light gray lines). The variability of ground shaking assuming MW = 4.0 and epicen-
tral distances of 150 km is not well described, but these magnitude-distance values are of 
scarce interest for PSHA purposes.

For epicentral distances of 10  km, we note that the dispersion among the selected 
GMMs describes reasonably well the variability of all the other models for spectral 
periods above about 0.5  s; exceptions are associated with the few worst performing 

Fig. 8   Trellis plot of the median predictions of the pre-selected models (Table 1) for EC8 class A and nor-
mal faulting. Red curves are the selected GMMs; the dark gray curves are associated to the GMMs with 
grand-total score from 57 to 74; the light gray lines are the remaining GMMs with grand-total score from 
19 to 36
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GMMs (light gray lines) for MW = 4.0 earthquakes. The most remarkable difference is 
for spectral periods below 0.5  s; in this case, the selected GMMs yield lower ground 
shaking with respect to most of the other ones, in particular for the small and intermedi-
ate magnitude earthquakes (MW = 4.0 and 5.5).

In order to quantify the uncertainty related to the model predictions, we compute the 
model-to-model variability, σμ, following the approach proposed by Al Atik and Youngs 
(2014). The best performing model, i.e. ITA10, is considered as a reference model and 
σμ is calculated as:

where μ is the median prediction of the GMMs, the subscript i refers to the models from 
2nd to 16th place of the final rank and the subscript ref to ITA10; nm = 9 is the number of 
magnitude bins, in the range 4.0–8.0; nr = 34 are the distance bins, with a logarithmic spac-
ing in the range 0–200 km; ns = 3 is the number of focal mechanisms, i.e. normal, reverse 
and strike-slip styles of faulting. The predictions for the EC8-A site category or, alterna-
tively, VS,30 = 800 m/s are only considered. The number of the GMMs (np) varies from 2 
(first two ranked models) to 16 (all the preselected models): as np increases, the models are 
added following strictly the ranking results (Fig. 9).

The ratio between the σμ obtained for three selected models (np = 3) and the maxi-
mum value obtained from the pre-selected models varies from 79% (SA-T = 0.1  s) to 
100% (SA-T = 0.5  s). Moreover, σμ does not grow monotonously as increases by np 
and reaches maximum variability at different np values for each intensity measure 
considered.

An interesting aspect is how the three selected GMMs describe the aleatory variability: 
in Fig. 10 we show the standard deviation, � , for each GMM. The three selected models 
(red lines) have nearly always the largest � , which may explain the good forecasting skill. 
This result is in agreement with Roselli et al. (2016) that analyzed the performance of sev-
eral GMMs applied to the Italian territory and found that the forecasting performance is 
correlated with � as shown in Fig. 10.
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The weight of each selected GMM is a combination of two different evaluations: 
(1) a weight based on the testing phase described above, W1, and (2) a weight derived 
by expert judgment, W2. The normalized weight W1 for each selected model i, W1,i, is 
calculated as:

where UNW i is the grand-total score of the i th model and i  = 1, 2 and 3 corresponds to 
ITA10, BND14 and CZ15, respectively.

In order to preserve homogeneity, an experts’ elicitation is carried out following 
the same procedures adopted for the scoring of the seismicity rate models in MPS19 
and for the probabilistic tsunami hazard map in the Mediterranean area (TSUMAPS-
NEAM; Basili et al. 2019), which are both rooted in a procedure that is named Ana-
lytic Hierarchy Process (AHP). AHP is a multi-criteria decision-making method that is 
useful to make decisions under complex problems (Saaty 1980), breaking down into a 
series of pairwise comparisons and taking also into account for the subjectivity in the 
decision. Moreover, the process includes techniques for consistency checks the of the 
expert opinions, thus reducing the bias in the process. To this purpose, seven experts 
have been selected among the scientific coordinators of the project not involved in any 
of the selected GMMs. Specifically, experts have been elicited on scoring the GMMs 
on their reliability to describe the ground shaking in Italy via a questionnaire (Basili 
et al. 2019). The outcomes of the elicitation process are expressed in terms of weights, 
W2, similarly to those obtained from the objective scoring W1.

The final weight of the selected GMMs is calculated as:

where C is a normalization factor that sets W in the range [0,1]. The normalized weights 
from scoring, W1, the experts’ elicitation weights, W2 and the final weights, W, are given 
in Table  5: the weights obtained from scoring are quite similar and ITA10 is slightly 
favored. Instead, it appears clear that experts tend to decisively favor the regional model 
with respect to models calibrated on a wider set of data.

(6)W1,i =
UNWi

∑3

i=1
UNWi

(7)Wi = W1,i ×W2,i∕ C(i = 1, 2, 3)

Fig. 10   Total standard deviation � as a function of the spectral periods for different magnitudes. Red curves 
are the selected GMMs; the dark gray curves are associated to the GMMs with grand-total score from 57 to 
74; the light gray lines are the remaining GMMs with grand-total score from 19 to 36
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7 � Selection and weighing of GMMs for the subduction zone (SZ)

The subduction zone (SZ) in Italy corresponds to the Calabrian Arc, located in the south-
ern Tyrrhenian sea. The geometry of the subduction surface has been reconstructed by 
Maesano et al. (2017) for TSUMAPS-NEAM and has been also adopted in MPS19. The 
scoring procedure, detailed in the previous sections, is repeated for selecting the GMMs to 
predict the ground motion in the subduction zones. The SZs candidate models are reported 
in Table 6.

The list of GMMs, after the application of the rejection criteria (see Sect. 2), includes 
models for Hellenic Arc (Skarlatoudis et al. 2013), Japan (Zhao 2006) and for worldwide 
events (Abrahamson et al. 2016), while there are no GMMs specifically derived for Italy. 
Several existing models are disregarded, mainly for the minimum magnitude of the GMM 
that is generally larger than 6.0. Although the functional form does not include a non-linear 
scaling with magnitude, we keep in the list HEL13, because it is the only model calibrated 
for the Mediterranean area and we want to check the similarities between the subduction of 
the Hellenic and Calabrian arc in terms of ground motion.

Trellis plots of the median predictions and standard deviations, σ, of the candidate 
GMMs are reported in the electronic supplement (ESUPP3): the total σ of each candidate 
model are generally higher with respect to those observed for ASCRs. Note that HYDR15 
has a lowest constant σ over all periods (0.74 ln units).

For the strong motion testing dataset, we collect the records of the events with depth 
larger than 40 km in Ionian Sea and Calabria and the deepest events (focal depths larger 
than 80 km) in the Southern Tyrrhenian Sea. Figure 11 shows the location of the events 
and the magnitude-distance distribution.

The depth distribution of subduction events shows a lack of seismicity in the range 
80–150  km, also confirmed by the earthquakes distribution analysed in Chiarabba et  al. 
(2008) and Maesano et  al. (2017), and considered in the seismogenic source model of 
MPS19. The maximum (moment) magnitude of the dataset is 5.8 and corresponds to 
the 26/10/2006 earthquake, located in the Southern Tyrrhenian Sea with focal depth 
h = 220 km.

For the residual calculation, the events of the dataset must be classified in interface and 
in-slab: “interface earthquakes are shallow angle thrust events that occur at the interface 
between the subducting and overriding plates; in-slab earthquakes occur within the sub-
ducting oceanic plate and are typically high-angle, normal-faulting events responding to 
downdip tension in the subducting plate” (Youngs et  al. 1997). From engineering point 
of view, “in-slab events produce on average larger near-source amplitudes than interface 
events, but these amplitudes attenuate much faster” (Beauval et al. 2012).

The classification schemes to discern between interface and in-slab events, proposed 
by Zhao et al. (2015) and Garcia et al. (2012) among others, are not applicable to the SZs 
dataset, because several event metadata (e.g. focal mechanism) are lacking or of poor qual-
ity. We prefer to adopt the simplified classification by Skarlatoudis et  al. (2013), mainly 

Table 5   W1: normalized weight 
from scoring; W2: experts’ 
elicitation weight; W: final 
weight according to Eq. (7)

GMMs W1 W2 W

ITA10 0.37 0.423 0.45
BND14 Rhypo 0.33 0.328 0.32
CZ15 0.3 0.259 0.23
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based on depth and spatial location, considering the geometry of the model proposed by 
Maesano et al. (2017): interface events are located in Calabria and Ionian Sea with hypo-
central depths in the range 20–40 km; in-slab events have focal depth larger than 30 km 
and are located in the Southern Tyrrhenian Sea.

Adopting this classification scheme, the interface seismicity is poorly represented in the 
dataset (only 5 events) and we prefer to restrict the ranking analysis only to the in-slab 
events, consistently with MPS19 choice to consider only the slab surface as a seismogenic 
source in the hazard model configuration.

HYDR15 and HEL13 also require, as input parameter, a flag to identify stations in back-
arc or fore-arc position, since they are characterized by different rate and characteristics of 
ground motion attenuation (Abrahamson et al. 2016): the fore-arc region is located between 
the subduction trench axis and the axis of volcanic front, while the back-arc region is on 
the opposite side of the volcanic front. In our case, the stations located in the islands of the 
Tyrrhenian sea (i.e. Stromboli, Lipari, Ustica) are classified as back-arc, while the remain-
ing sites are in fore-arc region.

The SZs dataset is composed by 923 waveforms of 24 in-slab events, recorded by 100 
stations. The flatfile is available in the electronic supplement ESUPP4 and is arranged 
according to the same structure of ASCRs flatfile (ESUPP1). The data selection is car-
ried out considering waveforms from accelerometers and broadband instruments of events 
with local magnitude larger than 4.0. In order to avoid oversampling, we prefer to use the 
records of broadband instruments rather than those of co-located accelerometers.

Figure 12 shows the trend of the scoring values with period for the candidate models of 
Table 7. The scoring values for each IM (PGA and 12 SA ordinates) and each GMM are 
also reported in the ESUPP5 for each scoring rule.

As a general comment, the values of LLH and quantile scores show a worse perfor-
mance of GMMs for SZs compared to those observed for ASCRs and this evidence can 
be caused by the absence of a model tailored for the area under investigation. The perfor-
mance of HEL13 and HYDR15 are quite equivalent: HYDR15 has a better performance at 
short periods, while HEL13 at long periods. ZHA06 has instead a poor performance at all 
periods.

Table 7 shows the mean values and the un-normalized weights of the candidate mod-
els for each scoring rule. The scores are summed up in order to obtain a final rank and 

Fig. 11   Maps of the location of the events selected for the scoring of GMMs for SZs. Left: magnitude; cen-
tre: focal depth. Right: magnitude–distance distribution of the testing dataset
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the normalized weights, W1, according to Eq. (6). The latter have been combined with the 
weights obtained by expert judgment, W2, using Eq. (7), in order to set the weights, W, to 
be adopted in the hazard calculation.

Considering that the final weight W1 of the ZHA06 model is very small, we finally 
decide to disregard this model and re-calculate the final weights, W, only for the two 
remaining models (HEL13 and HYD15).

8 � Conclusions

A strong effort has been spent by the Italian scientific community in the last years to derive 
the new probabilistic seismic hazard model, named MPS19. In this framework, particular 
attention is devoted in the selection of the GMMs, testing the reliability of the median pre-
diction and properly assessing the contribution of aleatory and epistemic uncertainties. The 
general philosophy adopted in MPS19 for the ground motion prediction equations is to take 
advantage of the many recent models published in literature, without developing specific 
new models. The procedure is, as much as possible, transparent and repeatable.

We first apply several exclusion criteria, modified after Cotton et al. (2006) and Bom-
mer et al. (2010), to the long list of GMMs provided by John Douglas (https​://www.gmpe.
org.uk/, last access 2016). We add some models that do not strictly meet all the exclusion 
criteria also to test the robustness of the pre-selection process. A shorter list of 16 models 
is then obtained.

Fig. 12   Scores of the models selected for SZs as function of period. a LLH; b gambling parimutuel score; c 
quantile score

Table 7   Final rank of GMMs for SZs

UNW un-normalized weight, W1 normalized weight from scoring, W2 experts’ elicitation weight, W final 
weight according to Eq. (7)
* The scores are averaged over 5 periods of the SA (0.1, 0.2, 0.5, 1 and 2 s)

GMMs LLH Gambling Quantile Total W1 W2 W

Mean* UNW Mean UNW Mean UNW UNW – – –

HEL13 3.465 3 0.282 2 0.686 3 8 0.44 0.50 0.53
HYD15 3.773 2 0.591 3 0.643 2 7 0.39 0.50 0.47
ZHA06 8.113 1 − 0.605 1 0.320 1 3 0.17 – –

https://www.gmpe.org.uk/
https://www.gmpe.org.uk/
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We use three proper scoring methods, two of them introduced in the framework of 
MPS19 to test the pre-selected GMMs. The use of multiple scoring rules lies in the aim 
of climbing some caveats of the most popular methods, such as LLH (Arroyo et al. 2014; 
Roselli et  al. 2016), and helping in the best representation of the epistemic uncertainty 
related to ground motion predictions.

The testing methods are based on the residuals, calculated as the logarithm differ-
ence between the observations and the model predictions, normalized w.r.t. the standard 
deviation. The experimental data are derived by the Italian and European accelerometric 
archives (ITACA and ESM) for the shallow active crustal regions (ASCRs) and subduction 
zones, using, as much as possible, qualified and well-referenced metadata associated. The 
dataset for ASCRs is mainly composed by events occurred in Italy, plus few foreign events, 
selected to extend the magnitude of the dataset to 7.5, close to the maximum magnitude 
used for the PSHA calculation.

In order to highlight the performance of the GMMs as a function of the main require-
ments of the MPS19 model, the scoring results are obtained on the basis of two subsets: the 
first one is composed of strong motion records of rock sites (EC8 category A); the second 
one is composed by records of large magnitude events (MW > 5.0) in near source conditions 
(RJB < 50 km). The scoring results are still affected by aleatory sigma of the models, pick-
ing up the performances of models with larger standard deviations. In such way, GMMs 
with heteroskedastic sigma, such as NGA-West2 models, may be disadvantaged more than 
necessary.

A procedure is developed to take into account the results of the various scoring methods 
using un-normalized weights and to emphasize the differences among the scoring results 
allowing us to express a preference in the model selection. Three best performing models 
are finally selected for shallow active crustal regions, that are the regional model for Italy 
in Joyner–Boore distance (Bindi et  al. 2011), a pan-European model in hypocentral dis-
tance (Bindi et al. 2014) and a global model in rupture distance (Cauzzi et al. 2015). The 
weights derived from scoring procedure are combined with those assigned by experts dur-
ing an elicitation process, in order to have the final weight for each model.

The procedure is repeated for subduction zones in Italy, which correspond to the 
Calabrian Arc in the Southern Tyrrhenian Sea. The models, selected for the in-slab seis-
mogenic source, are those proposed for the Hellenic Arc by Skarlatoudis et al. (2013) and 
for worldwide subduction events by Abrahamson et al. (2016). However, in this case, the 
tested GMMs are not able to satisfactorily describe the ground motion in such zone, as 
returned by the scoring results. Future efforts should be paid in calibrate a regional model 
or introduce a proper regionalization in existing global models for Calabrian Arc.
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Appendix

Gambling score

The residuals are calculated for each model and are normalised to their standard deviation. 
The probability of the normalised residual not to be exceeded is evaluated from the normal 
cumulative distribution function (Φ) and the corresponding probability of being exceeded 
is pij = (1 − Φ), where i are the observations and j the models, as shown in Fig.  13, top 
panel.

As for GMMs we are interested in the distance from the median of the model, the gam-
bling score model has been modified in a way that the probabilities of exceedance are cal-
culated for the absolute value of the residuals. The probability of not being exceeded is 
therefore pij = 1 − Φ (Fig. 13, bottom panel). A matrix i × j of i = 1,…R rows (R = number of 
observations) and j = 1,…m columns (m = number of models) is created (Fig. 14).

The probabilities of not being exceeded of each residual (pij) for each model are normal-
ised to the sum of probabilities for all models:

Normalised probabilities sum up to 0 as:

(8)Rij = pij
1

∑m

j=1
pij

Fig. 13   Normal probability den-
sity function of the residuals for 
single tail (top panel) or double 
tails test (bottom panel)
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The average score of each model is:

All G’s sum up to 0 and the maximum G value indicates the best performing model.

Quantile method

As for the parimutuel gambling score, the quantile score is applied to the normalized resid-
uals. Given a quantile q of order α (Prob{Z ≥ q} = α), the Z-score associated to the quantile 
is obtained (qα), through the normal inverse cumulative distribution function. The quan-
tile method has been adapted for scoring GMMs in a way that the quantile α becomes 
α1 = (1 + α)/2 and r1 is relative to α1 (two tails test in Fig. 13).

If zα1 is the absolute value of the normalised residual, the score g(zα1):

In Fig. 15, the score g(zα1) is plotted as a function of the normalized residual zα1 for 
different values of the quantile q. Reducing the q value, the positive gain becomes larger, 
increasing the score of the best fitting models (with lowest absolute values of residuals).

The total score of a model Gj for the R observations is:

(9)Sij = −1 + mRij

(10)Gj =
1

R

R
∑

i=1

Sij

(11)g
(

z𝛼1
)

=

{ (

z𝛼1 − r1
)(

1 − 𝛼1

)

if
(

z𝛼1 ≤ r1
)

(

z𝛼1 − r1
)(

−𝛼1
)

if
(

z𝛼1 > r1
)

(12)Gj =

R
∑

i=1

gij
(

z�1
)

Fig. 14   Matrix of the pij = 1 − Φ
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