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Abstract
We present a probabilistic framework to assess induced seismicity hazard and risk, while 
accounting for temporally-varying seismicity rates. The framework is based on the proba-
bilistic seismic hazard assessment and risk assessment that are used extensively for tec-
tonic earthquakes. Dynamic estimates of earthquake rates are produced using a Bayesian 
change-point approach. The risk framework combines hazard with vulnerability of the 
exposure and is implemented at a regional level. We implement a stochastic Monte Carlo 
based approach for our hazard and risk assessments using OpenQuake-engine. We present 
an application of the framework for Oklahoma, employ a ground-motion prediction equa-
tion applicable for the state and perform regional risk assessment for repair cost on the 
entire state. We also perform sensitivity studies on hazard and regional risk assessments 
for impacts of earthquake activity rate, magnitude distribution, ground-motion prediction 
equations and exposure vulnerabilities. Regional risk quantification can support regulators 
and operators in developing effective risk mitigation measures, and the sensitivity analyses 
help decision-makers perform cost-benefit analyses of their decisions and are beneficial for 
prioritization of further research.

Keywords  Induced seismicity · Bayesian change-point · Hazard assessment · Risk 
assessment · Sensitivity analysis · Stochastic Monte-Carlo

1  Introduction

In this paper, we extend the probabilistic seismic hazard assessment (PSHA) methodology 
to evaluate hazard for induced seismicity and develop regional risk estimates. PSHA is a 
widely used tool to estimate hazard from tectonic (or natural) seismicity (Petersen et  al. 
2014), largely based on work by Cornell (1968). It describes a framework to account for 
both epistemic and aleatory uncertainties involved at various levels of seismic hazard—
earthquake sources, earthquake ruptures, magnitude distributions, soil velocity and ground 
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motion propagation. The methods described here build upon concepts related to induced 
seismicity that have been described in previous research by the authors and have not been 
included here for succinctness—a change-point approach for estimating changing seismic-
ity rates (Gupta and Baker 2017), and a ground-motion prediction equation developed for 
Oklahoma (Gupta et al. 2017). Additionally, an extension of the framework involving haz-
ard assessment using injection volumes in Oklahoma has been described by Gupta (2017) 
but is not presented here.

The motivation for this paper is the significant increase in seismicity that has been 
observed in the central and eastern US (CEUS) (Ellsworth 2013) since 2008. Numerous 
studies have linked this increased seismicity to disposal of oilfield wastewater by injection 
(e.g., Ellsworth 2013; Katie 2014; Walsh and Zoback 2015; Horton 2012; Hornbach et al. 
2015) and hence it is referred to here as induced seismicity.

PSHA has been proposed as a valuable tool to develop hazard estimates for induced 
seismicity. The United States Geologic Survey (USGS) has evaluated short-term seismic 
hazard for induced seismicity using PSHA (Petersen et  al. 2016, 2017). van Eck (2006) 
and Bourne (2015) estimated hazard for induced earthquakes in the Netherlands, and van 
Elk (2017) additionally estimated the risk. Baker and Abhineet (2016) present a Bayes-
ian approach to account for uncertainties in induced seismicity, like earthquake rates and 
location of faults in probabilistic hazard analysis. Several studies have been published on 
the identification of the two major components of hazard assessment—estimating seismic-
ity rates (e.g., Llenos and Michael 2013, 2016; Gupta and Baker 2017), and developing 
new ground motion prediction equations for regions of induced seismicity (e.g., Atkinson 
2015; Yenier and Atkinson 2015; Gupta et al. 2017). Bommer et al. (2015) emphasize the 
importance of using seismic risk as a metric for decision making by regulators for regions 
of induced seismicity. Walters (2015) present a traffic light system that qualitatively takes 
into account the seismic hazard, exposure and vulnerability of a region. Liu et al. (2017) 
present the sensitivity of building collapse and nonstructural component falling risks for 
induced seismicity. Mignan (2015) estimate the portfolio induced seismicity risk caused 
by Enhanced Geothermal System in Basel, Switzerland, based on discrete damage states of 
the assets within a 14 km radius.

Here we extend the PSHA framework to take into account the changing seismicity rates 
in regions of induced seismicity. We use a multiple-change-point approach to identify 
changes in seismicity rates, and perform hazard and risk assessments using a stochastic 
Monte Carlo based method. We apply the approach to Oklahoma, and discuss how the 
results may be useful in risk management decisions. Finally, we perform sensitivity analy-
ses to assess the impacts of changes in the following parameters on Oklahoma’s hazard and 
regional risk—seismicity rates, magnitude distribution (b-value in Gutenberg-Richter rela-
tion, minimum, and maximum magnitudes), ground-motion prediction equations and expo-
sure’s vulnerability. More informed decisions can be made on resource allocation, research 
efforts and risk mitigation measures by understanding these impacts.

2 � Framework for hazard and risk assessments from induced seismicity

In this section, we describe a framework for hazard assessment from induced seismicity 
and apply these hazard estimates to develop regional risk estimates.
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2.1 � Hazard assessment

Seismic hazard refers to the the annual rate of exceeding a certain level of ground shaking. 
In traditional PSHA for tectonic seismicity, the rate of an intensity measure IM exceeding 
an amplitude x, �(IM ≥ x) , is estimated by evaluating Eq. 1. Intensity measure is a catch-all 
term for various metrics of ground shaking, such as peak ground acceleration, peak ground 
velocity, spectral acceleration, or Modified Mercalli Intensity (Baker 2015).

where �(a) is the annual rate of a, p(a ∣ b) is the probability of a given b, n = 1,… ,N is 
the earthquake source, Mn = m ≥ mmin is the earthquake magnitude for source n,mmin is 
the minimum magnitude considered at the source, Rn = r is the distance from earthquake 
source to site of interest, and Jn and Kn are the number of discretized magnitudes and source-
to-site distances, respectively for source n. The probability p(IM ≥ x ∣ Mn = m;Rn = r) is 
typically characterized by a ground motion prediction equation (GMPE) (e.g., Atkinson 
2015). Earthquakes are typically assumed to occur as a Poisson process with rate � , with 
p(Rn = r ∣ Mn = m) developed based on the source geometry, and p(Mn = m) developed 
based upon a recurrence relationship (e.g., Gutenberg and Richter 1949).

Due to epistemic uncertainties, there may exist multiple source characteristics, GMPE’s 
and magnitude distributions for the same region. These uncertainties are accounted for by 
estimating hazard for each of the individual possibilities, which we then represent as indi-
vidual branches in a logic tree. Each branch d = 1,… ,D , is assigned weight wd such that 
∑D

d=1
wd = 1 , and the hazard is computed by the weighted contribution from each branch 

(Petersen et al. 2014).

where �d(IM ≥ x) is the hazard for branch d.
When the seismicity rates are changing over time, as for induced seismicity, then the 

estimated hazard is also time dependent. We represent hazard at time t as �(IM ≥ x)(t) 
and calculate it by replacing the constant seismicity rate in Eq.  1 with time-dependent 
�(Mn ≥ mmin)(t) . Then the mean hazard per unit time over a time duration [t1, t2] is calcu-
lated by

Hazard estimates are forecasts of anticipated future seismic shaking. Due to the transient 
nature of induced seismicity, these forecasts are meaningful for shorter duration of the next 
6 months to 24 months, as compared to the National Seismic Hazard forecasts developed 
for next 50 years (Petersen et al. 2014).

Equation 1 estimates hazard at a single site of interest. For multiple sites, this calculation 
is required separately at each of the sites. This is computationally expensive, and Monte-
Carlo based stochastic approach may be more efficient (Ross 2009). In this approach, for 

(1)
�(IM ≥ x) =

N
∑

n=1

[

�(Mn ≥ mmin)

Jn;Kn
∑

j=1;k=1

p(IM ≥ x ∣ Mn = mj;Rn = rk)…

p(Rn = rk ∣ Mn = mj)p(Mn = mj)
]

(2)�(IM ≥ x) =

D
∑

d=1

wd�d(IM ≥ x)

(3)�(IM ≥ x) =
1

t2 − t1 �
t2

t1

�(IM ≥ x)(t) dt
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each source, we first simulate earthquakes according to the corresponding seismicity rate 
�(Mn ≥ mmin) . For each earthquake, we assign a magnitude according to the magnitude 
distribution fn(Mn = m) , a location according to the source geometry, and finally estimate 
shaking at each of our sites using GMPE’s. Each simulation is independent and 10,000 
one-year simulations are carried out. This approach also allows for implementation of spa-
tial correlation between ground shaking at multiple sites from the same earthquake (e.g., 
Jayaram and Baker 2009). The detailed algorithm for this approach is described by Gupta 
(2017) and is implemented here using the OpenQuake-engine (Pagani 2014).

2.2 � Risk assessment

Seismic risk refers to the annual rate of exceeding a certain level of loss to structures, pop-
ulation or other entities. The risk for loss � on a single asset s with a vulnerability distribu-
tion f (�s ∣ IM = y) is described by Krawinkler and Miranda (2004) and shown below.

For a set of assets s = 1,… , S , the total loss Ψ is obtained by combining losses of all assets, 
Ψ =

∑S

s=1
�s . Then the probability distribution of Ψ represents a sum of random variables 

and Eq. 4 is modified as shown below.

where f (�1,… ,�S ∣ IM = y) is the joint probability distribution for loss to the S assets 
and IM is a vector of IMs at each asset s. We use the stochastic Monte-Carlo simulation 
approach to develop risk assessments at a statewide scale, similar to our approach for 
hazard assessment. In this case, the ground shaking at each site from the hazard estima-
tion is used as input to estimate losses for risk assessment. This algorithm is detailed in 
Gupta (2017), and is implemented here through OpenQuake, with the results processed in 
MATLAB.

3 � Risk assessment for Oklahoma

We implement the framework described in Sect. 2 to assess hazard and state-wide post-
earthquake repair costs for Oklahoma. While the hazard is computed at all locations in 
Oklahoma, we show estimates here from a single site at 35.45◦N and 97.55◦W in Okla-
homa City. Due to the transient and rapidly changing nature of induced seismicity (Petersen 
et al. 2017), the hazard and risk forecasts presented here through 2017 are meaningful only 
for short duration of the next 6 to 24 months, although the framework might be used to 
update these estimates with more recent data.

For reference, we will compare some subsequent hazard results with USGS short-term 
hazard curves (Petersen et al. 2016, 2017). The USGS computed hazard using the weighted 

(4)�(�s ≥ x) = �IMs

�(IMs = y)p(�s ≥ x ∣ IMs = y) dy

(5)

�(Ψ ≥ x) = �
IM

�(IM = y)� ⋯�
f (�1,… ,�S ∣ IM = y) d dy

and  = {x1,… , xS ∣

S
∑

s=1

xs ≥ x;xs ≥ 0 ∀ s = 1,… , S}
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mean of multiple branches. Their seismicity rate estimates are based on observed seismic-
ity over the previous 1-year, 2-year and 36-year windows. They use the same GMPE’s that 
are used in the 2014 hazard maps for the central and eastern United States (Petersen et al. 
2014) and the Atkinson (2015) GMPE.

3.1 � Parameters for risk assessment

3.1.1 � Seismic sources

Seismicity rates are considered within Oklahoma and in southern Kansas near Oklahoma’s 
northern border. The background rates (before induced seismicity) are multiple orders 
lower than those from induced seismicity (Petersen et al. 2014) and contribute negligibly to 
short-term hazard and risk, hence we only consider regions with a recent rate increase. We 
use the change-point method, with sequential bisection to detect multiple change points, 
to estimate rates for M ≥ 3 earthquakes (Gupta and Baker 2017; Gupta 2017). Rates are 
estimated from a seismicity catalog declustered using the method proposed by Reasenberg 
(1985) with an effective lower magnitude cutoff of 3.0, based on Oklahoma’s catalog com-
pleteness threshold. We chose this declustering method because the alternative Gardner 
and Knopoff (1974) declustering removes many non-dependent earthquakes, as shown 
in Fig. 1a. The Reasenberg approach on the other hand appears to follow the number of 
monthly earthquakes much more closely and to smooth out the peaks that could be a result 
of dependent events. Stiphout et al. (2012) have also described that the Gardner-Knopoff 
approach tends to remove more events from the catalog than other approaches. Finally, we 
did not use the more recent and robust ETAS approach (Ogata 1992) because it requires 
establishing a constant background seismicity rate while the background rate is itself vari-
able for regions of induced seismicity.

Seismic sources are considered as area sources of 0.1◦ latitude by 0.1◦ longitude, simi-
lar to the USGS implementation. Seismicity rates are estimated at the center of these area 
sources, every 6 months from 2009 through 2017 and are shown in Fig. 2. For each point in 
time, only the catalog up to that date is considered. This allows us to evaluate how hazard 
and risk assessments would have evolved over time, had this approach been implemented 
over the past decade. Figure 3 shows that the model corresponds well with observed earth-
quakes at the statewide level; the approximately 6-month lag between the two lines is 
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Fig. 1   a Monthly M ≥ 3 earthquakes in Oklahoma and b number of earthquakes exceeding a specified mag-
nitude, for non-declustered catalog and catalogs declustered using Reasenberg and Gardner-Knopoff declus-
tering
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because the observed earthquakes are for a future 12-month period, while the estimated 
rates are empirically-based with no forecasting based on injection rates or other forward-
looking metrics.

We use a truncated Gutenberg-Richter relation for magnitude distribution with a b-value 
of 1.3, a minimum magnitude of 3.0 and maximum magnitude of 8.0 at all sources. The 
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b-value is selected based on our qualitative analysis of the seismic catalog (as shown in 
Fig. 1b) and observation by Langenbruch and Zoback (2016). Different studies have sug-
gested different b-values for the region, including a study by (Rubinstein et al. (2018) that 
estimated b = 1 for Kansas. The impact of b-values on hazard and risk is shown in Sect. 4. 
We include a distribution of focal depths within the hazard framework, instead of in a logic 
tree, through a probability mass function that reflects the depth distribution in the earth-
quake catalog. Depths of 3, 4, 5, 6 and 7 km are modeled as occurring with probabilities of 
0.05, 0.15, 0.6, 0.15 and 0.05, respectively.

3.1.2 � Ground‑motion prediction equation

We use the scaled version of Shahjouei and Pezeshk (2016) GMPE as described by Gupta 
et  al. (2017), with spatial correlation in the ground motion fields using the Jayaram and 
Baker (2009) model. This GMPE has been developed for ground motions in Oklahoma and 
is applicable to earthquakes with magnitude ≥ 3.

3.1.3 � Exposure and vulnerability

We use HAZUS data regarding building structure types and counts at a census block level, 
based on the 2010 census (Holmes et al. 2015). Building types in the large number of cen-
sus blocks ( ≈ 255,000 census-blocks, 3.9 × 106 data rows) are aggregated on a 0.1◦ lati-
tude by 0.1◦ longitude grid (1852 grid points, ≈ 28, 500 data rows). This approximately 
corresponds to a 10 km by 10 km grid. Bal et al. (2010) concluded that the difference in 
the accuracy and precision of loss estimates that come from working at a coarse spatial 
resolution is likely to be insignificant in comparison with the uncertainties associated with 
the prescription of recurrence intervals for major earthquakes in a fully probabilistic loss 
model. Bazzurro and Park (2007) discuss impacts of aggregating assets, one of them being 
introducing artificial correlations that tend to systematically underestimate frequent, small 
losses and overestimate the large, rare ones. One of the reasons for this correlation is using 
the same spectral acceleration at the site of aggregated assets. To address this issue, we 
aggregate assets by distributing them to the nearest grid-points in proportion of their close-
ness to the point. In other words, each grid-point receives a contribution of the assets from 
the neighboring grid, instead of combining all the assets within 5 km north, west, south 
and east of the point. As a result, each asset’s loss is computed based on the spectral accel-
erations observed at its nearest grid-points, instead of only one grid-point. A summary of 
the assets is provided in Table 1. Figure 4 shows the total asset cost at each grid point, 
along with markers for major cities and the Prague M5.7 and Pawnee M5.8 earthquakes.

Table 1   Buildings summary in Oklahoma

Building type Cost Count

Wood light frame $127.52 billion 53.10% 0.970 × 106 60.39%
Unreinforced masonry $66.62 billion 27.74% 0.407 × 106 25.32%
Wood commercial and industrial $9.82 billion 4.09% 0.022 × 106 1.34%
Mobile homes $5.75 billion 2.40% 0.156 × 106 9.70%
Others $30.44 billion 12.67% 0.052 × 106 3.25%
Total $240.15 billion 100% 1.607 × 106 100%
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We use HAZUS vulnerability functions that relate IM to asset losses, as shown in 
Fig. 5a. HAZUS provides damage fragility functions for each asset that relates peak ground 
acceleration (PGA) with four distinct damage levels. Then, at various discrete levels of 
PGA, the probability of being in each damage level can be obtained. HAZUS also pro-
vides mean loss ratios for each damage level. Then to obtain the vulnerability functions, 
we estimate the probability of loss at each PGA level based on the probability of each dam-
age level and its corresponding mean loss ratio. We then assume a log-normal distribution 
for loss at each PGA level and estimate its parameters based on the probability of loss. 
This yields a vulnerability function that is defined by a log-normal distribution at vari-
ous PGA levels. We have obtained these vulnerability functions from OpenQuake develop-
ers through personal communication (Anirudh Rao, 2016), with the structural loss ratio 
mapped to total building loss ratio as the loss measure � . Additionally, HAZUS classifies 
buildings as pre-code, low-code, moderate-code and high-code, based on their location and 
year of construction. HAZUS categorizes post-1975 buildings in low seismicity regions 
as low-code, hence all buildings in Oklahoma are classified as low-code. The vulnerabil-
ity functions showing variation of the mean loss-ratios with PGA for the most common 

Fig. 4   Total asset value for each 
grid point. Major cities and 
epicenters of Prague M5.7 and 
Pawnee M5.8 earthquakes are 
marked. The circles around the 
epicenters are 100 km in diam-
eter and mark the approximate 
region with PGA ≥ 0.05 g based 
on USGS Shakemaps
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building categories are shown in Fig. 5. The variation in losses at each PGA level as char-
acterized by the log-normal distribution is not shown in the figure. HAZUS’s PGA based 
fragility functions are developed for large magnitude events and hence there is a possibility 
of introducing bias when using these for the short durations and low energy of the motions 
associated with smaller earthquakes in this study. We have explored the impact of vulner-
ability functions on risk assessment in Sect. 4.4, however specifically exploring the bias of 
HAZUS fragility curves for small magnitude earthquakes is beyond the scope of this study.

OpenQuake implements complete correlation of losses between assets of the same type 
at a site. For example, if there are 6 wood buildings aggregated at a site, then each building 
will have an identical loss ratio for a given simulation. We also assumed mutual independ-
ence between assets of different types and at different sites (i.e., the loss ratio given a PGA 
for one asset type or site does not influence the loss ratio given PGA for another asset type 
or site). Asset losses may be correlated at different sites when they follow similar designs 
or construction quality, for example, when constructed by the same contractor. However, 
we did not have such information and hence assumed independence. Asset correlation will 
have the effect of reducing the occurrence of lower losses and increasing the occurrence of 
higher losses.

We calculated risk curves for these vulnerability functions and noted that they highly 
over-estimate the observed losses. For example, Fig.  6 shows losses of ≈ $2.8 billion 
with 10% annual probability (exceedance rate of roughly once in 10 years on average) 
and ≈ $383million with an exccedance rate of once per year, out of total portfolio cost of 
$240.15 billion . In the last 6 years since 2011, when the first M > 5 earthquake occurred 
in Oklahoma, there have been multiple cases when buildings have been damaged, but 
their exact loss values are not available. However based on estimates generated from news 
reports, we believe that losses have not exceeded ≈ $10million for any of the earthquakes. 
Given our risk estimates, the probability of exceeding a loss of $2.8 billion in 6 years is 
45%, and that of $383million is 99.7%, and given the low occurrence of such high losses, 
we believe that our risk estimate is higher than the true risk. We further explore the reasons 
for this discrepancy in losses.

Figure  6a shows that our hazard estimate for the Reasenberg (1985) declustering 
approach is higher than that of USGS. Since the Gardner and Knopoff (1974) approach 
used by the USGS removes a greater number of earthquakes from the catalog, as described 
by Stiphout et al. (2012) and shown in Fig. 1, the hazard estimate based on this approach 
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using change-point method. Hazard reported for Oklahoma City by Petersen et al. (2016) and for Los Ange-
les (Petersen et al. 2014) are also shown for comparison
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is much lower. Moreover, our hazard estimates and those of USGS for Oklahoma City are 
both greater than that of Los Angeles. This high hazard, combined with higher expected 
vulnerability of the Oklahoma building stock, results in our high loss estimates. Figures 6a 
and 8a also illustrate that our hazard estimates based on the change-point approach are in 
good agreement with those of USGS using a completely independent approach (Fig. 7).

Based on our high predicted losses but comparable hazard estimates as those of USGS, 
we believe that our vulnerability curves are too conservative, however few studies exist that 
provide fragility curves for buildings in the central and eastern US, and for small magni-
tude earthquakes. Other effects like aggregation of assets and asset loss correlations can 
also affect loss estimates, however their impacts are not large enough to completely explain 
the high estimated losses. Krawinkler et al. (2012) developed fragility functions for unre-
inforced masonry parapets and chimneys using observations from California and computer 
modeling. Since unreinforced masonry structures in California predate modern seismic 
design requirements in the region, we believe that these fragility functions developed for 
chimneys and parapets are reasonable estimates for unreinforced masonry structures in 
Oklahoma. We note that chimneys and parapets are not braced at the top and hence these 
fragility functions are still conservative when used for buildings. We use these fragility 
functions here because they have been created specifically for unreinforced masonry using 
more data and modeling than the HAZUS functions, however further research is required 
to generate Oklahoma specific fragility functions, which is beyond the scope of this study. 

Fig. 7   Earthquakes that cause 
a loss ≥ $1 billion as a fraction 
of all earthquakes within that 
magnitude bin. Earthquakes are 
also binned by distance such 
that the cost of all assets within 
the shown distance is ≥ twice 
the loss for that earthquake. 
The percentages marked on the 
figure represent the fraction of 
all earthquakes in that bin that 
caused the loss
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Fig. 8   a Induced seismicity hazard in Oklahoma City and b statewide risk with updated vulnerability func-
tions. Hazard reported by Petersen et al. (2016) in USGS 2016 report is also shown for comparison
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The median PGA for toppling fragility function by Krawinkler et al. (2012) is 0.5 g com-
pared to 0.35 g for the loss vulnerability curve in our study based on HAZUS. To update 
our vulnerability curves, we increase our median PGA for unreinforced masonry to 0.5 
g while keeping the same variability of the curve. Similar studies could not be found for 
other building types and hence we make the assumption to increase the median PGA for 
all vulnerability functions by a ratio of 1.43 ( = 0.5

0.35
 ). Some of these updated vulnerability 

curves are shown in Fig. 5b. We use these updated vulnerability curves in all subsequent 
calculations, unless otherwise specified.

Finally, we note that the August 24, 2014 M6.0 earthquake in Napa incurred a loss 
of $700million (http://www.iii.org/issue​-updat​e/earth​quake​s-risk-and-insur​ance-issue​
s, accessed August 09, 2017). Approximately 410,000 households were affected by that 
earthquake, compared to ≈ 337,000 households in Oklahoma County (https​://www.censu​
s.gov/2010c​ensus​/popma​p, accessed August 09, 2017). This suggests that it would be pos-
sible to observe losses in the order of $500million in Oklahoma City from a nearby ≈ M6.0 
earthquake, though fortunately previous earthquakes have caused losses in order of only 
$10million as they have not occurred in densely populated regions of the state.

3.2 � Oklahoma results for 2017

Figure 8 shows the hazard in Oklahoma City and statewide risk from induced seismicity 
based on the updated vulnerability curves shown in Fig. 5b. The annual exceedance rates 
for PGA using the change-point seismicity rates are approximately twice that of the USGS 
2017 hazard estimates (Petersen et  al. 2017). This comparison is not anticipated to pro-
duce an exact match, due to differences in assumed seismicity rates and logic trees, but the 
rough correspondence of results is reassuring.

Due to the transient nature of induced seismicity, we consider these calculations as 
short-term forecasts and consider only annual rates of exceedance ≥ 0.01 in our Figures. 
Our estimates indicate that Oklahoma City will experience peak ground acceleration of 
≈ 0.08 g with 10% annual probability and ≈ 0.3 g with 1% annual probability. Generally, 
building losses occur at accelerations > 0.1 g , but might occur at > 0.05 g in Oklahoma due 
to higher building vulnerability, as shown in Fig. 5.

The statewide risk in Fig.  8b indicates loss of ≈ $1.2 billion with 10% annual prob-
ability and ≈ $5.5 billion with 1% annual probability. Our estimate indicates a loss of 
≈ $125million expected once every year on average. The total asset cost for our exposure 
portfolio is $240 billion for the state. This indicates loss ratios of ≈ 2.3% at the 1% annual 
probability level, which appears reasonable given the high hazard and the vulnerability 
curves for wood buildings that are 53% of the total cost. However, the loss estimates are 
still substantially higher than those actually observed in the state to date. Since our hazard 
estimates are comparable to those of the USGS, we explore the relationship between vul-
nerability models and losses in Sect. 4.4.

4 � Sensitivity analysis

In this section, we study the impacts of changes in seismicity rates, magnitude distribu-
tion (b-value in Gutenberg-Richter relation, minimum and maximum magnitudes), ground-
motion prediction equations and exposure’s vulnerability on induced seismicity hazard and 
statewide loss risk in Oklahoma. Unless noted otherwise, the results are estimated based 

http://www.iii.org/issue-update/earthquakes-risk-and-insurance-issues
http://www.iii.org/issue-update/earthquakes-risk-and-insurance-issues
https://www.census.gov/2010census/popmap
https://www.census.gov/2010census/popmap
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on seismicity rates estimated on 2017-01-01, with minimum and maximum magnitudes of 
3.0 and 8.0 respectively, a b-value of 1.3, the SP16scaled GMPE and the vulnerability with 
upgrade ratio of 1.43 as described in the previous section.

4.1 � Changes in seismicity rates

We illustrate the effect of changing seismicity rates by studying the evolution of hazard 
and risk in Oklahoma over time. We use the multiple change-point model to estimate 
rates at 6-months intervals, starting in 2009 (Figs. 2, 3).

We observe in Fig. 9 that shaking in Oklahoma City increases considerably at a given 
exceedance level between 2009 and 2010. There is little difference in PGA increase after 
2010, however, despite high rate increases in the state, because the more recent rate 
increases occurred in northern Oklahoma (an area with less exposure). We observe a 
significant increase in statewide risk between 2013 and 2014, which agrees with the rate 
increase from the change-point model during the same time. There has been a reduction 
in observed seismicity since 2015 in the state and subsequently also reflected in the rate 
estimates from the change-point model starting in 2016, as shown in Fig. 3. However, 
this reduction is not pronounced in hazard estimates for Oklahoma City in Fig. 9a while 
the loss estimates show some reduction. This is because most of the rate reduction in 
2015 occurred in Northern Oklahoma and southern Kansas while Oklahoma City is in 
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Fig. 10   Evolving hazard over 
time in Wakita in northern 
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annual rates of exceedance
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central Oklahoma. This is also illustrated in the reduction of hazard in Wakita in North-
ern Oklahoma (shown in Fig. 4) as shown in Fig. 10. The statewide loss risk has only 
reduced slightly since earthquake rates have not decreased uniformly across the urban 
centers.

4.2 � Changes in magnitude distribution

We use a truncated Gutenberg-Richter magnitude distribution, and vary the minimum 
magnitudes from 3 to 5 and maximum magnitudes from 5 to 8. In hazard analysis, the 
minimum magnitude is specified at a level such that shaking from lower magnitude earth-
quakes is not relevant because it will not affect buildings (Bommer and Crowley 2017), and 
the maximum magnitude is governed by the maximum earthquake that a seismic source 
can produce. For induced seismicity, the maximum possible magnitude continues to be an 
active area of study (McGarr 2014; Ellsworth 2013) and understanding its influence can 
inform future research. Figure 11 shows the impact of these parameters on hazard and risk. 
We observe that using a minimum magnitude mmin = 5 yields lower shaking and losses 
than the other cases, because M < 5 earthquakes do contribute to shaking and losses in 
the baseline analysis case. We observed in Fig. 7 that only a small percentage of M < 5 
earthquakes cause losses larger than $1 billion , however since M < 5 earthquakes are much 
more frequent than M > 5 earthquakes, setting a larger mmin has a potential to reduce the 
risk at these fairly high loss values. As the loss value is increased further, setting mmin ≥ 5 
does not change the risk significantly because smaller earthquakes do not cause losses 
larger than $10 billion . This also explains the difference observed between mmin = 3 and 
mmin = 4 for the lower shaking and loss levels at the higher exceedance rates. The high 
frequency of M < 4 earthquakes contribute to the low levels of shaking at PGA ≤ 0.1 g 
and, combined with the high vulnerability of our exposure, this difference in hazard at low 
shaking levels also propagates to risk at lower loss levels. The difference becomes negligi-
ble for losses ≥ $100million because M ≥ 4 earthquakes are responsible for most of these 
losses. We observe that mmax > 6 have little influence on shaking and loss levels for the 
same reason that these larger earthquakes are less frequent and hence contribute little to the 
short-term hazard and risk estimates at these high annual rates of exceedance. As expected, 
the influence of mmax increases as the shaking and loss levels increase.
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Figure  12 shows the variation of hazard and risk with changes in b-value. Dempsey 
et  al. (2016) show that induced earthquakes follow the Gutenberg-Richter relation, with 
b-values estimated between 0.8 and 1.5 for most regions. A smaller b-value indicates 
higher frequency of observing large magnitude earthquakes, for a given overall earthquake 
rate. As expected, we observe that increasing b-values reduce both hazard and risk due to 
lower frequency of large magnitude events. The reduction in hazard and risk with increas-
ing b-values is greater at higher shaking and loss values due to the lower frequency of large 
magnitude earthquakes.

4.3 � Changes in ground‑motion prediction equations

Well-constrained ground-motion prediction equations for Oklahoma have only been 
available recently (Yenier et  al. 2017) and had not been developed earlier due to 
extremely low seismicity in the region. Moreover, induced earthquakes have been gen-
erally located at shallower depths ( ≈ 5 km ) compared to tectonic earthquakes ( ≈ 10 km ) 
and it has been contended that ground motions from induced earthquakes exhibit differ-
ent behavior than those from tectonic earthquakes (Hough 2014; Cremen et  al. 2017; 
Gupta et al. 2017). In Fig. 13, we compare hazard and risk variation for the Atkinson 
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(2015) (A15) and the Gupta et al. (2017) ( SP16scaled ) GMPE’s that have been developed 
for application in Oklahoma. We observe that hazard and risk estimates based on the 
A15 are lower than those based on the SP16scaled . The A15 and the SP16scaled models 
have similar amplitudes at source-to-site distances of ≤ 60 km , while A15 predicts lower 
amplitudes than SP16scaled at larger distances. The two GMPE’s have similar standard 
deviations. This explains the differences in our estimates in Fig.  13. We also observe 
that the differences increase at larger acceleration values as we would expect, because 
larger values are governed by larger magnitude earthquakes for which ground shaking 
at longer distances is a more important factor. However, this increased difference is not 
reflected in the risk curve because the higher losses at our exceedance levels of interest 
are governed by damages to large asset cost cities located at short distances from earth-
quake epicenters. This analysis emphasizes the need for better constrained GMPE’s for 
regions of induced seismicity especially at shorter distances, to better resolve the shak-
ing and losses resulting from small-magnitude earthquakes at short distances.

4.4 � Changes in vulnerability

We consider the reduction in risk by decreasing the exposure’s vulnerability, by increas-
ing the medians of the vulnerability curves by a certain ‘upgrade ratio.’ In Sect.  3.1 
we increased the medians by a ratio of 1.43. Here we further upgrade the vulnerability 
curves by ratios of 2.0 and 3.0. This upgrade could be achieved by retrofitting the build-
ings to a newer code standard or to the code standard applicable for high seismicity 
regions like California. Figure 14 shows the anticipated result that decreased vulnerabil-
ity (or higher upgrade ratio) yields lower risk. The losses are $63million and $26million 
exceeded once a year on average, and $700million and $344million exceeded with 10% 
annual probability for the upgrade ratios of 2.0 and 3.0, respectively.

In Sect. 3.2, we mentioned that based on observed losses in Oklahoma, risk in recent 
years might be on the order of $100million exceeded with 10% annual probability.This 
indicates that vulnerability curves associated with upgrade ratio = 3.0 might be more 
representative of the building vulnerability in Oklahoma–this may reflect either stronger 
than expected seismic strength of buildings, or lower damage potential of ground 
motions with a given PGA in Oklahoma, e.g., due to short shaking duration or low long-
period energy. This vulnerability roughly corresponds to the High-code classification 
in HAZUS in the case of masonry structures and exceeds this classification for wood 

Fig. 14   Statewide risk for vulner-
ability curves with medians 
increased by the ratio shown, 
corresponding to change-point 
rates on January 01, 2017
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structures. High-code classification in HAZUS is used for fragility functions of new 
buildings in California. Risk analysis for different vulnerability levels can be a useful 
tool for city officials and operators to quantify benefit-cost ratios of upgrading structures 
in a region.

5 � Conclusions

We have presented a framework to estimate temporally-varying hazard for induced seis-
micity, and a stochastic Monte-Carlo simulation procedure to estimate regional risks. We 
estimated seismic risk for the state of Oklahoma, and confirmed that short-term hazard and 
risk are significantly elevated due to induced seismicity. We estimated peak ground acceler-
ation of 0.08 g with 10% annual exceedance probability and 0.3 g with 1% annual exceed-
ance probability in Oklahoma City. The statewide risk indicated losses of $1.2 billion with 
10% annual exceedance probability and $5.5 billion with 1% annual exceedance prob-
ability. These hazard estimates are of the same order of magnitude as those estimated by 
USGS, but the risk estimates are an order of magnitude higher than anticipated based on 
observed losses from recent earthquakes. We explored this inconsistency by changing the 
vulnerability curves for buildings in Oklahoma and observed that curves with median PGA 
equal to three times those specified by HAZUS yielded risk curves in the expected range. 
The losses from this upgraded vulnerability were $344million with 10% annual exceed-
ance probability and $2.2 billion with 1% annual exceedance probability. Similar analyses 
with changing vulnerability curves can be used to quantify the benefits of retrofitting build-
ings to higher seismic resistance.

Analysis of Oklahoma hazard and risk over time in indicate that risk increased sub-
stantially between 2009 and 2010, and then again between 2013 and 2014. More recently, 
a reduction in seismicity rates, potentially resulting from reduction in injection volumes 
in the state as a result of regulation (Baker 2017) and market conditions, has caused a 
decrease in statewide risk. We also assessed the impacts on hazard and risk from changes 
in magnitude distribution and ground-motion prediction equations. Due to higher vulner-
ability of buildings in Oklahoma, buildings could be impacted by magnitude ≤ 5 earth-
quakes, hence we suggest using minimum magnitudes of M ≤ 3 for hazard and risk assess-
ment. Maximum magnitudes above 5.0 did not have significant impacts on hazard and 
risk for the annual exceedance rates of interest. Since we have already observed a M5.8 
earthquake in Oklahoma, we suggest using M ≥ 6 for maximum magnitude. b-values and 
GMPE’s impacted risk significantly, indicating that further research on these topics will 
benefit risk assessments.

The risk analyses presented here served three main objectives—(1) to demonstrate the 
framework, (2) to suggest how the current results can be used to inform policy, and (3) 
to evaluate the reasonableness of model inputs. Some of our observations, such as the 
issues with assumed building vulnerabilities, were a result of our implementation of the 
framework within the constraints of previous available data and research. There remain 
uncertainties associated with seismicity rates, ground-motion prediction equations, asset 
loss correlations and building vulnerability functions and their assumed distributions that 
should be further studied to better constrain the risk analyses.

The seismicity rates for induced seismicity need to be updated regularly, and resulting 
assessments can be used to quantify time-varying hazard and regional risk as presented 
in this study. Risk assessment using this framework for different vulnerability levels and 
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seismicity rates can be performed in an automated and ongoing manner, and will help 
stakeholders to quantify the benefits of various risk mitigation measures, thus serving as a 
valuable decision support tool.
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