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Abstract
This work mainly aims to propose a new design procedure combining the benefits of the 
Performance-Based Plastic Design approach (PBPD) with a rigorous accounting of sec-
ond-order effects. In fact, by exploiting the kinematic theorem of plastic collapse, second-
order effects can be accounted for employing the concept of collapse mechanism equilib-
rium curve. The same tool constitutes the base of the Theory of Plastic Mechanism Control 
(TPMC) design approach. Besides, the paper reports a critical comparison between TPMC 
and PBPD, both having the scope to design structures exhibiting a collapse mechanism of 
global type. These two approaches are also compared with the refined PBPD where sec-
ond-order effects are accounted for by the kinematic approach. Many steel moment resist-
ing frames are designed according to PBPD, TPMC and refined PBPD and their perfor-
mances have been compared on the bases of push-over analyses.
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List of symbols
dvk	� Vertical virtual displacement occurring at k th storey
hns	� Top storey height
h1	� First storey height
hi	� Storey height
hk	� k th storey height with respect to the foundation level
B2	� Parameter to account for second-order effects (Eq. 14)
Ce	� Spectral acceleration in the energy balance formulation
d�	� Virtual rotation of column bases
E	� Energy occurring in an elastic system
Ee	� Earthquake input energy
Ep	� Energy to be dissipated by hysteresis
Fi	� Force acting at the ith storey
Fk	� Seismic force al kth
g	� Acceleration of gravity

 *	 Elide Nastri 
	 enastri@unisa.it

1	 Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II, 132 Fisciano, SA, 
Italy

http://orcid.org/0000-0002-4880-9672
http://crossmark.crossref.org/dialog/?doi=10.1007/s10518-019-00573-9&domain=pdf


3042	 Bulletin of Earthquake Engineering (2019) 17:3041–3070

1 3

li	� Bay span
M	� Building mass
Mb,i,k	� Plastic moment in the beam ends when plastic hinge has been developed
Mb.jns

	� Plastic moment of j th beam at the top storey
Mb.jk	� Plastic moment of j th beam at k th storey
Mc(h)	� Moment in the column at the height h above the ground
Mc.i1	� Plastic moment of i th column of the first storey reduced due to the simulta-

neous action of the axial force
Mpbi	� Plastic moment of beams at the ith storey
Mpbr	� Required plastic moment of top storey beams
Mpc	� Required plastic moment of columns at the first storey
Mux(h)	� Final bending moment
nb	� Number of beams
nc	� Number of columns
ns	� Number of storeys
Pcg,i	� Gravity load on the column at i th floor level calculated using the seismic 

load combination
qi,k	� Vertical load acting in the seismic load combination
R�	� Reduction factor
Sv	� Spectral velocity of the expected seismic event
Sv.y	� Spectral velocity value corresponding to yielding
T 	� Period of vibration
V 	� Base shear
Vns

	� Seismic design shear at the top storey
Vi	� Storey shear at the ith storey
Vk	� Seismic design shear at k th storey
Vlk	� Concentrated forces acting on columns at the kth storey coming from the 

inner bays of the column
Vn	� Storey shear at the top storey
W	� Seismic weight
We	� Virtual external work
Wi	� Virtual internal work
Wk	� Total vertical load acting at k th storey
Δ∕L	� Maximum target drift
�	� Rigid plastic analysis collapse mechanism multiplier
�
(t)

im
	� First order collapse multiplier of undesired mechanisms

�
(g)

0
	� First order collapse multiplier of global mechanism

�0	� First order collapse multiplier of horizontal seismic forces
�coef 	� Coefficient provided by Eq. (7)
�i	� Shear proportioning factor
�	� Slope of the mechanism curve accounting for second-order effects
� (g)	� Slope of the collapse mechanism equilibrium curve of global mechanism
�
(t)

im
	� Slope of the collapse mechanism equilibrium curve of undesired 

mechanisms
�m	� Modification factor based on Newmark and Hall studies (Newmark and 

Hall 1982)
�i	� Step function
�k	� Horizontal displacement occurring at the kth storey
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�u	� Ultimate design displacement
�p	� Plastic rotation of dissipative members
�	� Distribution coefficient lower than 1
�∗	� Updating of the distribution coefficient �
�i	� Distribution coefficient
�s	� Structural ductility factor which is equal to target drift divided by yield 

drift
MRFs	� Moment resisting frames
PBPD	� Performance based plastic design
TPMC	� Theory of Plastic Mechanism Control
∑ns

k=1
Mb,i,k	� Sum of beams plastic moments belonging to the left bay

∑ns
k=1

Mb,i−1,k	� Sum of beams plastic moments belonging to the right bay
∑ns

k=1
Si,k�k	� Axial forces at the k th storey in the i th column at the collapse state from 

the right bay
∑ns

k=1
Si−1,k�k	� Axial forces at the k th storey in the i th column at the collapse state from 

the left bay

1  Introduction

The collapse mechanism of global type (Park 1986; Mazzolani and Piluso 1996; Bruneau 
et al. 2011) has been universally recognised as the best collapse typology because it assures 
the development of the most significant number of plastic hinges. In the case of moment 
resisting frames (MRFs), it is achieved when all the beam ends are involved in plastic range 
and the first storey column bases are yielded being all the column sections at the upper 
storeys in elastic range. In fact, “capacity design” principles, that constitute the strong-
hold of modern seismic design, require to design dissipative zones with internal actions 
coming from seismic combinations, while non-dissipative ones have to be proportioned on 
the bases of the maximum internal actions transmitted by dissipative zones in their fully 
yielded and strain-hardened state. Codes try to achieve the goal of a global mechanism 
by the applying approximated design rules based on capacity design principle. The rule 
devoted to the design of columns is the so-called beam-column hierarchy criterion, intro-
duced also in Eurocode 8 (EN 1998-1 2004). Although the study on this topic began sev-
eral decades ago, mostly devoted to concrete structures (Bertero and Popov 1977; Paulay 
1977, 1979, 1980), design provisions given in Eurocode 8 (EN 1998-1 2004) as well as in 
other codes, are not able to promote the development of a global type mechanism (Piluso 
et al. 2015).

Many experimental and analytical studies have been conducted to investigate the seis-
mic behaviour of MR-Frames for several decades and to develop new design procedures 
by which structures can behave in a predictable manner and to achieve a predictable target 
performance (Grigorian and Grigorian 2012, 2013; Grigorian and Kaveh 2013). This scope 
can be achieved by allowing the formation of a preselected yield mechanism, such as the 
global mechanism so that structures have an adequate strength and ductility during design 
level ground motions. Mazzolani and Piluso (1997) presented a rigorous design procedure 
based on the kinematic theorem of plastic collapse, whose goal was the development of 
a collapse mechanism characterized by the formation of plastic hinges at the beam ends 
only, leaving all the columns in elastic range. Starting from this work, the Theory of Plas-
tic Mechanism Control (TPMC) (Piluso et al. 2015) has been rearranged in a closed form 
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solution that makes it more suitable also for hand calculation, and that has outlined as a 
useful tool for the seismic design of structures. With reference to MR-Frames, this prob-
lem was faced also by Goel and Lee (2001). In this case the authors’ design procedure 
was aimed to assure both a pre-selected yield mechanism and given target drift as required 
by Performance-Based Plastic Design (PBPD). In order to achieve this goal, the authors 
suggest to obtain the design base shear as a function of the target plastic drift. This goal 
is reached by means of the energy balance equation according to an approach proposed 
by Leelataviwat et al. (1999) with the introduction of an energy modification factor which 
is able to consider the relation between the ductility factor and the force reduction fac-
tor (Goel et al. 2010). In addition, this procedure adopts a different distribution of lateral 
design forces (Chao et al. 2007; Goel and Chao 2008; Liao and Goel 2012).

In order to show the practical application of the procedures, the seismic design of a 
building with perimeter MRFs is made. The considered seismic resistant frame has beams 
whose size is governed by the seismic load combination. Therefore, being known the seis-
mic forces at each storey provided employing the energy approach, beam sections can be 
dimensioned by assuming a distribution of their size according to the storey shear distribu-
tion and by imposing the prevention of soft storey mechanism at first storey. The fulfil-
ment of these two design conditions results in a system of two equations where the two 
unknowns of the problem are the plastic moment of beams at the top storey and the plastic 
moment of columns at first storey. This criterion for beam design, proposed in PBPD, is 
herein applied also for the preliminary design of beam sections of TPMC.

Concerning the design of columns at the upper storeys, the two design approaches are 
significantly different. In fact, within the framework of rigid-plastic theory, while TPMC is 
based on a kinematic approach, PBPD procedure is based on a static approach using free-
body diagrams to derive the distribution of column bending moments along their height. 
Moreover, the influence of second-order effects is rigorously accounted for in TPMC using 
the concept of mechanism equilibrium curve joined with the application of the kinematic 
theorem of plastic collapse. Conversely, in the procedure suggested by Goel and Lee, sec-
ond-order effects are considered by applying the moment amplification method to the col-
umns bending moments which are derived employing a rigid-plastic analysis, rather than to 
moments calculated by elastic analyses as commonly made.

Given the above consideration, the study herein presented has the purpose to compare 
TPMC with the PBPD by highlighting strengths and weaknesses of both the methodologies 
and by investigating the influence of standard shapes causing an overstrength affecting the 
collapse mode of the structure. One other goal of this paper is to propose a design proce-
dure combining the benefits of PBPD with a rigorous accounting of second-order effect. 
TPMC, PBPD and improved PBPD have also been applied to design several steel MRFs 
that have been furtherly investigated by push-over analyses. Also, serviceability require-
ments have been checked according to Eurocode 8 provisions (EN 1998-1 2004).

2 � Performance‑Based Plastic Design

In this paragraph, a summary of performance based plastic design approach is reported. It has 
been applied to several structural typologies (Goel and Chao 2008; Liao and Goel 2014; Chao 
and Goel 2008; Lee and Goel 2000) with the same goal that is the achievement of a collapse 
mechanism of global type. Performance based plastic design (PBPD) developed by Goel and 
Lee (2001) is to propose a seismic design procedure based on performance limit states using 
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target drift and yield mechanism for MRFs. The design procedure proposed is also aimed to 
provide the seismic design forces by means of balance equation (Lee and Goel 2000). Regard-
ing a non-linear structural system, the earthquake input energy is evaluated as �m times the 
input energy occurring in an elastic system (Housner 1956):

being M the building mass and Sv the spectral velocity of the expected seismic event.
The modification factor �m , based on Newmark and Hall (1982) studies, accounts for the 

expected ductility demand corresponding to the reduction factor R� and is given by:

The amount of earthquake input energy which the structure can absorb in elastic range can 
be computed according to Akiyama (1985) as follows:

where Sv.y is the spectral velocity value corresponding to yielding, V  is the corresponding 
base shear, T  is the period of vibration and W the seismic weight of the building.

The energy to be dissipated by hysteresis is therefore given by:

where Ce is the spectral acceleration.
This energy is equal to the energy that the target yield mechanism can dissipate which, in 

turn, is equal to the external work of horizontal seismic forces:

being hi the height of the i th floor from the foundation level and Fi = �iV  the correspond-
ing seismic force depending on the distribution coefficient �i , that can be expressed in 
terms of weight of the structure at level i and the height of beam level i from the ground.

Employing the energy balance equation, i.e. by equating (4) and (5), the following relation-
ship is obtained:

where the coefficient �coef  is given by:
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Starting from the knowledge of the seismic forces accomplished through the above 
energy balance approach, the design of the structural members, i.e. beam sections and 
column sections at each storeys addressed as follows. Beam sections are dimensioned by 
assuming a distribution of their size according to the storey shear distribution:

where Vi and Vn , respectively, are the static storey shears at level i th and the top level and 
the exponent value is a function of the period of the structure ( b = 0.5T−0.2).

Under this assumption and with reference to a one-bay MR-Frame, the work equation 
for the target collapse mechanism provides:

where Mpbr is the reference plastic moment of beams (top storey), i.e. the plastic moment 
of top storey beam, and Mpc is the required plastic moment of columns at first storey. 
Moreover, by imposing the prevention of storey mechanism at the first storey, the following 
equation is obtained:

where V  is the total base shear, h1 is the height of the first storey, and factor 1.1 is the over-
strength factor to account for possible overloading due to strain hardening.

Therefore, for a given base shear derived by means of Eq. (6), Eqs. (9) and (10) allow 
evaluating the required plastic moment of the first storey columns Mpc and the required 
plastic moment of top storey beam Mpbr . The plastic moment of beams at i th storey is 
determined as:

Successively, the column sections are derived according to the bending moment com-
puted through a static approach based on equilibrium equations written with reference to 
free body diagrams. After updating the lateral forces to account for overstrength of the 
beams after yielding, design moments of the column can be determined by treating the 
column as a cantilever and, starting from the top, the distribution of moments in columns is 
evaluated as follows:

where Mc(h) is the moment in the column at the height h above the ground, �i is a step 
function defined as �i = 1 if h ≤ hi and 𝛿i = 0 if h > hi and Fiu is the force acting at the ith 
storey (Fig. 1).

Such bending moments are furtherly amplified according to the moment amplification 
method commonly applied to account for second-order effects in elastic analyses. For plas-
tic design, according to Salmon and Johnson (1990), it is conservative to determine the 
final bending moment as follows:
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where the factor B2 is necessary to account for second-order effects in a simplified way and 
is calculated as:

where Pcg,i are the gravity load on the column at i th floor level calculated using the seismic 
load combination, Fi is the storey shear at the i th storey, and Δ∕L is the maximum target 
drift (4%) for which the frame is designed. This procedure carried out for columns at each 
storey allows obtaining the final member size of each element of the frame.

3 � Theory of Plastic Mechanism Control

The Theory of Plastic Mechanism Control (TPMC) works within the framework of limit 
analysis and pursues the aim to design structures with a global failure mode. This proce-
dure originally proposed by Mazzolani and Piluso (1997) in the nineties has been recently 
updated (Piluso et  al. 2015) leading to a closed-form solution allowing a more practical 
and easy procedure. It has been applied to design not only MRFs but also other steel (Mas-
trandrea et al. 2013; Longo et al. 2014a, b; Montuori et al. 2014, 2016, 2017; Longo et al. 
2012; Piluso et al. 2019), reinforced concrete typologies (Montuori and Muscati 2017) and 
wooden resisting frames (Montuori and Sagarese 2018). TPMC exploits the kinematic the-
orem of plastic collapse by identifying three main typologies of collapse mechanism the 
structure can exhibit (Piluso et al. 2015; Krishnan and Muto 2012). They must be consid-
ered undesired, because not involving all the dissipative zones.

(13)Mux(h) = B2Mc(h)

(14)
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∑n

i=k
Pcg,i

∑n

i=k
Fi

�

Δ

L

�

Fig. 1   Free-body diagram of an external column
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However, in the elastic range structures can have high horizontal displacements, so that 
application of the kinematic theorem without second order effects is not able to assure a 
global collapse mechanism. In particular these effects are more significative for steel 
moment-resisting frames.

Therefore, the fundamental principle of TPMC is constituted by the extension of the 
kinematic theorem of plastic collapse to the concept of mechanism equilibrium curve. In 
particular, for each considered collapse mechanism, the equilibrium curve of the mecha-
nism can be derived by equating the internal work to the external work, including in the 
external work also the second-order work due to vertical loads (Piluso et  al. 2015). The 
collapse mechanism equilibrium curve is a straight line given by:

where �0 is the first order collapse multiplier of horizontal seismic forces, � is the slope of 
the mechanism curve accounting for second-order effects; finally, �u is the ultimate design 
displacement which is selected to be compatible with the ductility capacity of the dissi-
pative members. The theory states that the collapse mechanism equilibrium curve of the 
global mechanism has to be located below those corresponding to all the undesired mecha-
nisms until a design displacement �u compatible with the available ductility of structural 
members, as depicted in Fig. 2:

In the case of beams parallel to the direction of the corrugation of the deck slab, the 
starting point of the procedure needs to design beam sections at last storey and column sec-
tions at first storey. In light of this, two conditions are needed: the first one is the preven-
tion of the soft storey mechanism at first storey, while, the latter is the application of the 
principle of virtual work to the global mechanism (Piluso et al. 2015). Given the above, 
the column sections at each storey required to assure the development of a collapse mecha-
nism of global type are provided by imposing the design statement. Finally, a technological 

(15)� = �0 − ��u

(16)�
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0
− � (g)�u ≤ �

(t)

im
− �

(t)

im
�u for im = 1, 2, 3,… , ns; t = 1, 2, 3

Fig. 2   Design conditions
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condition can be imposed by requiring that, starting from the top, the column sections can-
not decrease along the building height.

4 � Design approach based on free body diagrams and accounting 
for second‑order effects

As pointed out in the previous sections, there are relevant differences between PBPD and 
TPMC. Within the framework of rigid-plastic theory, while TPMC is based on a kinematic 
approach, the Goel and Lee procedure is based on a kind of static approach using free-body 
diagrams to derive the distribution of column bending moments along their height. Moreo-
ver, the influence of second-order effects is rigorously accounted for in TPMC employing 
the concept of mechanism equilibrium curve and by the application of the kinematic theo-
rem of plastic collapse. Conversely, in the procedure suggested by Goel and Lee (2001), 
second-order effects are considered by applying the moment amplification method to the 
columns bending moments which are derived through a rigid-plastic analysis, rather than 
to moments calculated through elastic analyses as commonly made.

Moment amplification method is a tool to consider second-order effects by increasing 
the design moment of columns by means of an amplifying coefficient that has a weak sci-
entific basis. Besides, it tends to excessively amplify the stresses leading to structures able 
to achieve the design goal but not optimised concerning the ratio weight/performances. 
Therefore, in this paper, some modifications to the PBPD with the purpose of eliminating 
all the approximations existing in the procedure have been performed with particular refer-
ence to second order effects.

Without using the one-bay equivalent frame, the structure can be considered, in its max-
imum drift response state, as subjected to equivalent inertial forces, being achieved the 
global mechanism. This mechanism is based on the assumptions that all the plastic drift 
is mono-directional, and all the energy post-yielding is dissipated in plastic hinges only. 
Following the philosophy of strong column-weak beam, it is also assumed that the plastic 
hinges in a frame are limited only to beams and column bases sections at first storey, and 
the amount of plastic rotation �p over the height of the structure is uniform after yielding of 
the frame.

In case of global mechanism, the external work due to a virtual rotation d� of columns 
plastic hinges is given by:

where � is the multiplier of horizontal forces, Fk and hk are, the seismic force al k th storey 
and the k th storey height with respect to the foundation level, respectively,hns is the value 
of hk at the top storey, �u is the design top sway displacement and Wk is the total vertical 
load acting at k th storey.

In this case, the assumption of � = 1 means that � assumes the unitary value in cor-
respondence of the ultimate design displacement �u . The design of structure with seismic 
forces multiplied by that coefficient ensures the structure to withstands such forces and 
consequent stresses up to collapse conditions.

The first term of Eq. (17) is the external work due to horizontal forces, while the second 
term represents the second order work due to vertical loads. To compute the slope of the 

(17)We = �

ns
∑

k=1

Fkhkd� +
�u

hns

ns
∑

k=1

Wkhkd�
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mechanism equilibrium curve, it is needed to evaluate the second order work due to vertical 
loads. In Fig. 3, the horizontal displacement of the k th storey involved in the generic mecha-
nism is given by uk = rk sin � , where rk is the distance of the k th storey from the base C and � 
the rotation angle. The top sway displacement is equal to � = hns sin �.

The relationship between horizontal and vertical virtual displacements is given by 
dvk tan � ≈ duk sin � . It is clear that, as the ratio dvk∕duk is independent of the storey, vertical 
and horizontal virtual displacement vectors have the same shape. The virtual horizontal dis-
placements are given by duk = rk cos �d� ≈ rkd� , where rk defines the shape of the virtual 
horizontal displacement vector, while the virtual vertical displacements are given by 
dvk =

�

hns
rkd� and, therefore, they have the same shape rk of the horizontal ones (Mazzolani 

and Piluso 1996). It can be concluded that:

where dvk is the vertical virtual displacement of k th storey.
The internal work due to a virtual rotation d� of plastic hinges of columns is:

where Mc.i1 is the plastic moment of i th column of the first storey reduced due to the simul-
taneous action of the axial force, Mb.jk is the plastic moment of j th beam at k th storey, nc,ns 
and nb are the number of columns, storeys and beams, respectively.

In the same way, as Goel and Lee perform in PBPD, in the case of no significant vertical 
loads acting on the beams, it is desirable to impose a distribution of their flexural strength 
along the building height that is similar to the distribution of the design storey shears. This 
condition can be achieved employing a shear proportioning factor defined as follow:

(18)dvk =
�u

hns
hkd�

(19)Wi =

(

nc
∑

i=1

Mc.i1 + 2

ns
∑

k=1

nb
∑

j=1

Mb.jk

)

d�

(20)�k =
Vk

Vns

Fig. 3   Second order vertical displacements
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where Vk is the seismic design shear at k th storey and Vns
 is the seismic design shear at the 

top storey. Therefore, thanks to this design strategy, the beam plastic moments of the other 
storeys are derived as:

where Mb.jk is the plastic moment of j th beam at k th storey, and Mb.jns
 is the plastic moment 

of j th beam at the top storey. Then, updating the term related to beams, the equation of the 
principle of virtual works can be written equating Eqs. (17) and (19):

where the only unknown terms are the sum of plastic moments of first storey column (i.e. 
∑nc

i=1
Mc.i1 ), and the sum of plastic moments of top storey beams (i.e. 

∑nb
j=1

Mb.jns
).

However, a second equation is needed, and it is the design conditions to be fulfilled 
to avoid type-3 mechanism at the first storey. According to the kinematic theorem of 
plastic collapse extended to the mechanism equilibrium curve concept, such design con-
dition is the following:

where h1 is the first storey height.
The design conditions (Eq. 24) to be fulfilled to avoid all the partial collapse mecha-

nisms require that the mechanism equilibrium curve of the global mechanism has to 
lay below those corresponding to all the undesired mechanisms until a displacement �u 
compatible with the available ductility of structural members.

This design condition can be expressed in the following compact form:

where �(g)

0
 is the kinematically admissible multiplier of horizontal forces corresponding to 

the global mechanism according to first order rigid-plastic analysis, � (g) is the slope of the 
global mechanism equilibrium curve, �(3)

1
 is the kinematically admissible multiplier of hor-

izontal forces with reference to the mechanism of type-3 (soft-storey) at the first storey, and 
� (3) is the slope of the type-3 mechanism equilibrium curve.

Equations  (22) and (23) solved as an equation, constitute a system with two 
unknowns, 

∑nc
i=1

Mc.i1 and 
∑nb

j=1
Mb.jns

 . It has to be noted that, even if this procedure is 
similar to the one proposed by Goel et al., two important differences can be highlighted. 
First of all, in Eq.  (22) second order effects are accounted for a given level of drift. 
Besides, second-order effects that occur when ultimate design displacement is reached 
are explicitly and rigorously evaluated by means of a kinematic approach without resort-
ing to the amplification of moment method.

Being known the value of the sum of the plastic moments of top storey beams, it 
is possible to design beams of the other storey by the �k factors. Furthermore, being 
known the values of the sum of the reduced plastic moments of first storey columns and 
the axial load acting at collapse state in the columns, it is possible to design the first 
storey columns.
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With this background, in the spirit of PBPD columns are designed singularly through a 
static approach by which the bending moments along the column height are evaluated employ-
ing free-body diagrams.

At this point, a distribution coefficient � lower than 1 has to be computed to provide the 
rate of seismic forces and vertical loads affecting the second order effects coming from the 
inner leaning part designed only for gravity loads. To achieve this purpose, we need to refer to 
each column in its maximum drift response state according to the plastic rotation of dissipa-
tive members, assumed in this study equal to 0.04 rad . In this condition, according to a global 
collapse mechanism, all the plastic hinges in the beam ends and first storey column bases are 
activated in yielding.

Assuming as positive the clockwise rotation, the equation of equilibrium to the rotation 
around the bottom of the single column is estimated as follows:

where �
∑ns

k=1
Fkhk is the sum of bending moments due to seismic forces from k th storey 

to the top storey, �
∑ns

k=1
Vlk�k is the sum of bending moments due to second-order effects 

coming from the inner bays of that column and �k is the horizontal displacement occur-
ring at the kth storey. From k th storey to the top storey, 

∑ns
k=1

Nci,k�k is the sum of bending 
moments due to secondary beams axial contributes according to the influence area of the 
i th column from k th storey to the top storey,�

∑nc
i=1

Mc,i,1 is the required moment rate at 
the i th column base, 

∑ns
k=1

Mb,i−1,k and 
∑ns

k=1
Mb,i,k are the sum of beams plastic moments 

to the right and to the left bay, respectively, from k th storey to the top store, 
∑ns

k=1
Si−1,k�k 

and 
∑ns

k=1
Si,k�k are the axial forces at the k th storey in the i th column at the collapse state. 

According to the global mechanism, axial forces in the columns at the collapse state have 
to be evaluated by considering both distributed loads acting on the beams and shears due 
to the development of plastic hinges at the beam ends. So that, the total load transmitted by 
the beams to the columns is expressed as:

where qi,k is the vertical load acting in the seismic load combination, Mb,i,k is the plastic 
moment in the beam ends when plastic hinge has been developed, and li is the bay span. It 
is important to underline that these two contributions combination are influenced by seis-
mic actions direction.

By solving Eq. (25) for the distribution coefficient � , the following expression returns:
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Thanks to the above distribution coefficient, the bending moment at the bottom of column 
by means of the equation of equilibrium to the rotation around the bottom point of the column, 
is evaluated as follows:

Set the value of the plastic moment at the bottom of first storey column M∗
c,i,1

 , the value of 
the distribution coefficient � is updated as follows:

Definitely, this updated distribution coefficient allows to design the columns sections at 
each storey by means of the free-body diagrams, as depicted in Fig. 4, evaluating the bending 
moment at the top and bottom of the column on each storey by means of the following equa-
tions providing the top and bottom design moment of column at each storey:

(28)
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Fig. 4   Free-body diagram of an exterior column
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The design moment is the maximum among those provided by Eqs. (30) and (31). Finally, 
column sections have to be selected from standard shapes.

Given the above, it is possible to make a summary of the TPMC and PBPD procedures 
starting from the same set of equation constituting the system to provide 

∑nc
i=1

Mc.i.1 and 
∑nb

j=1
Mb.jns . The flow chart of the procedures is reported in Fig. 5.

5 � Case study

The study cases reported is referred to a building having a plan configuration reported 
in Fig. 6. The structural system is a perimeter seismic resistant system constituted by MR-
Frames, while the inner bays are pinned, and they are designed to bear only vertical loads. 
The building constituting the study cases are constituted by a 4, 6 and 8 storeys and have been 
designed according to three methodologies: PBPD, TPMC and the approach herein proposed.

Being known the seismic forces at each storey, beam sections can be dimensioned by 
assuming a distribution of their size according to the storey shear distribution. In a purely 
ideal perspective, this strategy leads to contemporary involvement of dissipative zones in 
plastic range under the seismic design forces. Conversely, first storey column sections are 
obtained by imposing the prevention of storey mechanism at the first storey. About the 
design of columns at the upper storeys TPMC follows a kinematic approach while PBPD 
follows a static approach using free-body diagrams to derive the distribution of column 
bending moments along the structure height. Moreover, the influence of second-order 
effects is rigorously accounted for in TPMC by means of the concept of mechanism equi-
librium curve. Conversely, PBPD uses the moment amplification method to account for 
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second-order effects to columns provided by means of a rigid-plastic analysis, rather than 
to moments derived using elastic analyses as usual.

The seismic response of the buildings herein analysed refers only to the transversal 
direction, i.e. where beams are parallel to the direction of the corrugation of the deck slab. 
The corresponding seismic resistant scheme for each case is depicted in Fig. 6, where there 

Fig. 5   Flowchart of TPMC and PBPD taking in account for second order effect rigorously
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is also the leaning column considered in structural model in order to consider the second 
order effects due to the gravity load acting in the internal part of the structure. The aim of 
the leaning column is to account the gravity loads acting in the leaning part of the struc-
ture. In fact, they cannot be negligible both in terms of second order effects than in terms 
of structural seismic masses.

The bay span is equal to 6.00 m; the interstorey height is equal to 4.50 m at the first 
storey and to 3.50 m at the upper storeys. The characteristic values of the vertical loads 
are equal to 4.50 and 2.00 kN/m2 for permanent ( Gk ) and live ( Qk ) actions, respectively. 
Consequently, with reference to the seismic load combination provided by Eurocode 8 (EN 
1998-1 2004), the vertical loads acting on the floor are evaluated as follows:

where �2 , equal to 0.3 for residential buildings, is the coefficient for the quasi-permanent 
value of the variable actions. In addition, the floor weights and masses of 6-storey structure 

(32)Gk + �2Qk = 5.10 kN/m
2

Fig. 6   Plan and elevation configuration of the 6-storey building

Table 1   Heights, distributed loads, forces, floor masses and weight of 6-storey frame

Storey hk (m) FC1 (kN) FC2 (kN) Flc (kN) Floor masses 
(kN/m2)

Weight (kN)

1 4.50 30.60 61.20 550.80 4.80 1555.20
2 8.00 30.60 61.20 550.80 4.80 1555.20
3 11.50 30.60 61.20 550.80 4.80 1555.20
4 15.00 30.60 61.20 550.80 4.80 1555.20
5 18.50 30.60 61.20 550.80 4.80 1555.20
6 22.00 30.60 61.20 550.80 4.98 1613.52
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are delivered in Table 1. According to Eurocode 8, the period of vibration to be used for 
preliminary design is given by:

where C = 0.085 for steel MR-Frames and H is the total height of the frame.
The steel grade adopted is S355 without using a partial safety factor, so the nominal 

yield stress is 355 MPa for beams and for columns. The beams of the MR-Frames have 
been checked in terms of serviceability requirements under vertical loads.

The approaches herein investigated show two different ways to evaluate the seismic design 
base shear, but in this study the lateral seismic forces used to design the structures has been 
calculated with reference to the design spectrum for soil class C of EC8 and by assuming a 
behaviour factor q equal to 6.5, a peak ground acceleration equal to 0.35 g and 2% damping. 
In addition, torsional effects have been accounted for by means of the δ parameter, evaluated 
according to EC8 provisions as � = 1 + 0.6x∕Le , where x is the considered frame distance 

(33)T = CH3∕4

Fig. 7   Sections of the PBPD designed structures

Fig. 8   Sections of the TPMC designed structures
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from building plan center of gravity measured perpendicular to the direction of the seismic 
action considered, and Le is the distance between the most external resisting elements meas-
ured perpendicular to the direction of the seismic action considered. The ultimate design dis-
placement has been assumed as follows:

where �p is the plastic rotation of dissipative members, assumed in this study equal to 
0.04 rad , and hns is the building height.�p = 0.04 rad has also been assumed in the appli-
cation of Eqs. (5) and (7). Finally, in Figs. 7, 8 and 9, the results of the application of the 
considered design procedures are reported.

6 � Performance evaluation and comparisons

6.1 � Weight of the structures

The first comparison regards the weight of the structures. In Figs. 10 and 11 the free body 
diagrams of moment for PBPD and modified PBPD for external and internal columns, 
respectively, are depicted with reference to the 4-storey structure. On the vertical axis, the 
height of the building is reported. It should be observed that the rigorous evaluation of the 
second order effects of the procedure herein proposed leads to structures lighter than those 
designed by considering second order effects in an approximated way, namely by means 
of the moment amplification method. Consequently, the comparison between structural 
weights between PBPD and modified PBPD, accounting for a force distribution in agree-
ment with Eurocode 8 shows a glaring difference to the advantage of the methodology here 
proposed in all the analysed cases.

In addition, if the comparison is extended also to TPMC designed structures, it can be 
observed (Fig. 12) that, within the same distribution of seismic forces, structures designed 
according to TPMC are always lighter than those obtained by PBPD, while, those designed 
with the approach herein presented have almost the same weight of TPMC ones.

(34)�u = �phns

Fig. 9   Sections of the modified PBPD designed structures
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Fig. 10   Comparison between free body diagrams of external columns of the structures
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Fig. 11   Comparison between free body diagrams of internal columns of the structures
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6.2 � Push‑over analyses

With reference to the seismic resistant system depicted in Fig. 6, push-over analyses have 
been carried out by means of SAP2000 computer program. The primary aim of these anal-
yses is to confirm the development of the desired collapse mechanism typology (i.e. the 
global one). Regarding the structural modelling, all the members are modelled by beam-
column elements whose mechanical nonlinearities have been concentrated at their ends by 
means of plastic hinge elements without rigid offset to account for the panel zone dimen-
sion. In particular, with reference to beams, plastic hinges properties are defined in pure 
bending (M3 hinges), while in case of columns plastic hinge properties are defined in order 
to account for the interaction between axial force and bending moment (P-M3 hinges). The 
constitutive law of such plastic hinge elements is provided by a rigid plastic moment-rota-
tion curve without hardening and degradation. In addition, nominal properties of materi-
als are considered. Push-over analyses have been led under displacement control taking in 

Fig. 12   Comparison between free body diagrams of the internal column
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account both geometrical and mechanical non-linearities. In addition, out-of-plane stability 
checks have been performed step by step in the non-linear analysis for all the analysed 
structures. The results given by the push-over analyses are represented in Figs. 13, 14 and 
15, where both the push-over curves and the mechanism equilibrium curves corresponding 

Fig. 14   Push-over curves for the 6-storey frames

Fig. 15   Push-over curves for the 8-storey frames
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to the global mechanism are depicted even if only in the case of TPMC and modified 
PBPD. In addition, two straight lines representing the plastic rotation of the most involved 
hinge both in columns than in beams are reported. In this way, it is possible to evaluate if 
the ultimate plastic rotation �p = 0.04 rad is achieved first or after the top sway displace-
ment reach the design ultimate displacement �u.

From the results obtained by the analyses it can be seen that the softening branch of 
the push-over curve corresponding to the structure designed by means of the Theory 
of Plastic Mechanism Control and modified PBPD procedures is similar to the mecha-
nism equilibrium curve given by second order rigid-plastic analysis, even if in the sec-
ond case, the push-over curve points out the trend to a partial type collapse mechanism 
for displacement value higher than the ultimate design displacement. Regarding the 
push-over curves of structures designed by PBPD, it can be observed that they have a 
stiffness and strength higher than the TPMC designed structure. However, the struc-
ture designed by PBPD results oversized if compared to the TPMC one because the 

Fig. 16   Push-over hinge patter 4S—PBPD at δu using standard shapes (a) and ideal hinges (b)

Fig. 17   Push-over hinge patter 4S—TPMC at δu using standard shapes (a) and ideal hinges (b)
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maximum base shear achieved under static loading is about two time greater than the 
design base shear.

It has also been observed, starting from the push-over curves, that, sometimes, the 
most involved hinge reaches the ultimate target displacement ( 0.04 rad ) for a value of 
the displacement lower than the ultimate one. It means that the ductility supply for the 
most involved member is achieved first of the complete development of the collapse 
mechanism.

Fig. 18   Push-over hinge patter 4S—REFINED PBPD at δu using standard shapes (a) and ideal hinges (b)

Fig. 19   Push-over hinge patter 6S—PBPD at δu using standard shapes (a) and ideal hinges (b)
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6.3 � Influence of standard shapes

Standard shapes significantly affect the performance of structures designed under seismic 
design actions due to the over-resistance they give; this could undermine the judgment 
on the design methodologies. In this work, it has been considered to use “ideal” shapes, 
i.e. ideal plastic hinges, to capture the outcome of the design procedures in a “pure” way. 
These ideal shapes, in the same way as dog-bones elements, confer to elements a resistance 

Fig. 20   Push-over hinge patter 6S—TPMC δu using standard shapes (a) and ideal hinges (b)

Fig. 21   Push-over hinge patter 6S—REFINED PBPD δu using standard shapes (a) and ideal hinges (b)
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Fig. 22   Push-over hinge patter 8S—PBPD δu using standard shapes (a) and ideal hinges (b)

Fig. 23   Push-over hinge patter 8S—TPMC δu using standard shapes (a) and ideal hinges (b)
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equal to the actual stress. This approach allows to evaluate the procedures outcome net of 
benefits belonging to the over-resistance intrinsically owned by the standard shapes.

Using a rigid-plastic analysis, the results of non-linear static analyses show that 
PBPD, even if refined to account for second order effects rigorously, is not accurate. 
In fact, the design target, i.e. a collapse mechanism of global type, is not achieved. It 
can also be observed the formation of dangerous plastic hinges at column ends that 
undermines the goodness of the yielding process and in worst cases leads to partial 
collapse mechanisms, as already check in previous study on the procedure (Dell’Aglio 
et  al. 2017). Conversely, structures designed by TPMC and PBPD, both subjected to 
the Eurocode lateral force distribution, have push-over hinge patterns in perfect agree-
ment with the global type mechanism. Regarding the push-over pattern of structures 
designed by means of Performance-Based Plastic Design, this can be justified by 
recalling that the stresses in the elements are very high through the moment amplifica-
tion method, so it is virtually impossible for a partial mechanism to be activated. The 
push-over hinge patterns at the achievement of the ultimate design displacement �u in 
cases of the standard and the “ideal” shapes are reported in Figs. 16, 17, 18, 19, 20, 21, 
22, 23 and 24.

The comparison between the performances of structures obtained by the applica-
tion of ideal shapes confirms the Theory of Plastic Mechanism Control as a reliable 
and valid procedure leading to a collapse mechanism of global type. Conversely, such 
overstrength in Performance-Based Plastic Design procedure has a significant contri-
bution to “correct” the collapse mechanism that, as pointed out in the figures referring 
to ideal standard shapes is not always of global type.

Fig. 24   Push-over hinge patter 8S—REFINED PBPD δu using standard shapes (a) and ideal hinges (b)
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7 � Conclusions

The work herein presented is devoted to compare different approaches for the design of 
MR-Frames. In particular, two design procedures are herein investigated: Performance-
Based Plastic Design (PBPD) and the Theory of Plastic Mechanism Control (TPMC). 
Some criticisms have been highlighted being the two approaches different from several 
aspects. The most relevant one is the way to account for second order effects. In fact, PBPD 
uses the so-called moment amplification method at the end of the design procedure while 
TPMC accounts for the second order effects by means of the concept of collapse mecha-
nism equilibrium curve since the starting point of the procedure. However, other methods 
to take in account the second order effects are proposed by codes, such as Eurocode 8, 
that introduces the so-called θ factor (Cassiano et al. 2016; Tenchini et al. 2014; Montuori 
et al. 2018; Isaincu et al. 2018). Unfortunately, this factor, usually leads to structures with 
oversized beam and column sections, therefore some modifications have been recently pro-
posed (Vigh et al. 2016; Tartaglia et al. 2018).

In addition, in this study, PBPD has been refined to take in account second order effects 
in a rigorous way, i.e. by the kinematic theorem of plastic collapse. Furthermore, the effec-
tive rates of seismic stresses as well as second-order effects coming from the inner bays for 
each column, are evaluated in relation to their location in the frame (external or internal 
columns). This strategy allows to avoid unnecessary and over-budget over-dimensioning.

Aiming at the comparison among these design approaches, MRFs with 4, 6 and 8 storeys 
have been designed using the lateral force distribution as provided by Eurocode 8. Push-over 
analyses have been carried out to compare the investigated design procedures in terms of 
weight and seismic performances. The results show the achievement of the design goal by 
TPMC and PBPD, both in the case of standard shapes than in the case of the design value 
for the definition of plastic hinge properties. However, in case of PBPD, this result is attribut-
able to an overestimation of the design moment in plastic hinges and over dimensioning of 
the frame elements. This affects also the structural weight and consequently the construction 
costs. Conversely, as already stated in a previous study (Dell’Aglio et al. 2017), free-body dia-
gram static approach, though optimised to account for second order effects, is not a useful 
tool for designing frame columns because it is not able to promote the development of a col-
lapse mechanism of global type. Furthermore, the results of non-linear static analyses show 
that PBPD, even if refined to account for second order effects are not accurate. In fact, the 
design target, i.e. a collapse mechanism of global type, is not achieved. It can also be observed 
the formation of dangerous plastic hinges at column ends that undermines the goodness of 
the yielding process and in worst cases leads to partial collapse mechanisms. In conclusion, 
TPMC remains the more useful tool for the design of steel MRFs collapsing with a global 
mechanism also for irregular (Montuori et al. 2017) and high-rise buildings. However, even if 
PBPD and TPMC have been severally investigated by Incremental Dynamic Analyses, further 
investigations on the outcomes of refined PBPD will be shown in forthcoming studies.
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