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Abstract
Seismic soil–structure interaction (SSI) of structure with shallow foundation is studied 
using response spectrum method (RSM). A SSI model is first constructed with the con-
sideration of the coupling of horizontal and rocking motions of structural foundation. In 
this model, the structure is modelled by finite elements and the soil by the accurate lumped 
parameter model (LPM) based on rational approximation. The SSI model is a non-classi-
cally damped system due to introducing damping of LPM. Complex mode superposition 
RSM is subsequently applied to solve the non-classically damped SSI system under design 
response spectrum. Seismic responses of 3-story and 6-story shear structures on two types 
of sites are finally calculated using the SSI model and RSM. The numerical experiments 
indicate that RSM can be an effective tool to analyze seismic SSI of structure with shallow 
foundation, and some conclusions are drawn: (1) the coupling of horizontal and rocking 
motions of foundation should be considered for relatively high structure on soft soil site, 
(2) the rational-approximation-based LPM is more accurate than the simple one, (3) the 
over-damped case can be neglected in the complex mode superposition process although 
it arises at fundamental frequency, and (4) the quasi spectrum transform relationship can 
be used to obtain the relative displacement and relative velocity response spectra from the 
given absolute acceleration design response spectrum.

Keywords  Seismic soil–structure interaction · Response spectrum method · Lumped 
parameter model · Non-classical damping · Seismic design · Shallow foundation

1  Introduction

Soil–structure interaction (SSI) (Wolf 1986, 1988; Carbonari et al. 2011; Xiong et al. 2016; 
Zhao et al. 2017; Abel et al. 2018; Huang et al. 2017, 2020) significantly affects seismic 
responses of infrastructures, such as high-rise buildings, nuclear power plants, large-span 
bridges, underground structures and so on. In order to perform seismic analysis consider-
ing SSI, the suitable numerical model and method should be developed.
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Substructure model (Wolf 1994) has been widely adopted in seismic SSI analysis of 
aboveground structures. The model divides the whole SSI system into two substructures, 
i.e., a structure with rigid foundation and a massless rigid foundation–soil system. The for-
mer is modeled by finite element method so as to perform seismic analysis and design of 
the structure. Only the seismic SSI effects of the latter, including complex stiffness and 
earthquake input, require to be considered in the substructure model.

To consider the complex stiffness in time domain, the massless rigid foundation–soil 
system is usually modelled as a lumped parameter model (LPM) (Wolf 1986, 1994; Barros 
and Luco 1990; Jean et al. 1990; Lesgidis et al. 2015; Carbonari et al. 2018; González et al. 
2019) that consists of springs, dashpots and mass elements. The LPMs can be divided into 
two main categories, namely the approximate models and the relatively accurate models. 
The latter is more complex due to the introduction of many auxiliary degrees of freedom. 
For relatively high structure on soft soil site, the rocking motions of structural foundation 
may cause significant influence on seismic response of structure. In such cases, the LPM 
systems have been developed to consider the coupling of horizontal and rocking motions of 
foundation (Wolf 1994; Wolf and Paronesso 1991; Wolf and Paronesso 1992; Du and Zhao 
2010).

To consider the earthquake input, the so-called effective foundation input motion, that 
is the foundation response of the massless rigid foundation–soil system under earthquake 
action, should be first obtained and then transformed into an equivalent loading acting on 
the structural foundation (Wolf 1994). For the shallow surface foundation, the effective 
foundation input motion is equal to the free field motion (site response) on the ground sur-
face (Wolf 1994).

The response spectrum method (RSM) (Sutharshana and Mcguire 1988; Berrah and 
Kausel 1992; Singh et al. 2000; Chopra 2011) has been widely incorporated into the codes 
for seismic analysis and design of aboveground structures in many countries (BSL 2000; 
Eurocode 8 2003; ICC 2003; GB 2010) due to its simplicity and efficiency. Recently, the 
method has also been developed for seismic SSI analysis of underground structure (Zhao 
et al. 2019). The LPM including dashpot elements will make the SSI model into a non-
classically damped system. Based on the complex mode superposition RSM (Maldonad 
and Singh 1991; Der Kiureghian and Neuenhofer 1992; Yu and Zhou 2008; Wang and Der 
Kiureghian 2015; Liu et al. 2016; Chen et al. 2017), the non-classically damped system has 
been analyzed (Tongaonkar and Jangid 2003; AIJ 2004; Yu and Zhou 2007; Butt and Ishi-
hara 2012; Raheem et al. 2014; Bhavikatti and Cholekar 2017). However, in the existing 
works, (1) the coupling between horizontal and rocking motions of structural foundation 
is lacking, (2) only the simple approximate LPM is used, (3) no over-damped case arise in 
complex mode superposition analysis, and (4) no design response spectrum is applied.

In this paper, the seismic SSI of structure with shallow foundation is solved by applying 
RSM to the substructure model, in which the coupled motions of horizontal and rocking 
of structural foundation are considered. An accurate rational-approximation-based LPM is 
used to consider the soil complex stiffness in time domain. The over-damped cases arise 
in complex mode superposition. The design response spectrum is applied to estimate the 
maximum seismic response of structure.

The resting parts of this paper are organized as follows. The structure with shallow 
foundation under earthquake is introduced in Sect. 2. The seismic SSI substructure model 
with LPMs is constructed in Sect. 3. The complex mode superposition RSM is summarized 
simply in Sect. 4. The numerical examples are given in Sect. 5 to indicate the effectiveness 
of RSM to analyze the seismic SSI of structure with shallow foundation. Conclusions fol-
low in Sect. 6.
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2 � Structure with shallow foundation under earthquake

Figure  1a shows the structure with shallow foundation setting on soil subjected to a 
horizontal earthquake motion. The seismic motion is given at the surface of soil site 
without the structure and foundation, and its displacement time history is denoted by ug.

The SSI is usually neglected to simplify the analysis. This model neglecting SSI is 
named as Model 1 in this paper. The Model 1 is the simple total fixity assumption. In 
this case, the displacement ug is enforced on the structure foundation, and the soil is not 
considered. As shown in Fig. 1b, the dynamic finite element equation of structure with 
respect to absolute motion can be written as

where � , �̇ and �̈ (or their scalar values) are the absolute horizontal displacement, veloc-
ity and acceleration, respectively; the subscripts R and B denote the degrees of freedom of 
superstructure and foundation, respectively; and � , � and � are the lumped mass, damp-
ing and stiffness matrices, respectively, with the bar over matrices denoting the degrees of 
freedom of structure including superstructure and foundation; the three matrices are all 
symmetric; the displacement boundary condition gives uB = ug ; and fB denotes the reaction 
force of soil to foundation.

The dynamic equation can be written as the following equation with respect to the 
motion relative to foundation (Chopra 2011), as shown in Fig. 1c.

where �̃R = �R − �ug denotes the relative motion; and I denotes the unit column vector here 
and all in this paper. The damping loading caused by seismic excitation is neglected on the 
right side of Eq. (2).
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Superstructure

Shallow 
foundation

Soil

(c)(a)

Bf
=B gu u

(b)

gu

Structure

Eq. (1) Eq. (2)

− R guM I

o x

y

Fig. 1   Structure with shallow foundation under horizontal earthquake excitation: a physical problem; and 
seismic analysis model neglecting SSI for b absolute motion and c relative motion
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3 � Seismic SSI model with LPMs

Two seismic SSI models are constructed in this section. One considers only the horizon-
tal motion of foundation, and the other considers the coupling of the horizontal and rock-
ing motions of foundation. In the two models, the rational-approximation-based LPMs are 
applied to consider the soil complex stiffness in time domain more accurate relatively. Such 
SSI models are used in this paper to investigate the effectiveness of different SSI models.

3.1 � Only horizontal motion of foundation

The seismic SSI model considering only the horizontal motion of foundation is shown in 
Fig. 2. It is named as Model 2 in this paper. The Model 2 accounts for foundation motion 
in the horizontal direction only. The physical problem is first divided and decomposed into 
three parts as shown in Fig. 2a. The corresponding structural model, LPM and seismic load 
are then presented as shown in Fig. 2b. The seismic SSI model is finally constructed with 
respect to the absolute and relative motions as shown in Fig. 2c.

3.1.1 � Structural model

After the finite element discretization, the dynamic equation of the structure including 
superstructure and rigid foundation can be written as the same form as Eq. (1) with respect 
to the absolute motion. Here, fB is the action force of the massless rigid foundation–soil 
system to the structure.

(a) (b) (c)

Fig. 2   Seismic SSI model considering only horizontal motion of foundation: a physical problem, b struc-
tural model, LPM and seismic load; and c seismic SSI model
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The total absolute response in the massless rigid foundation–soil system can be decom-
posed into the effective foundation input motion and its relative motion on the massless 
rigid foundation as (Wolf 1994)

where uF
B
 and uS

B
 are the effective foundation input motion and its relative motion, respec-

tively. For the shallow surface foundation, the effective foundation input motion is equal to 
the horizontal ground motion of soil site, i.e., uF

B
= ug (Wolf 1994).

3.1.2 � Rational‑approximation‑based LPM

The complex stiffness of the massless rigid foundation–soil system can be simulated by the 
LPM in time domain (Wolf 1994). An accurate and stable rational-approximation-based 
LPM has been developed by the authors (Du and Zhao 2010) as shown in Fig. 2b.

The complex stiffness relationship between the horizontal action force fB and horizontal 
relative motion uS

B
 on the massless rigid foundation is first presented in frequency domain as

where Sh(�) is the horizontal stiffness of the foundation; and � is the circular frequency 
with respect to time.

The horizontal stiffness is then simulated as an accurate and stable rational function of 
N order. The stiffness relationship Eq. (4) with the resulting rational function to replace the 
stiffness function is finally transformed into time domain as a LPM. The dynamic equation 
of LPM can be written as

with the motion vector of the auxiliary degrees of freedom due to the relative motion

and the spring, dashpot and mass matrices
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üS
B

�̈S
A

}
+

[
CBB �BA

�AB �AA

]{
u̇S
B

�̇S
A

}
+

[
KB �

� �

]{
uS
B

�S
A

}
=

{
−fB
�

}

�S
A
=
{
uS
1
uS
2
… uS

N

}T

KB = K0, CBB = C0 + C1, �BA = �T

AB
=
�
−C1 0 0 … 0

�
,

�AA =

⎡⎢⎢⎢⎢⎢⎢⎣

C1 + C2 −C2 0 … 0 0

−C2 C2 + C3 −C3 … 0 0

0 −C3 C3+C4 … 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 … CN−1 + CN −CN

0 0 0 … −CN CN

⎤⎥⎥⎥⎥⎥⎥⎦

and

�A =

⎡⎢⎢⎢⎢⎢⎢⎣

M1 0 0 … 0 0

0 M2 0 … 0 0

0 0 M3 … 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 … MN−1 0

0 0 0 … 0 MN

⎤⎥⎥⎥⎥⎥⎥⎦



3522	 Bulletin of Earthquake Engineering (2020) 18:3517–3543

1 3

 where K0 , Cn (n = 0, …, N) and Mn (n = 1, …, N) are the spring, dashpot and mass element 
parameters; and the superscript T denotes the matrix or vector transposition.

3.1.3 � Seismic load

To input earthquake on the substructure model, the effective foundation input motion uF
B
= ug 

is transformed into an equivalent load f F
B

 acting at the structural foundation (Wolf 1994). The 
seismic load is equal to that applied on the LPM of Eq. (5) to cause the effective foundation 
input motion. It can be written as

where �F
A
 is the motion vector of the auxiliary degrees of freedom due to the effective foun-

dation input motion.

3.1.4 � Seismic SSI model

Adding Eqs.  (6) to (5), then substituting Eq.  (3) into the result, and finally assembling the 
result with Eq. (1), the dynamic equation of the seismic SSI model with respect to the absolute 
motion could be obtained as

with

Transforming Eq. (7) into relative motion and neglecting the damping loading caused 
by seismic excitation on the right side of equation, after some manipulations, the finite 
element equation could be obtained as
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�̃ =
�
�̃T
R

uS
B

�ST
A

�T
, �̃R = �R − �ug and �̂ =

⎡⎢⎢⎣

�R � �

� MB �

� � �

⎤⎥⎥⎦
.



3523Bulletin of Earthquake Engineering (2020) 18:3517–3543	

1 3

3.2 � Coupled horizontal and rocking motions of foundation

The seismic SSI model considering the coupled horizontal and rocking motions of struc-
tural foundation is shown in Fig. 3. It is named as Model 3 in this paper. The Model 3 
incorporates the foundation rotation motion in a coupled manner compared with Model 
2. The model is first decomposed into three parts as shown in Fig. 3a. The correspond-
ing structural model, LPM and seismic load are then presented as shown in Fig.  3b. 
The seismic SSI model is finally constructed with respect to the absolute and relative 
motions as shown in Fig. 3c.

3.2.1 � Structural model

The dynamic equation of the whole structure including the superstructure and the rigid foun-
dation can be obtained by finite element discretization. The dynamic equation for the horizon-
tal degrees of freedom of structure can be written similarly to the Eq. (1) as

and the dynamic equation for the structural rotation satisfies the equilibrium equation as

where �R and uB denote the total absolute horizontal displacements of superstructure and 
rigid foundation, respectively; �B denotes the rotational angle (rocking displacement) of 
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Fig. 3   Seismic SSI model considering the coupled horizontal and rocking motions of foundation: a physical 
problem, b structural model, LPM and seismic load; and c seismic SSI model
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rigid foundation; JB = �T�R� is the moment of inertia of structure; fB and QB denote the 
action force and bending moment of the massless rigid foundation–soil system to the struc-
ture; and h is a column vector of the heights of structural degrees of freedom relative to 
foundation.

Pre-multiplying �T to the first equation of Eq. (9a) obtains

Combining Eqs.  (10) and (9b) to eliminate the term �T�R�̈R , and then assembling the 
result with Eq. (9a), after several manipulations, the structural dynamic equation with respect 
to absolute motion can be obtained as

For the surface massless rigid foundation–soil system under horizontal earthquake, the 
effective foundation input motion is the same whether or not the foundation rotation is consid-
ered. Therefore, only the total absolute horizontal motion on the foundation is decomposed as 
same as Eq. (3), even though the rocking motion of foundation is considered here.

3.2.2 � Rational‑approximation‑based LPM system

The complex stiffness of the massless rigid foundation–soil system arising from the coupled 
horizontal and rocking motions of the foundation can be simulated in time domain by a LPM 
system consisting three LPMs similar to Eq. (5), as shown in Fig. 3b.

The complex stiffness relationship between force (bending moment) and relative displace-
ment (rotational angle) on the massless rigid foundation is first presented in frequency domain 
as

where Sh(�) , Sr(�) and Sc(�) are the horizontal, rocking and coupling stiffness functions 
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where the subscripts 1, 2 and 3 denote the action forces (bending moment) corresponding 
to the horizontal, coupling and rocking LPMs, respectively.

Three modelled stiffness functions are then simulated as three accurate and stable 
rational functions of N order. The three stiffness relationships with the three resulting 
rational functions to replace the corresponding stiffness functions are finally transformed 
into time domain as three LPMs similar to Eq. (5). The dynamic equations of the horizon-
tal, coupling and rocking LPMs shown in Fig. 3b can be written respectively as

3.2.3 � Seismic load

As done in Sect. 3.1.3, the seismic loads, namely the applied force and bending moment 
are obtained by imposing the effective foundation input motion uF
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= ug on the LPM system 

of Eq. (14). They can be written as

with
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Transforming Eq. (16) into relative motion and neglecting the damping loading caused by 
seismic excitation on the right side of equation, after some manipulations, obtain the finite ele-
ment equation as

with the relative motion and the mass matrix of inertia force

4 � RSM for seismic SSI model

The seismic SSI model of Eqs. (8) or (17) is solved using the complex mode superposi-
tion RSM under earthquake design response spectra in this section. The complex mode 
analysis is first performed to consider the under- and over-damped cases (Inman and 
Andry 1980; Song et al. 2008; Yu and Zhou 2006). The RSM is then used with earth-
quake design response spectra input.
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�T�RR� + r2�B2B2

+ �B3B3
� r�B2A2

�B3A3

� �A1B1
� �A1A1

� �

� �A2B2
r�A2B2

� �A2A2
�

� � �A3B3
� � �A3A3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

and� =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�RR �RB −�RR� � � �

�BR KBB + KB1
+ KB2

−�BR� + rKB2
� � �

−�T�RR −�T�RB + rKB2
�T�RR� + r2KB2

+ KB3
� � �

� � � � � �

� � � � � �

� � � � � �

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

(17)� ̈̃� + � ̇̃� +��̃ = −�̂�üg

�̃ =
�
�̃T
R
uS
B
𝜃S
B
�ST
A1

�ST
A2

�ST
A3

�T

, �̃R =�R − �ug and �̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

�R � � � � �

� MB � � � �

� � 0 � � �

� � � � � �

� � � � � �

� � � � � �

⎤⎥⎥⎥⎥⎥⎥⎦
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4.1 � Complex mode analysis

Equations  (8) or (17) is a non-classically damped system due to the consideration of 
SSI using the rational-approximation-based LPMs. It can be decoupled by the complex 
mode analysis. The details on the complex mode analysis can be seen in the references 
(Foss 1958; Yu and Zhou 2008). It is summarized in brief as follows.

Equations (8) or (17) can be converted into a first order matrix equation as

with

The generalized eigenvalue problem corresponding to Eq. (18) can be written as

where � and � =
{
��T �T

}T are the generalized eigenvalue and eigenvector of Eq. (19), 
respectively. It can be easily proved that � and � is the complex eigenvalue and mode of 
Eqs. (8) or (17).

Using the above complex eigenvalues and modes, Eqs. (8) or (17) can be decoupled 
into the following N single-degree-of-freedom equations if the equation dimension is N.

where qj is the displacement response of the single-degree-of-freedom system; and �j and 
�j are the natural frequency and damping ratio of the system, respectively.

By the superposition of the solutions of the N single-degree-of-freedom systems, the 
displacement response of Eqs. (8) or (17) can be written as

where Aj and Bj are the real column vectors which are obtained from the function of 
modes.

4.1.1 � Under‑damped cases

For an under-damped equation in Eq. (20), the corresponding two eigenvalues are a pair 
of conjugate complex numbers. They can be written as

where i denotes the imaginary unit. The natural frequency and damping ratio of this under-
damping equation can be obtained from Eq. (22) as

(18)𝐑𝐗̇ + 𝐒𝐗 = −𝐄üg

� =

[
� �

� �

]
, � =

[
−� �

� �

]
, � =

{
̇̃�

�̃

}
and� =

{
�

�̂�

}
.

(19)(�� + �)� = �

(20)q̈j + 2𝜁j𝜔jq̇j + 𝜔2

j
qj = −üg for j = 1, 2,… ,N

(21)�̃ =

N∑
j=1

(�jqj + �jq̇j)

(22)𝜆j = −𝜁j𝜔j + i𝜔j

√
1 − 𝜁2

j
and 𝜆̂j = −𝜁j𝜔j − i𝜔j

√
1 − 𝜁2

j



3528	 Bulletin of Earthquake Engineering (2020) 18:3517–3543

1 3

where | | and Re() denote the modulus and real part of a complex number, respectively.
The two modes corresponding to the pair conjugate complex eigenvalues are also com-

plex conjugate, and can be expressed as �j and �̂j . Using this pair of conjugate complex 
eigenvalues and modes and the coefficient matrices of Eqs. (8) or (17), the two vectors in 
Eq. (21) can be written as

where

4.1.2 � Over‑damped cases

For an over-damped equation in Eq. (20), the corresponding two eigenvalues are two differ-
ent real numbers. They can be written as

The natural frequency and damping ratio of this over-damped equation can be obtained 
from Eq. (25) as

The two modes corresponding to the two real eigenvalues are also real, and can be 
expressed as �j and �̂j . Using the two pairs of real eigenvalues and modes and the coef-
ficient matrices of Eqs. (8) or (17), the two vectors in Eq. (21) can be written as

where

(23)�j =
|||�j

||| and �j = −
Re(�j)

|||�j
|||

(24)Aj = 𝜔j𝜁j�j − 𝜔j

√
1 − 𝜁2

j
�j and�j = Dj�j + D̂j�̂j

�j = −i(Dj�j − D̂j�̂j), Dj =
−�T

j
�̂�

2𝜆j�
T

j
��j + �T

j
��j

and D̂j =
−�̂T

j
�̂�

2𝜆̂j�̂
T

j
��̂j + �̂T

j
��̂j

.

(25)𝜆j = −𝜁j𝜔j + 𝜔j

√
𝜁2
j
− 1 and 𝜆̂j = −𝜁j𝜔j − 𝜔j

√
𝜁2
j
− 1

(26)𝜔j =

√
𝜆j𝜆̂j and 𝜁j =

𝜆j + 𝜆̂j

2

√
𝜆j𝜆̂j

.

(27)Aj = 𝜔j𝜁j�j − 𝜔j

√
𝜁2
j
− 1�j and�j = Dj�j + D̂j�̂j

�j = Dj�j − D̂j�̂j, Dj =
−�T

j
�̂�

2𝜆j�
T

j
��j + �T

j
��j

and D̂j =
−�̂T

j
�̂�

2𝜆̂j�̂
T

j
��̂j + �̂T

j
��̂j

.
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4.2 � Complex mode superposition RSM

The complex complete quadratic combination (Yu and Zhou 2008; Chen et  al. 2017) is 
adopted to combine the maximum responses of the N single-degree-of-freedom systems of 
Eq. (20) to obtain the maximum response of the seismic SSI system of Eqs. (8) or (17) as

where the scalar ũ , A and B denote an element of �̃ , � and � respectively at the same 
degree of freedom; | |max denote the peak value of time history; Sd

j
=
|||qj

|||max
 and Sv

j
=
|||q̇j

|||max
 

are the relative displacement and relative velocity response spectra of the jth equation in 
Eq. (20), respectively; and �dd

jl
 , �vd

jl
 and �vv

jl
 denote the displacement–displacement, displace-

ment–velocity, velocity–displacement, and velocity–velocity cross-correlation functions 
between jth and lth equations in Eq. (20), respectively, and can be written as

where g = �j∕�l.
The relative displacement and relative velocity response spectra with different damp-

ing ratios is required to solve Eq.  (28). When using single seismic signal, the response 
spectra can be obtained by solving Eq.  (20). When using the design response spectra, if 
the pseudo-acceleration response spectrum is given, the relative displacement and relative 
velocity response spectra can be obtained by using pseudo-spectrum transform relationship 
(Chopra 2011). On the other hand, the absolute acceleration design response spectrum is 
provided in the Chinese Code for Seismic Design of Buildings (GB 2010). It is shown in 
Fig. 4 with the damping ratio � , the characteristic period Tg, the peak ground acceleration 

(28)|ũ|max =

√√√√ N∑
j=1

N∑
l=1

(
𝜌dd
jl
AjAlS

d
j
Sd
l
+ 2𝜌vd

jl
BjAlS

v
j
Sd
l
+ 𝜌vv

jl
BjBlS

v
j
Sv
l

)

�dd
jl

=
8
√
�j�l(g�j + �l)g

3∕2

(1 − g2)2+4�j�lg(1 + g2) + 4(�2
j
+ �2

l
)g2

�vd
jl

=
4
√
�j�l(1 − g2)g1∕2

(1 − g2)2+4�j�lg(1 + g2) + 4(�2
j
+ �2

l
)g2

�vv
jl
=

8
√
�j�l(�j + g�l)g

3∕2

(1 − g2)2+4�j�lg(1 + g2) + 4(�2
j
+ �2

l
)g2

Fig. 4   Absolute acceleration design response spectrum in Chinese Code for Seismic Design of Buildings 
(GB 2010)
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amax , and the attenuation index of descending segment and the adjustment factor of damp-
ing, respectively, as

From the given absolute acceleration design response spectrum Sa , the relative displace-
ment and relative velocity design response spectra Sd and Sv can be obtained approximately 
by using the so-called quasi spectrum transform relationship as.

where � denotes the natural frequency of single-degree-of-freedom system.
The above method to obtain the quasi relative displacement and velocity response spec-

tra from the absolute acceleration design one is applicable to the under-damped cases of 
Eq. (20). Besides, the influence of over-damped modes on computational accuracy of RSM 
is evaluated in Sect.  5.3. Results indicate that the over-damped mode has less influence 
on accuracy of RSM even if it is arise from fundamental frequency and can therefore be 
neglected.

5 � Numerical examples

The seismic responses of a 3-story and a 6-story shear structures on two types of sites 
are calculated using the SSI model and RSM in this section. The problem is introduced 
in the first. The effects of the SSI on the seismic response of structure are then discussed 
using time history analysis method, including the foundation rocking effect and the differ-
ent LPM effect. The RSM is finally used and its effectiveness is verified by comparing with 
time history analysis.

5.1 � Problem statement

Figure 5 shows the 3-story and the 6-story shear structures with circular rigid foundation 
setting on the surface of homogeneous half-space elastic soil subjected to horizontal seis-
mic excitation. The radius and mass of foundation are 7 m and 2.513 × 105 kg, respectively. 
The mass moment of inertia of the rotational rigid structure for 3-story and 6-story struc-
tures are 4.916 × 106 kg/m2 and 6.858 × 106 kg/m2, respectively. With axial deformations 
in structural elements neglected, the mass of structures is lumped at the floor level, where 
mt denotes the mass at the tth floor, while kt denotes the condensed (lateral) stiffness term 
at the tth floor. The mass and stiffness coefficients are given as: m1 = m2 = m3 = m4 = m5 = 1.
036 × 105 kg, m6 = 8.679 × 104 kg; and k1 = k2 = 9.460 × 104 kN/m, k3 = 9.260 × 104 kN/m, 
k4 = k5 = 8.295 × 104 kN/m, k6 = 3.336 × 104 kN/m. The story heights are 3.658 m.

The damping matrix of structure complies Rayleigh rule, i.e., �RR = ��R + ��RR , 
where α and β are 1.0700 and 0.0013 respectively for 3-story structure basing on the modal 
damping ratio of 5%, and 0.6048 and 0.0023 for 6-story structure.

Two typical sites with homogeneous soil, namely Site 1 and Site 2, are selected to study 
the influence of different site conditions on structural response and calculation accuracy of 

(29)�= 1.0 +
0.05 − �

0.3 + 6�
and �= 1.0 +

0.05 − �

0.08 − 1.6�

(30-1)Sd ≈ Sa∕�2

(30-2)Sv ≈ Sa∕�
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RSM. The soil density of 1560 kg/m3, shear wave velocity of 117 m/s, and Poisson ratio 
of 1/3 are chosen for Site 1; and the soil density of 1670 kg/m3, shear wave velocity of 
253 m/s, and Poisson ratio of 1/3 for Site 2 are considered. The two sites belong to Class 
IV and II respectively according to the Chinese seismic code (GB 2010).

It is assumed that the structure is located in the region of a seismic intensity of Degree 
7. The corresponding peak ground acceleration (PGA) is 0.12 g and 0.10 g for Site 1 and 
Site 2 respectively (i.e. probability of exceedance of 10% in 50 years) according to the Chi-
nese seismic code (GB 2010), as shown in Table 1. Therefore, two different ground design 
response spectra as shown in Fig. 6 are used for the two sites. For each design spectrum, of 
which seven artificial ground motions are generated to be compatible with it. The response 
spectra of the seven artificial ground motions are also given in Fig. 6.

Half-space 
elastic soil

1m

2m

3m

4m

5m

5k

4k

3k

2k

1k

(b) 6-story shear type structure

Half-space 
elastic soil

3k

1m

(a) 3-story shear type structure

6m

6k

2m

3m

BMBM

gugu

1k

2k

1-th floor

2-th floor

3-th floor

4-th floor

5-th floor

6-th floor

1-th floor

2-th floor

3-th floor

Fig. 5   Structures with shallow foundation subjected to horizontal seismic excitation

Table 1   Adjustment coefficient 
of peak ground acceleration of 
site

Site category Peak ground acceleration of Class II site (g)

≤ 0.05 0.10 0.15 0.20 0.30 ≥ 0.40

I0 0.72 0.74 0.75 0.76 0.85 0.90
I1 0.80 0.82 0.83 0.85 0.95 1.00
II 1.00 1.00 1.00 1.00 1.00 1.00
III 1.30 1.25 1.15 1.00 1.00 1.00
IV 1.25 1.20 1.10 1.00 0.95 0.90
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5.2 � SSI effects on seismic response of structure

The seismic responses of the 3-story and 6-story shear structures on the two sites are 
calculated using time history analysis method. To study the effects of SSI on the seismic 
responses of structures, the Models 1, 2 and 3 mentioned above are all used for each 
case. In Models 2 and 3, the parameters of the rational-approximation-based LPMs are 
obtained according to the method in (Du and Zhao 2010) and are listed in Tables 2 and 
3, respectively. To study the effects by using different LPMs on the structural responses, 
the simple LPM consisting parallel spring and dashpot elements is used in Model 3, too. 
The parameters of the simple LPM are same as K0 and C0 of the rational-approximation-
based LPM. Signal 1 as shown in Fig. 6 is used for the time history analysis, and its 
acceleration time history is shown in Fig.  7. The numbers of degrees of freedom of 
models are presented Table 4.

Peak values of story drifts of the 3-story and 6-story structures are shown in Figs. 8 and 
9, respectively. The differences between the results using Model 1, Model 2 and Model 
3 with simple LPM and those using Model 3 with accurate rational-approximation-based 
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Fig. 6   Seismic acceleration response spectra with 5% damping ratio for a Site 1 and b Site 2

Table 2   Parameters of rational-
approximation-based LPM for 
Model 2

Site 1 Site 2

M
1

107,274 114,838
M

2
24,528 26,258

M
3

− 11,266 − 12,061
M

4
218,043 233,418

K
0

717,360,000 3,561,600,000
C
0

24,672,623 56,880,741
C
1

3,419,313 7,882,950
C
2

1,619,774 3,734,258
C
3

− 1,490,659 − 3,436,594
C
4

1,301,880 3,001,379
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LPM are calculated, and the maximum values among all floors are shown in figures. Some 
conclusions can be drawn for the 3-story structure from Fig. 8 as follows. For the soft soil 
Site 1, the SSI and rocking effects on structural responses are 7.73% and 13.29%, respec-
tively, and the effect of different LPMs is only 0.62%. For the relatively hard soil Site 2, the 
effects of above factors are all less than 2%. Moreover, the Model 2 considers the SSI in the 
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Fig. 7   Seismic acceleration time history of Signal 1 for a Site 1 and b Site 2

Table 4   Numbers of degrees of 
freedom of models

Model Model 1 Model 2 Model 3 with 
simple LMP

Model 3 with 
accurate LMP

3-story structure 3 8 5 20
6-story structure 6 11 8 23

Model 1 Model 2 Model 3 with accurate LPM
Model 3 with simple LPM

0 5 10 15 20

0.62%
7.73%
13.29%

(a)

PSD (mm)

3-th 
floor

2-th
 floor

1-th
 floor

0 5 10 15

0.11%
2.00%

1.18%

(b)

PSD (mm)

3-th 
floor

2-th
 floor

1-th
 floor

Fig. 8   Peak values of story drifts (PSD) of 3-story structure on a Site 1 and b Site 2 using four calculation 
models under Signal 1
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horizontal direction only, and the soil radiation damping may make the structural response 
is less than that of Model 1. The Model 3 considers the SSI in the horizontal direction but 
also rotational direction, and the latter may make the structural response is more than that 
of Model 1. Therefore, the Model 1 may give results closer to the Model 3 than the Model 
2, as shown in Fig. 8. It can be seen for the 6-story structure from Fig. 9 that the effects of 
above factors are from 14.16 to 16.43% for the soft soil Site 1, and from 10.06 to 11.12% 
for the relatively hard soil Site 2. By comparing Figs. 8 and 9, it can be seen that the rock-
ing SSI should be considered and the accurate LPM should be used in seismic analysis of 
relatively high structure on soft soil site.

5.3 � SSI analysis using RSM under response spectra of earthquake motions

The seismic responses of the 6-story shear structure on the two sites are calculated using 
RSM. The Model 3 with the accurate rational-approximation-based LPM is used to con-
sider the coupled horizontal and rocking SSI. The result is compared with that obtained 
by time history analysis to evaluate the accuracy of RSM. The fourteen artificial ground 
motions for two sites as shown in Fig. 6 are chosen for the RSM and time history analysis.

Before using RSM to solve the SSI model, the natural frequencies and damping ratios of 
all single-degree-of-freedom systems of Eq. (20) are calculated by complex mode analysis 
in Eq. (19). When solving the generalized eigenvalue problem in Eq. (19), eight zero natu-
ral frequencies appear, due to the zero stiffness with respect to the eight auxiliary degrees 
of freedom in lumped parameter model. Their modes correspond to rigid body motion. 
Therefore, only the rest fifteen non-zero natural frequencies and corresponding damping 
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Fig. 9   Peak values of story drifts (PSD) of 6-story structure on a Site 1 and b Site 2 using four calculation 
models under Signal 1
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ratios are shown in Table 5, and the corresponding fifteen effective modes are used. It can 
be seen from the table that the over-damped cases arise at the fundamental frequency and 
some large damping ratios also arise at different natural frequencies even if they belong to 
the under-damped cases.

Contribution of each mode especially the over-damped mode at fundamental frequency 
to accuracy of RSM is studied because RSM usually uses only several main modes instead 
of all ones for high efficiency. The contribution ratio of each mode is quantified by defining 
the following relative error.

where |u(t)|max and ||u(t)||max
 are the peak values of story drifts obtained by RSM using fif-

teen modes and neglecting the jth mode, respectively.
The contribution ratio of mode is calculated according to Eq. (31) and shown in Fig. 10. 

Dotted line in Fig. 10 denotes the level of a contribution ratio of only 1%, and the jth mode 
can be neglected in the subsequent analysis if the result of the Eq. (31) is below this line. 
Some conclusions can be drawn from Fig. 10 as follows. The over-damped mode arising 
at the fundamental frequency has the contribution ratio of far less than 1% of the calcula-
tion accuracy of RSM, and it can be neglected in subsequent analysis. The 2nd mode cor-
responding to damping ratio of about 5% has the greatest contribution ratio, and it must be 
included in RSM. The 3rd and 4th modes corresponding to damping ratio of near 5% have 
relatively great contribution, and they should be considered for high accuracy in RSM. The 
other modes corresponding to damping ratio from 4 to 95% have the contribution ratios of 
less than 1%, and they can be neglected in subsequent RSM analysis.

The structural response is calculated using RSM and time history analysis respectively 
under each artificial ground motions. To improve efficiency, only the 2nd–4th order modes 
of structure are used in RSM. The results are also compared with that obtained using the 
RSM with all fifteen effective modes. The corresponding natural frequencies and damping 
ratios for the fifteen modes are shown in Table 5. To quantify the accuracy of RSM, an 
error of RSM relative to time history analysis is defined as

where |u(t)|max and ||u0(t)||max
 are the peak values of story drifts obtained by RSM and time 

history analysis, respectively.
The results are shown in Fig.  11. The error of RSM relative to time history analysis 

according to Eq.  (32) is given for each floor in the figure, and the error of RSM using 
fifteen modes at the location where maximum seismic response among six floors using 
time analysis method is listed in red box. It can be seen that the error of RSM using fifteen 
modes in the red box varies from 1.45 to 4.83% for the seven ground motions of soft soil 
Site 1, and from 1.33 to 16.65% for the seven ground motions of relatively hard soil Site 2. 
The mean values of the seven ground motions are 3.55% and 7.21% for the two sites. This 
indicates that RSM for the SSI model is accurate enough and can be used in seismic analy-
sis. Besides, the error of RSM result from fifteen modes and only the 2nd–4th order modes 
are very close. It indicates that only several main modes can be used in RSM.

(31)R =
||||u(t)||max

− |u(t)|max
||

|u(t)|max

(32)R =
|||u(t)|max −

||u0(t)||max
||

||u0(t)||max
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5.4 � SSI analysis using RSM under design response spectra

The example and model same as Sect. 5.3 are analyzed using RSM under design response 
spectra shown in Fig. 6 instead of response spectra of artificial ground motions.
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Fig. 10   Contribution ratio of jth mode on accuracy of RSM for 6-story structure on a Site 1 and b Site 2 
using Model 3 with accurate LPMs under artificial ground motions
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The 2nd–4th order modes are used in RSM for higher efficiency. The studies in 
Sect. 5.3 indicate that the three modes result in very close computational results with fif-
teen modes. The relative displacement and relative velocity design response spectra of the 
2nd–4th order modes with different damping ratios are required in RSM. They are obtained 
from the given absolute acceleration design response spectrum with a 5% damping ratio 
shown in Fig. 6 by the approximately quasi spectrum transform relationship presented in 
the Sect. 4.2. In order to verify the process, the so-called quasi relative displacement and 
velocity response spectra are compared with the mean response spectra of seven artificial 
ground motions obtained by solved Eq. (20), as shown in Fig. 12. In this figure, the blue 
circle locates at the natural frequencies shown in Table 5, which are used in calculation. 
It can be seen from the figure that the obtained quasi relative displacement and velocity 
response spectra are very close to the corresponding mean response spectra of seven artifi-
cial ground motions.

Peak values of story drifts of the 6-story structure obtained using RSM under the design 
response spectra and mean spectra of seven artificial ground motions are shown in Fig. 13. 
In addition, the mean value of peak value responses of structure obtained by time history 
analysis under seven artificial ground motions shown in Fig. 6 are also shown in Fig. 13 for 
comparison. The numbers at the side of the striped columns denote the errors in Eq. (32) 
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Fig. 11   Peak values of story drifts (PSD) of 6-story structure on a Site 1 and b Site 2 using Model 3 with 
accurate LPMs under artificial ground motions
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between RSM and time history analysis method, and the error at the location where maxi-
mum seismic response among six floors using time analysis method is listed in red box. 
The following conclusions can be drawn from the Fig.  13. The errors in the red boxes 
under design response spectra are close to those under mean response spectra of artificial 
ground motions, indicating that the method of obtaining quasi relative displacement and 
relative velocity response spectra is feasible. The errors in the red boxes for the Site 1 and 
Site 2 are less than 3% and 12% respectively, indicating that RSM is accurate enough and 
can be used in the seismic analysis.

6 � Conclusion

Seismic SSI of structure with shallow foundation was studied using RSM. Several conclusions 
are drawn by analyzing the 3-story and 6-story shear structures on two different types of sites 
under design response spectra. (1) The coupling of the rocking motion of structural foundation 
with its horizontal motion should be considered for relatively high structures on soft soil site. 
(2) The accurate LPM such as that based on rational approximation of foundation impedance 

(a)

(b)

Fig. 12   Quasi spectra and mean spectra of seven ground motions for different damping ratios on a Site 1 
and b Site 2
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function should be used in the SSI substructure model to consider the soil complex stiffness 
more accurate. (3) RSM is effective and applicable to seismic SSI analysis of structure with 
shallow foundation, where the over-damped mode can be neglected and the design response 
spectra can be used.

It should be noted that the above conclusions are obtained based on only the present mod-
els and examples in this paper. A complex stiffness of foundation and its time-domain model 
considering the hysteretic damping of site soil and deep foundation will be studied in the later 
work.
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