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Abstract

This article presents an approach to rapidly predict the seismic vulnerability existing of
low-to mid-rise residential reinforced concrete (RC) buildings. In this procedure, Capacity
Index is computed considering the cross-sectional orientation and size and material prop-
erties of the components of the structural system. This index is modified considering the
several coefficients of possible negative impacts of structural irregularities, which are fre-
quently found in RC buildings. Accuracy of the proposed approach has been tested consid-
ering 196 RC buildings subjected to earthquakes. The procedure categorizes the buildings
either as safe or as unsafe according to whether they meet the life-safety target performance
requirement. The analytical results indicate that the consistency of the proposed approach
in this paper is about over 90%. Therefore, the proposed approach can be used to asses the
seismic performance and vulnerability levels of existing RC buildings.

Keywords Seismic vulnerability - Performance - Existing RC buildings - Evaluation -
Earthquake engineering

1 Introduction

Considering the severe financial losses and damages to human life caused by earthquakes, it is
observed that RC buildings exhibit inadequate seismic vulnerability and performance against
earthquakes. The need to assess the seismic performance of existing RC buildings has led to
an increase in the studies on the techniques to predict the possible seismic performance levels
of RC buildings. In the literature, there are many studies and seismic reports related to seismic
damages as well as seismic performance of existing RC buildings (Scawthorn and Johnson
2000; Dogangun 2004; Inel et al. 2013; Ozmen et al. 2013; Yon et al. 2013; Ozmen and Inel
2017; Puranam et al. 2018; Del Gaudio et al. 2018; Dilmac et al. 2018; Furtado et al. 2018;
Calderon and Silva 2019; Mahsuli et al. 2019; Rahimi and Mahsuli 2019; Pardalopoulos and
Pantazopoulou 2019). In these studies, effects of short columns, infill walls, material quality,
soft stories, lack of shear walls, large and heavy overhangs, and plan irregularities are reported
to be the main causes of the damages in the buildings after earthquakes.
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For a rapid evaluation of buildings, FEMA 154 (1988), FEMA 310 Tier 1 (1998), and
the Japanese system of assessment (Ohkubo 1991) were proposed to predict rapidly the seis-
mic vulnerability of buildings taking into account relevant parameters, such as the number
of stories, plan and vertical irregularities, soil parameter, age of the building, workmanship
quality, and material properties. A more detailed evaluation is made with FEMA 310 Tier
2 (1998), which uses preliminary evaluation techniques. On the other hand, the best results
for the precise prediction of the seismic performance of buildings are obtained through an
in-depth assessment of the building using improved structural analysis (linear and non-linear
analysis techniques). However, since these analyses are time-consuming and lengthy, prelimi-
nary assessment methods are most widely used to predict rapidly the seismic vulnerability of
buildings when a rapid and reliable evaluation is needed.

Many researchers have proposed preliminary assessment methods for evaluating the seis-
mic vulnerability of buildings. The wall index (WI) and the column index (CI) were devel-
oped by Hassan and Sozen (1997) and Gulkan and Sozen (1999), respectively. These indexes
depend merely on the orientation and cross-sectional size of vertical components of low-to
mid-rise RC buildings and are examined graphically to determine the relative vulnerability of
a group of RC buildings. Yakut (2004) proposed a preliminary seismic performance assess-
ment procedure named Capacity Index (CPI) for existing RC buildings. This index is com-
puted by considering the orientation, size, and material properties of components with sev-
eral coefficients that reflect the quality of workmanship and architectural features. Tekeli et al.
(2017) proposed an alternative assessment procedure that focuses on determining the shear
stress indicator (SS7) value for the ground floor. The procedure requires a total weight of the
building and cross-section area of columns. The SSI value is calculated as a ratio of the elas-
tic seismic story shear to the total cross-section area of columns. The validity of the SSI was
examined considering 250 existing RC buildings.

In the past few decades, some of the RC buildings in Turkey were damaged due to a com-
bination of the irregularities mentioned above. Hence, seismic performance assessment proce-
dures that do not consider these factors would lead to mispredictions. In this study, a simple
approach is proposed to predict the seismic performance of existing RC buildings considering
the negative effects of irregularities. The approach aims to determine the potential seismic
vulnerabilities or performances of low- and mid-rise RC buildings. In addition, an RC build-
ing can be wrongly marked as unsafe due to an inaccurate assessment procedure. These quick
evaluations are highly needed because practicing engineers need rapid and simple methods to
asses the seismic vulnerability of a given building stock.

In this study, the proposed approach for predicting seismic vulnerability of existing RC
buildings is a new version of existing procedure proposed by Yakut (2004). The comparison
of the procedure improved in the present study with similar procedure (Yakut 2004) reveals
that the entire procedure involves the orientation and size of columns, shear walls, and infill
walls. The proposed approach considers the strength of concrete and infill walls and the nega-
tive effects of vertical and plan irregularities with variety coefficients. It is aimed to improve
Yakut (2004)’s approach and to obtain a more correct and more appropriate formulation.

2 Description of the proposed approach
The method is recommended for low- to mid-rise RC buildings. The proposed method con-

siders the dimensions of the ground floor and size, orientation, and concrete strength of
the components to determine the base shear capacity of the building. The shear capacity of
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each columns on the first story is computed based only on the concrete contribution using
Eq. (1).

V=0 fou b h (1)

for =035\/f. )

where V; is the shear capacity of a rectangular concrete member with dimensions b; and 5;,
fu 1s concrete tensile strength, and f, is concrete compressive strength in Eq. (2). The coef-
ficient a represents the combined effect of strength reduction factor that is taken as 0.65
in encoded Turkish Design Code (TS500) (2000) for the design and construction of RC
structures (TS500 2000).

Total shear capacity (V,), can be calculated as the sum of areas of all lateral load-carry-
ing component in the direction of each principal axis:

Vc =0 Je Ae 3)

where A, is generally the total shear area of columns, shear walls and infill walls, and can
be calculated by the equation given in Eq. (4). It is known that the presence of masonry
infill wall increases the total shear capacity of the building. The influence of infill walls
is generally taken into account using a percentage of their cross-sectional areas to explain
the differences between shear strength of masonry and concrete (Yakut 2004; Shariq et al.
2008). Total shear area A, can be calculated by considering the infill wall.

A, = 2 kc : Ac + ksw ZASW + km Z A, “4)

where A, is the sum of the cross-sectional areas of the columns, A, and A,, are the sum
of the cross-sectional areas of the reinforced concrete shear wall and infill walls in-plane
direction, respectively.

For the orientation of the columns, the coefficient &, is used, which is taken as 1.0 when
the capacity in the longitudinal direction of the member is calculated and as 0.6 if trans-
verse shear capacity is desired. For the reinforced concrete shear wall, k,, is merely consid-
ered as 1.0 when the in-plane direction, the other side capacity is not considered. For infill
walls, k,, is taken as Eq. (5) when the in-plane direction is considered

k = Em
n=E (5)
E, = 50001/f. (6)
E, =550-f, ©)

where E_ and E,, are the elastic modulus of concrete and infill wall, respectively (Rahimi
and Mahsuli 2019). The f,, is the compressive strength of infill walls that are taken as
6.2 MPa, 4.1 MPa, and 2.1 MPa by a factor as specified as good, fair, and poor masonry
condition, respectively (ACI-530 1999).

The compressive strength of concrete is generally obtained by testing the section sam-
ples taken from the building. However, most of the time, taking core samples might be
impractical as it is a destructive and elaborate. In such cases, either a well-correlated
Schmidt hammer test can be used or the strength can be estimated through a visual
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Table 1 Recommended concrete

. Concrete quality (from visual inspection) Recommended com-
compressive strength values -
: pressive strength (f)

based on concrete quality (Yakut (MPa)
2004)

Poor <10

Average 10-16

Good >16

3@L

3@L 4@L 5@L

Fig. 1 Structural layouts of the RC building models and placement of infill walls (Tekeli et al. 2017)

inspection of concrete quality. When estimating the strength by means of visual inspec-
tion, the regional practice needs to be taken into account. The values indicated in Table 1
are recommended for Turkey, based on the experience and common construction practices
(Yakut 2004).

2.1 Model descriptions

The story plans of the selected buildings are given in Fig. 1. The regular story height is
3 m. For the numerical implementation of the analysis, RC building models having 2, 3,
4, and 5 stories are considered to represent low- and mid-rise buildings located in high
seismicity regions. The number of spans of the structural models in both x and y directions
are selected as 2, 3, 4, and 5 having a length of 4 m. In Fig. 1, the infill walls that meet the
requirements of FEMA 356 (2000) to form diagonal struts are shown with shaded areas.
The other infill walls with openings that prevent diagonal strut formation are considered
as dead load. The buildings have symmetrical floor plans to avoid any irregularity effects.
A three-dimensional model of each structure was created in SAP2000 (2000) to carry out
pushover analysis. The beam and column elements were modelled as nonlinear frame ele-
ments with lumped plasticity by defining plastic hinges at both ends of the beams and col-
umns. The longitudinal reinforcement ratio of the columns was modelled considering it to
be between 1 and 1.2 per cent. The beams elements in all models have the cross-section of
0.25 mx0.50 m and have two bars with 16 mm diameter at the bottom and three bars with
16 mm diameter at the top of the cross-section of the beam as longitudinal reinforcement.
The models with various characteristics were selected to establish a relationship between the
total shear capacity (V,) and the yield base shear capacity (V,) of the building. The capac-
ity curve of each building obtained from pushover analysis was approximated with a bilinear
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curve using guidelines given in FEMA 273 (1997) (Fig. 2). The ultimate base shear (V,), yield
base shear capacity (V,), and code base shear (V,,,,) are presented in Fig. 2.
The averages of result values of yield base shear capacity over the total shear capacity
(V,/V,) plots were achieved according to the number of stories, as shown in Fig. 3.
"The relationship between V, and V. could be found in Eq. (8) depending on the number of
stories. These results were generated as a proportional function of the number of stories (n) for
each direction of model buildings as plots in Fig. 4

V, =(0.37n+0.30) X V, ®)

The Basic Capacity Index (BCPI) can be computed by using Eq. (9) as given in Yakut
(2004). The adverse effects of architectural features of buildings on the seismic performance
are well recognized by the earthquake engineering community. Therefore, an improved Capac-
ity Index (CPI) that incorporates these secondary effects is introduced. BCPI is modified by
the parametric factors that reflect the architectural features (C,) and construction quality (C,,)
as shown in Eq. (10)

BCPI = —

9

code

CPI=C,-C,, - BCPI (10)

The coefficient C, is determined by subtracting several other coefficients from the base
value of unity, as indicated in Eq. (11). The coefficients Cyg, Cygc, Cyp, and C, reflect the
presence of a soft story, short column, plan irregularity, and vertical and in-plan discontinuity
of frames, respectively. The coefficients of these irregularities are given in Table 2.

The relative scores reported in FEMA 154 (1988), Gulkan and Yakut (1994), Sucuoglu and
Yazgan (2003), and Yakut (2004) are consistent with each other. These studies recommend
scores based on construction, material quality, and architectural features

Cy =1.0= (Cy5+ Casc + Cap + Cyp) an

The coefficients C,, are presented in Table 3 (Yakut 2004). The values presented by
the alternatives in Table 2 are not very different from each other. Therefore, the relative

Fig.2 Idealized static pushover
curve (Yakut 2004) Ve ~

Base Shear

V.
.. code ..

Roof Displacement
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significance value of the architectural features proposed in FEMA 154 (1988) is con-
sidered with the Q, value as 0.55 to include the effect of the substandard construction
and to calculate C,, value according to the quality of construction and workmanship
in Table 3. As a result of the inferences from the some analytical studies (FEMA 154
1988; Yakut 2004), the C, =0.85 was considered to be reasonable a value in this study.
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Table 2 The comparison of weighting coefficients for architectural factors

Weighting coefficients

FEMA-154 Yakut (2004) Sucuoglu and Gulkan and Yakut Current study
(1988) Yazgan (2003) (1994)

Cas 0.36 0.39 0.32 0.50 0.38

Casc 0.18 0.15 0.11 0.25 0.16

Cap 0.19 0.16 0.19 0.125 0.20

Cur 0.27 0.30 0.38 0.125 0.26

Table 3 Recommended values of

CM (Yakut 2004) Quality of construction and workmanship Cu
Poor 1.0-Q, (1 -=Cy)
Average 1.0-Q, (1 =Cy)/3
Good 1.0

3 Determination of limiting values of Capacity Index (CPI ;,.;;)

The seismic safety of an RC building is based on the seismic demand and the lateral
load-carrying capacity of the structural system. Therefore, it is important to know the
parameters affecting the seismic behaviour and performance of RC buildings. To deter-
mine the CPI},;, of the proposed method, a variety of existing RC buildings with differ-
ent structural configurations and parameters (such as story and span numbers, presence
of masonry wall, concrete strength, and steel yield stress) were taken into account. The
determination of the CPI,, was performed in two stages. In the first stage, the RC
building models displayed in Fig. 1 were selected and modelled using SAP 2000 soft-
ware (2000). In the second stage, each of RC building models was analysed under the
dead loads and lateral seismic load considering the requirements set forth in Turkish
Earthquake Code (TEC) (2007) and the deformation-based assessment of buildings is
obtained from the analysis results. The deformation-based evaluation is implemented
through the pushover analysis. The limiting values of steel strains and concrete com-
pression strains and general rules are used as they are given in the code which is similar
to those given in FEMA 356 (2000) as plastic hinge rotations. If the seismic perfor-
mance level of the RC building model does not provide the target seismic performance
level (LS), the pushover analysis is repeated by increasing the cross-section dimensions
of columns as rectangular in certain quantities until the target seismic performance level
is provided. This process was carried out separately for all structural parameters of each
model building. The distribution of CPI values of the model buildings that provide and
do not meet the target performance level was obtained from the analysis results. Con-
sidering the structural and architectural irregularities and workmanship factors, the CPI
was further reduced by coefficients by using Eq. (10). The minimum and maximum
CPI values of the model buildings that meet and do not meet the target performance
level were determined, respectively. However, the most critical thresholds to consider
in the performance evaluation are the largest CPI values of the red dots as shown in
Fig. 5. The threshold values were determined to be outside the most critical CPI values.
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The average results obtained from the analyses of model buildings are given in Fig. 5
according to the number of stories.

As it is seen, the average values of CPI},;,;, are designated as 0.55, 0.60, 0.65 and 0.70
for 2, 3, 4 and 5-stories respectively. The trend between CPI};,,;, and the number of sto-
ries (n) are displayed and formulated in Fig. 6 and Eq. (12)

CPIl;,;; = 0.05n + 0.45 (12)

The proposed approach has taken into account the requirements specified in the code
(TEC 2007) so that the approach can be adapted easily to any code. The masonry infill
walls are modelled by using the equivalent strut model. The nonlinear behaviour of the
infill walls was taken into consideration by using the plastic hinge model proposed by
Panagiotakos and Fardis (1996).

In the proposed approach, the CPI},,;, value for buildings with different number of
stories (not to exceed 7-stories) may be obtained; therefore, the applicability of the pro-
posed approach can be quite extensive.
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Fig.5 The limiting values of CPI for each RC building models
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Fig.6 The relationship between 1.2 -
CPI,,;, and the number of stories ¢ Life Safety @ Collapse
0.9 1
B 0.6 -

0.3  CPlm;=0.05n+0.45

Number of Stories (n)

0 1 2 3 4 5 6 7

4 Database of existing RC buildings

The earthquakes that occurred in the past two decades have caused severe financial loss
and damages to human health in Turkey. Massive earthquakes revealed that existing build-
ing stocks in urban areas are significantly vulnerable to seismic hazard. The earthquakes
that caused severe damage to both human health and economy and are categorized as very
severe and destructive earthquakes in the Turkish seismology archives can be listed as
follows: the earthquakes of magnitude 7.5 (M,,) on August 17 (1999) in Bolu, 7.1 (M,,)
on November 12 (1999) in Diizce and Kaynash, 6.5 (M,) on February 3 (2002) in Afyon
(named Sultandagi earthquake) and on May 1 (2003) in Bing6l in Turkey. The accuracy
of the proposed approach is examined on 196 existing buildings selected from the cities
of Bolu, Diizce, Kaynash Afyon, and Bingol, which are located within high seismic haz-
ard zones in Turkey. The structural and architectural properties of the 196 existing build-
ings presented by Yakut (2004) and Pay (2001) are given in Tables 4, 5 (Yakut 2004) and
Tables 6, 7, and 8 (Pay 2001) for Afyon, Bingél, Bolu, Kaynagh and Diizce, respectively.
The post-earthquake damage levels of the selected buildings are classifieds as “none”,
“light”, “moderate” or “heavy/collapse” (Yakut 2004; Pay 2001). Since the damage levels
of RC buildings depend on their seismic performance levels of RC buildings, while “none”,
“light” and “moderate” damage levels are considered “Life Safety (LS)” performance level,
while “heavy/collapse” damage level is considered as “Collapse Prevention (CP)” in this
study. The distribution of damage levels observed in RC buildings after the earthquakes
and the decision on the recommended mitigation measures are presented in Figs. 7 and 8.

5 Implementation and compatibility of the proposed approach

The steps involved in the calculation of CPI are summarized below. Additionally, the fol-
lowing steps should be taken to determine the seismic performance of the buildings by
comparing the CPIy,,, of the calculated CPI values. Note that most of the recommended
coefficients are valid for the buildings in Turkey and need to be adjusted for implementa-
tion in other places.

Step I Compute the total concrete base shear capacity (V,) using Eq. (3) for x and y
directions on the ground story. The smaller of the two values is considered to be
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the critical one. If concrete compressive strength could not be calculated by the
test, use the values given in Table 1. The average values or lower limits may be
used.

Calculate the estimated yield base shear capacity (V,) using Eq. (8).

The BCPI coefficient is calculated by proportioning the obtained V, and V, value
as in Eq. (9).

The improved CPI value is calculated by considering the structural irregularity
factors (C,) and workmanship/construction quality (Cy,).

The calculated CPI value of the building is compared to the calculated CPI};,,;,
value in Eq. (12).

Whether the building is safe or unsafe is determined by CPI values.

When the CPI value of the building is greater than CPI},,, values, the building
has adequate LS performance. Otherwise, it is assumed that the building does not
meet the LS performance level.

The validity of the proposed approach was examined considering the damage levels of
the 196 exsiting buildings damaged in the aforementioned earthquakes. Also, the results
of the proposed approach (CPI) were compared with the results of the method (CPI") pro-
posed by Yakut (2004).
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Fig.9 The CPI" for buildings in
Afyon

Fig. 10 The comparison of seis-
mic performances obtained with
proposed approach and damage

levels of buildings in Afyon
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The CPI and CPI” values were determined and computed for the buildings contained
in the Afyon buildings database in Figs. 9 and 10. Using the proposed CPI, all four
buildings with damage levels of “None/Light” were correctly predicted to meet ade-
quate LS performance level. The CPI" results were also correctly estimated for three
buildings. The classifications for four moderately damaged buildings reveal that one and
three buildings met LS using CPI” and CPI, respectively. This Afyon database has ten
buildings with a damage classification of “Heavy/Collapse” all of which were estimated
correctly by using CPI. The CPIY results were correctly estimated for eight buildings.
Both indexes indicated in the graphs are the minimum values of the two main directions
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of the buildings; the information about the earthquake direction and building orientation

are not reflected.

The proposed approach and CPI' were applied to Bingdl database to determine their
ability to capture the damage observed. In Figs. 11 and 12, the CPI and CPI" values of this
data were shown according to both indexes. Figures 11 and 12 reveal that the CPI provides
a better estimate of the buildings with “None/Light” damage classification and that 14 of
15 buildings were classified correctly based on CPI},,, values according to the number
of stories. The CPI" based on (CPI"),,,; and CPI based on CPI,,, results were correctly
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Fig. 13 The comparison of seis-
mic performances obtained with
proposed approach and damage
levels of buildings in Kaynagh

Fig. 14 The comparison of
proposed a CPI', b CPI for
buildings in Kaynash
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estimated for 19 of 28 buildings and 27 of 28 buildings, respectively by considering all

damage levels.

As a result of the analyses obtained from Kaynagl database, the distribution of the
CPI,;,,;; determined by the number of stories and the CPI values of the buildings is given
in Fig. 13. In Fig. 14, and the results of CPI and CPI" are displayed for Kaynasli buildings
database. The limits set for Kaynasl buildings inventory reveal that correct estimation rate
for buildings with damage classifications of “None/Light” and “Moderate” is 96% using
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CPI and 61% based on CPI”. On the other hand, 100% and 83% of unsafe buildings with
a damage classification of “Heavy/Collapse” were predicted correctly with CPI and CPI”,
respectively.

The buildings in the Diizce database were analysed and computed in Figs. 15 and 16.
Using the proposed CPI, out of 16 buildings with a damage classification of “None/Light”
and “Moderate” only one building was misestimated. For the same case, the CPI” results
revealed incorrect estimates for four buildings. Of 8 buildings with a damage classifica-
tion of unsafe, 8 and 5 were found unsafe using CPI and CPIY, respectively. Overall, the
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seismic performance of all buildings in Diizce was estimated correctly at 88 per cent cor-
rectly using the CPI.

The Bolu buildings database comprised 50 RC buildings with different number of sto-
ries. Figure 17 displays the CPI values and CPI},,,;, values of 50 buildings. There are 27, 10,
and 13 buildings with a damage classification of “None/Light”, “Moderate” and ‘“Heavy/
Collapse”, respectively. When comparing the calculated CPI values with the CPI,,; val-
ues, only 6 of 50 buildings could not be estimated correctly, as observed in Fig. 18.
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Table 9 The consistency of proposed approach for all buildings
Location Damage The number of stories The comparison of proposed by
CPIY (Yakut 2004) Proposed approach

1 2 3 4 5 6 Consistency Ratio(%) Consistency Ratio (%)

Afyon None/light - - 1 3 - - 3 75 4 100
Moderate - - 1 3 - - 1 25 3 75
Heavy/col - - 7 2 1 - 8 80 10 100
Bingol None/light - - 4 8 3 - 10 67 14 93
Moderate - 1 2 3 - 4 57 7 100
Heavy/coll - 1 1 4 - - 5 83 6 100
Kaynaghi  None/light 16 38 13 2 - - 22 47 65 94
Moderate - 4 1 - - - 3 60 4 80
Heavy/col - - 1 - - 1 2 100 2 100
Diizce None/light - 2 3 4 1 - 9 90 10 100
Moderate - 2 2 1 - 1 3 50 3 50
Heavy/coll 1 - 1 1 5 - 6 75 8 100
Bolu None/light 1 2 9 7 4 4 19 70 24 89
Moderate - - - 4 3 3 1 10 8 80
Heavy/col - - 3 5 2 3 10 77 12 92

The analysis of all buildings was carried out with the proposed approach by using the
building inventory which includes structural and architectural features presented by Pay
(2001) and Yakut (2004). The results of the proposed approach are given in Fig. 19. It can
be seen that the proposed approach can be used to assess the seismic performance of build-
ings. Table 9 summarises the database comprising 196 RC buildings with different damage
levels. Besides, the consistency number and rates of CPIY and CPI results and damage lev-
els are given in Table 9 and displayed Fig. 20.

The 196 buildings were divided into three groups according to the mitigation measure
needed and their expected seismic performance levels. The 125 RC buildings were detected
to have sufficient capacity against a destructive earthquake and were considered to provide
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the target performance level of LS and were identified as “Adequate” as shown in Fig. 21a.
The seismic performance of 32 RC buildings was evaluated as neither critical nor not critical
(meaning that if a destructive earthquake occurs, it can receive significant damage without
being collapse) and therefore, was identified as “To be strengthened” (Fig. 21b). The seismic
performance of 39 RC buildings with extremely poor capacity was classified as “To be demol-
ished” and displayed in Fig. 21c. In Fig. 21, while the calculated CPI values of 196 RC build-
ings and CPI};,,;, values are examined; 117, 25 and 38 of the buildings which are defined as
“Adequate”, “To be strengthened”, and “To be demolished” were estimated correctly.

The difficulty of determining the appropriate CPI,,;, is apparent. Reducing or raising the
CPI,;,,;, does not lead to an increase in the accuracy of estimating safe and unsafe buildings.
Therefore, sensitivity and precision should be considered when assigning a lower and an upper
limit for safe and unsafe buildings. It would be wrong to say that classifying unsafe buildings
as safe buildings is more dangerous than classifying safe buildings as unsafe. However, con-
sidering the results of the analyses, the consistency rate of CPI values of safe buildings over
the CPI};,,;, and CPI values of unsafe buildings below the CPI,;,;, is over 90 per cent.
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6 Conclusions

A new version of an existing procedure is proposed for predicting seismic vulnerability
or performance level of RC buildings without the need for computer software. The new
version of the procedure is introduced by making major modifications while taking into
account the effects of parameters affecting building performance. Simple measurements
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and project information of RC buildings are required to determine the seismic performance
level of RC buildings without the need for any linear or nonlinear analysis. The proposed
approach is based on the size, orientation and concrete compression strength of columns,
shear walls and masonry walls. The effects of structural irregularities (e.g., soft story,
short column, plan, and frame irregularities, construction and workmanship quality) are
taken into account to determine the seismic performance of RC buildings. The proposed
approach has been developed and calibrated for a group of low-to mid-rise RC buildings by
considering the structure conditions in Turkey. This approach can be applied equally to any
other region while certain steps need to be changed to reflect region-specific applications.

An essential advantage of the proposed approach is the ability to combine the effects of
regional seismicity and soil conditions via V,,,,. For this reason, the proposed approach
can be used for possible future modifications in the calculation of V4. Also, it is a suit-
able procedure for the prediction of seismic vulnerability or performance of a large number
of RC buildings located in high-hazard zones, and it can be used in urban and regional
planning studies. Additionally, the approach offers great convenience for engineers who
need simple ways for the assessment of the seismic performance of RC buildings without
applying complex analysis, and for insurers needing a correct prediction of the seismic per-
formance of building.
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