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Abstract
The probabilistic nature of seismic ground motion intensity measures such as peak ground 
acceleration and spectral acceleration ordinates has been extensively studied during the last 
decades. However, their spatial correlation is mostly considered without any event-to-event 
variability, using a mean estimate from a number of seismic events. The present study 
quantitatively evaluates the event-to-event uncertainty of intraevent spatial correlations, 
using 39 well-recorded earthquakes. Results indicate a high event-to-event variability in 
the correlation model parameters, which if taken explicitly into account, would improve 
regional hazard and risk analyses. Event magnitude was found to be a statistically signifi-
cant predictor variable of the model parameter, however it explains less than 20% of the 
total event-to-event variability. Moreover, clustering of site conditions, tectonic region, and 
fault mechanism are not statistically significant as predictor variables of the spatial correla-
tion model parameter. Finally, this paper proposes a simple Monte Carlo approach for con-
sidering the high event-to-event variability of spatial correlation models, taking advantage 
of the Markov dependence of residuals for reducing the number of correlated variables to 
be simulated. This approach can be used with different intraevent spatial correlation mod-
els, as long as proper estimates of the dispersion of their parameters are considered.

Keywords Spatial correlation · Uncertainty · Ground motion intensity measure · Regional 
risk assessment

1 Introduction

Peak ground acceleration (PGA) and spectral acceleration ordinates (Sa) are the most widely 
used ground motion intensity measures (IM) for seismic hazard analyses. The probabilistic 
nature of these parameters is a well-researched topic and several ground motion prediction 
equations (GMPE), which provide estimations of their median and dispersion, have been 
developed (e.g., the NGA-West2 generation of GMPEs Bozorgnia et al. 2014). Moreover, esti-
mating seismic risk on spatially distributed infrastructure (e.g., lifelines) or on many structures 
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in a region requires not only the estimation of mean and dispersion of ground motion param-
eters at each location, but also requires the characterization of correlations of their residu-
als (e.g., Wesson and Perkins 2001; Lee and Kiremidjian 2007). Note that this correlation is 
applied to ground motion residuals, therefore it is related to changes in variability during dif-
ferent earthquakes and at different locations.

The spatial correlation of Sa values at different locations has been investigated in several 
studies over the last 15 years (Wesson and Perkins 2001; Boore et al. 2003; Kawakami and 
Mogi 2003; Wang and Takada 2005; Park et al. 2007; Goda and Hong 2008; Goda and Atkin-
son 2009, 2010; Hong et al. 2009; Jayaram and Baker 2009; Goda 2011; Sokolov et al. 2012; 
Sokolov and Wenzel 2013a; Loth and Baker 2013). The interested reader is also referred to 
the exhaustive literature review developed by Sokolov and Wenzel (2013b) about spatial cor-
relations of ground motions. In general, previous studies grouped sets of a few different events 
for developing overall spatial correlation equations, mainly because, with the exception of the 
1999 Chi–Chi and 1994 Northridge earthquakes, individual earthquakes have not produced 
the sufficient number of records for accurate estimations. Although this procedure generates 
smooth estimations of spatial correlations, it has the drawback of neglecting the variability 
between different events: the “event-to-event” variability. Even though some authors have 
commented on this variability when comparing the results of California events with the 1999 
Chi–Chi earthquake and its aftershocks (Goda and Hong 2008; Jayaram and Baker 2009), the 
first author to highlight the large event-to-event variability was Goda (2011), who compared 
spatial correlations of intraevent terms (also referred to as intraevent spatial correlations) com-
puted from 41 different earthquakes. He found that, for example, the intraevent correlation 
at 10 km between Sa values at a vibration period T = 0.2 s has a median of 0.5, but it could 
vary approximately between 0.1 and 0.8. These two values would lead to significantly dif-
ferent results in a regional seismic risk estimation from those computed using a single value 
obtained from an approximate equation that groups all the events and neglects the high vari-
ability (Goda and Atkinson 2009; Sokolov and Wenzel 2011).

In this context, the main objective of the present work is to quantitatively evaluate the 
event-to-event uncertainty of the spatial correlation of PGA and Sa ordinates, and to propose 
an approach for explicitly considering it in seismic hazard and risk analyses. In particular, 
this investigation presents a correlation model, which is then fitted to 39 well-recorded earth-
quakes. A statistical study of the resulting parameters is conducted in order to propose a new 
methodology for considering the uncertainty of the spatial correlation model in future regional 
seismic hazard and risk analyses.

2  Intraevent spatial correlation model

The intraevent spatial correlation model described in this section is similar to the one pre-
sented by other authors (Goda and Hong 2008; Goda and Atkinson 2009, 2010; Hong et al. 
2009; Jayaram and Baker 2009; Goda 2011). Several studies have shown that response spec-
tral ordinates can be assumed to be lognormally distributed random variables (e.g., Abraham-
son 1988; Jayaram and Baker 2008), and GMPEs can be used to estimate their median and 
dispersion as a function of the event magnitude, source-to-site distance, and other variables, 
such as the local soil conditions, fault mechanism, and tectonic region. In the case of spectral 
acceleration ordinates, this is expressed as follows:

(1)ln Saik(T) = f
(

T ,Mk,Rik,�ik

)

+ �k(T) + �ik(T),
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where Saik(T) is the pseudo-acceleration spectral ordinate for a vibration period T at the i-
th site in the k-th event. The function f(T, M, R, θ) is the logarithmic mean value estimated 
by a GMPE as a function of the event magnitude M, source-to-site distance R, and a set of 
other explanatory variables θ. Note that this function is deterministic, given a set of input 
parameters. The randomness of the intensity measure is accounted by ηk(T) and εik(T), 
which are the interevent (also referred to as between-event) and intraevent (also referred 
to as within-event) residual terms, respectively. These terms are assumed to be independ-
ent and normally distributed random variables with zero mean and standard deviations 
ση(T) and σε(T), respectively. Note that in some models these standard deviations might 
be expressed also as a function of the event magnitude and other variables. The interevent 
term, ηk(T), represents the variability between different earthquake events, independent of 
the site, while the intraevent term, εik(T), represents the site-to-site variability within an 
earthquake event. Finally, since ηk(T) and εik(T) are assumed to be independent, then the 
total standard deviation of ln Saik(T) is σT(T), given by:

Estimating a correlation between spectral ordinates Sa(T) at different locations would 
not be appropriate, even when using records from a single earthquake. This is because 
the underlying distribution of each realization (i.e., values of the IM) is different, as 
they have different values of Rik and θik. However, realizations of the residual terms 
ηk(T) + εik(T) come from the same distribution (normal distribution with zero mean and 
standard deviation σT(T), as explained above). Thus, the correlation between residual 
terms, η(T) + ε(T), at two sites i and j separated by a distance Δij, and for two different 
periods Ti and Tj, respectively, can be demonstrated to be given by:

where ρT(Δij,Ti,Tj) is the correlation between ηk(Ti) + εik(Ti) and ηk(Tj) + εjk(Tj), ρη(Ti,Tj) is 
the interevent correlation between ηk(Ti) and ηk(Tj), and ρε(Δij,Ti,Tj) is the intraevent cor-
relation between εik(Ti) and εjk(Tj). Note that, even when for very large separation dis-
tances ρε(Δij,Ti,Tj) is expected to decay to zero, there will be always some total correlation 
ρΤ(Δij,Ti,Tj), due to the correlation between interevent residuals of the same earthquake. 
Goda and Hong (2008) proposed that the total spatial correlation can be approximated by:

where Tmax is the largest value of the two periods, Ti and Tj, and ρ0(Ti,Tj) represents the 
empirical approximation of ρT(Δij = 0,Ti,Tj), previously studied by several authors (e.g., 
Inoue and Cornell 1990; Baker and Cornell 2006; Abrahamson and Silva 2007; Baker and 
Jayaram 2008; Abrahamson et  al. 2013). The approximation from Eqs.  (3) to (4) comes 
from the assumption of a Markov dependence of residuals at different periods, and its cor-
rectness was demonstrated by Loth and Baker (2013). Thus, the focus of this paper is the 
study of the intraevent spatial correlation ρε(Δij,Tmax,Tmax), which will be denoted ρε(Δ,T) 
hereafter.
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In order to estimate ρε(Δ,T), a regression analysis has to be carried out in a first step 
in order to determine f(T, M, R, θ), ση(T) and σε(T). In this paper the GMPE developed by 
Boore et al. (2014) is used for computing the mean and dispersions of the regression. The 
regression residuals are then used to evaluate the intraevent spatial correlation. For a given 
event and period, the interevent residual term, ηk(T), is a constant for all the sites, therefore 
the residuals ln Saik(T) − f(T, Mk, Rik, θik) = ηk(T) + εik(T) only give information about the 
intraevent spatial correlation. One approach for estimating ρε(Δ,T) is to directly compute 
the covariance and the correlation coefficient between residuals at sites separated at a cer-
tain distance Δ. Another approach, first recommended by Goda and Hong (2008), which 
is consistent with the geostatistical practice, and also used by Jayaram and Baker (2009) 
and Loth and Baker (2013), is to assume stationarity and isotropy, then using the sample 
semivariogram (Goovaerts 1997), [σd(Δ,T)]2/2. The term σd(Δ,T) is the standard deviation 
of εd(Δ,T) = εik(T − εjk(T), where the i-th and j-th sites have a separation distance Δ (note 
that, as it is unlikely to find several data points with an exact separation Δ, the data points 
are organized in bins of separation distance). In other words, all the pairs of residuals at 
sites with a separation distance within the range of distances of a given bin are subtracted 
to generate a new variable εd(Δ,T) and then σd(Δ,T) is computed as its standard deviation. 
Finally, the intraevent spatial correlation is evaluated as:

where �̂�𝜀(T) is the intraevent standard deviation of the event k. It is paramount to note that 
the intraevent standard deviation from the original GMPE, σε(T), must not be used as �̂�𝜀(T) 
in Eq.  (5), because this is a constant value for different events (all the events considered 
in the development of the GMPE), while in reality �̂�𝜀(T) may vary significantly from one 
event to another. Therefore, using a constant �̂�𝜀(T) = 𝜎𝜀(T) would introduce a bias into the 
estimation of ρε(Δ,T). Thus, it is generally recommended to assume that the semivariogram 
reaches a plateau at long separation distances, where the correlation is theoretically zero. 
Therefore �̂�𝜀(T)

2 can be assumed to be equal to 0.5 σd(Δ,T)2 for a very large separation 
distance. In this work, the semivariogram approach is taken, separation distances that differ 
by no more than 3 km are grouped into the same bin, and �̂�𝜀(T)

2 is computed as the pla-
teau value of 0.5 σd(Δ,T)2 at distances between 85 and 180 km. Using other width ranges 
of separation distances in each bin and large distances for �̂�𝜀(T) produce almost the same 
results than those shown in the following sections.

At this point it is important to note that the methodology previously described is in 
theory inconsistent if the GMPE that estimates f(T, M, R, θ), ση(T), and σε(T) of Eq.  (1) 
does not explicitly include the spatial correlation of residuals, which is the common prac-
tice (e.g., the NGA-West2 generation of GMPEs assume no spatial correlation). However, 
Hong et al. (2009) included the spatial correlation in their regression analysis for develop-
ing a GMPE with a set of California records, concluding that the effect is negligible when 
comparing it with a GMPE without spatial correlation. Therefore, even when the proce-
dure previously described is in theory inconsistent, in practice it can be used with standard 
GMPEs without significant errors.

Once the empirical ρε(Δ,T) was obtained using Eq.  (5), the following functional form 
was fitted to the data:

(5)𝜌𝜀(Δ, T) = 1 −
1

2

[

𝜎d(Δ, T)

�̂�𝜀(T)

]2

,

(6)�̂�𝜀(Δ, T) = exp

[

−

(

Δ

𝛽(T)

)𝛼(T)
]

,
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where α and β are the model parameters obtained using a nonlinear regression, which 
are function of the vibration period T. The parameter α controls the decaying rate of 
correlation with increasing distance Δ, and β is the distance at which the correlation is 
exp(− 1) = 0.368. Note that for a fixed value of β, a higher value of α produces higher cor-
relation values for distances Δ < β, and lower correlation values for Δ > β. A least-squares 
regression was used to fit the model and obtain the parameters α and β as a function of 
vibration period. However, as correlation coefficients have non-constant standard errors, 
the following transformation was used, known as Fisher z transformation:

where ρ is the estimated correlation from Eq. (5) and z is the transformed value, now with 
a constant standard error. Then, in order to obtain the model parameters, α and β, the least-
squares regression was conducted with the z values.

Although this paper is focused on ρε(Δ,T), please note that once this correlation is esti-
mated, the total correlation between residual values ρΤ(Δij,Ti,Tj), can be easily computed 
using Eq.  (4). Furthermore, as the residual terms are the only source of uncertainty in 
Eq.  (1), the correlation between ln Sa(T) values is equal to the total correlation between 
residual terms.

3  Ground motion database

The correlation model expressed in Eq. (6) was fitted to the empirical correlations of differ-
ent earthquakes individually. The reliability of these empirical correlations increases with 
the number of stations that recorded the earthquake (i.e., as the sample size increases). 
Therefore, only well-recorded events, with more than 200 recorded ground motions (i.e., 
100 stations with two horizontal perpendicular directions), were considered. This is also 
consistent with the selection criteria used by Goda (2011). A total of 39 earthquakes were 
selected, with magnitudes ranging between 4.0 and 7.9 in order to study the influence of 
the event magnitude in the spatial correlation. Here, only ground motions recorded in sta-
tions with NEHRP site class C or D (average shear wave velocity of the top 30 m, VS30, 
between 180 and 760  m/s) were considered, as these are the most common site classes 
encountered in most urban areas. Table  1 shows the information about the earthquakes 
considered. All the ground motions used in this study were obtained from the NGA-West2 
database (Ancheta et al. 2014).

It should be noted that the reliability of estimates of correlation coefficients computed 
from a given sample size increases as the absolute value of the correlation coefficient 
increases. Thus, correlation coefficients from this study are particularly well estimated for 
separation distances smaller than 30 km, which are the ones that have the largest influence 
in regional seismic hazard and risk analyses of urban areas.

4  Variability of intraevent spatial correlation

The procedure described in Sect.  2 was applied to every earthquake event, for PGA 
and for pseudo-acceleration spectral ordinates at periods of vibration between 0.1 and 
6.0  s. Figure  1 illustrates, as an example, the results of the 2007 Chuetsu-oki, Japan 

(7)z =
1

2
log

(

1 + �

1 − �

)

,
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Table 1  Summary of considered earthquakes

a Only stations with NEHRP site class C or D

Event name Year Magnitude Fault mechanism Latitude [°] Longitude [°] Number of 
 stationsa

Chuetsu-oki 2007 6.80 Reverse 37.538 138.617 543
Niigata, Japan 2004 6.63 Reverse 37.307 138.839 464
Chi–Chi, Taiwan 1999 7.62 Reverse 23.850 120.820 371
Tottori, Japan 2000 6.61 Strike-Slip 35.275 133.350 366
El Mayor-Cucapah 2010 7.20 Strike-Slip 32.300 − 115.267 333
Iwate 2008 6.90 Reverse 39.027 140.878 332
Chi–Chi, Taiwan-05 1999 6.20 Reverse 23.810 121.080 300
Chi–Chi, Taiwan-02 1999 5.90 Reverse 23.940 121.010 273
Chi–Chi, Taiwan-06 1999 6.30 Reverse 23.870 121.010 273
Wenchuan, China 2008 7.90 Reverse 30.986 103.364 262
10370141 2009 4.45 Strike-Slip 34.108 − 117.306 249
Chi–Chi, Taiwan-03 1999 6.20 Reverse 23.810 120.850 231
Chi–Chi, Taiwan-04 1999 6.20 Strike-Slip 23.600 120.820 231
14312160 2007 4.66 Reverse 34.298 − 118.626 210
10275733 2007 4.73 Strike-Slip 33.733 − 117.492 201
Anza-02 2001 4.92 Normal 33.508 − 116.514 198
14383980 2008 5.39 Reverse 33.947 − 117.767 187
40204628 2007 5.45 Strike-Slip 37.432 − 121.777 173
10410337 2009 4.70 Strike-Slip 33.928 − 118.354 169
40199209 2007 4.20 Strike-Slip 37.806 − 122.185 168
14138080 2005 4.59 Normal 34.998 − 119.193 164
14186612 2005 4.69 Reverse 35.017 − 119.025 153
71336726 2010 4.05 Strike-Slip 37.481 − 121.799 153
Northridge-01 1994 6.69 Reverse 34.206 − 118.554 147
9983429 2004 4.34 Strike-Slip 35.017 − 119.149 142
21522424 2006 4.30 Strike-Slip 37.100 − 121.491 140
Parkfield-02, CA 2004 6.00 Strike-Slip 35.817 − 120.365 137
14151344 2005 5.20 Strike-Slip 33.533 − 116.570 135
51207740 2008 4.10 Strike-Slip 37.862 − 122.000 135
9753485 2002 4.18 Reverse 34.362 − 118.664 132
Hector Mine 1999 7.13 Strike-Slip 34.598 − 116.265 124
21530368 2006 4.50 Strike-Slip 38.367 − 122.588 115
Whittier Narrows-01 1987 5.99 Reverse 34.049 − 118.081 113
21465580 2005 4.77 Strike-Slip 39.314 − 120.064 111
21437727 2005 4.18 Strike-Slip 37.393 − 121.486 110
14155260 2005 4.88 Reverse 34.066 − 117.001 107
Yorba Linda 2002 4.27 Strike-Slip 33.917 − 117.776 120
Big Bear City 2003 4.92 Strike-Slip 34.310 − 116.848 100
Darfield, New Zealand 2010 7.00 Strike-Slip − 43.615 172.049 100
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earthquake for PGA and Sa(5.0 s). The fitted parameters α and β for this event are (α, 
β) = (0.59, 20.05 km) for PGA, and (α, β) = (0.56, 11.69 km) for Sa  (5.0 s). Figure 2a 
shows the results of fitting the model of Eq. (6) to the 39 earthquake events of Table 1, 
for Sa (1.0 s). The mean value of the correlation coefficient and the 16th and 84th per-
centiles, as function of separation distance, are also shown in the same figure. Figure 2b 
compares the spatial correlation results for Sa(1.0 s) from the 39 events and their mean 
with previous models developed by Goda and Hong (2008), Jayaram and Baker (2009), 
and Goda and Atkinson (2010). Figure 2c presents the coefficient of variation (COV) 
of the correlation coefficients for Sa at four different periods of vibration, as a func-
tion of separation distance. As can be observed, there is a significant variability in the 
intraevent correlation coefficient at a given separation distance for every period. In order 
to evaluate this variability with an overall measure, the following sections are focused 
on the probability distribution of the model parameters α and β.

Fig. 1  Empirical and fitted 
spatial intraevent correlation for 
PGA and Sa (5.0 s) in the 2007 
Chuetsu-oki, Japan earth-
quake. For PGA (α, β) = (0.59, 
20.05 km), while for Sa (5.0 s) 
(α, β) = (0.56, 11.69 km)

0 10 20 30 40 50 60

Separation Distance    [km]

0.0

0.2

0.4

0.6

0.8
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( ,T)

Data for PGA
Fit for PGA
Data for T = 5.0 s
Fit for T = 5.0 s

Fig. 2  a Fitted spatial intraevent correlation for Sa(1.0 s) for 39 individual earthquake events, their mean, 
and their 16/84th percentiles. b Comparison of the fitted spatial intraevent correlation for 39 individual 
earthquake events and their mean, with previous models. c Coefficient of variation (COV) of the intraevent 
correlation coefficient as a function of separation distance, for four different periods of vibration
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4.1  Central tendency and variability of correlation model parameters

The resulting values of α and β as a function of period for each individual earthquake are 
shown in Fig. 3a, b, in light gray lines. The central tendencies and the counted 16th and 
84th percentile values are also presented in the same figures. As noted before, the param-
eters fitted to earthquakes with more records are smoother and more reliable than those 
fitted to events with less ground motion records, thus the central tendency is computed as 
the weighted geometric mean, where each earthquake result is weighted by the square of 
the number of stations (see Table 1 for the number of stations of each event). Dispersions 
of the parameters α and β as a function of period were computed as the weighted standard 
deviation of the natural logarithm of α and β values, and are shown in Fig. 3c. As can be 
seen, the parameter α is fairly constant across periods, with a value approximately equal to 
0.55, and it has a significantly lower dispersion than the parameter β. Thus, the total vari-
ability of �̂�𝜀(Δ, T) is dominated by the dispersion of β. Therefore, in order to simplify the 
model of Eq. (6), a new functional form can be used:

This also simplifies the comparison between different curves, since for a fixed α, a higher 
value of β is directly translated into higher spatial correlations. New β values were then com-
puted with regression analyses using Eq.  (8), consistent with the fixed value of α = 0.55. 
Figure 4a illustrates the resulting β values for each individual event (in gray lines) with its 
corresponding weighted geometric mean, plotted as a function of period of vibration. The 
weighted geometric mean of β is also shown in Table 2. In order to compare these results to 
previous correlation models, β values are compared with the distances at which the correlation 
equals exp(− 1)  = 0.368  according to the models proposed by Goda and Hong (2008) and by 
Jayaram and Baker (2009). The former model was developed with 39 California earthquakes, 

(8)�̂�𝜀(Δ, T) = exp

[

−

(

Δ

𝛽(T)

)0.55
]

.
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Fig. 3  a Variation of parameter α as a function of the period of vibration for individual earthquakes, and its 
central tendency weighted by the square of the number of stations of each event. b Variation of parameter β 
as a function of the period of vibration for individual earthquakes, and its central tendency weighted by the 
square of the number of stations of each event. c Dispersion (weighted logarithmic standard deviation) of 
parameters α and β as a function of the period of vibration
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while the latter only considered seven events and has two branches for periods shorter than 
1.0 s, depending on the clustering of site conditions. Figure 4b and Table 2 show the disper-
sion of the β values computed for individual events, around the central tendency, for a fixed 
α = 0.55. Note the high dispersion of the parameter β, between 0.6 and 1.2. As a reference, 
these dispersion values, which are currently neglected in regional seismic hazard analyses, are 
higher than those of spectral acceleration ordinates in GMPEs, dispersion values that are rou-
tinely incorporated in probabilistic seismic hazard analyses. 

0 2 4 6
Period  T  [s]

0
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80

(a)  [km]

Individual Earthquakes
Weighted Geomemean
Jayaram & Baker (2009)
Goda & Hong (2008)
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1.2
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Fig. 4  a Variation of β (for α = 0.55) as a function of the period of vibration for individual earthquakes, and 
its central tendency weighted by the square of the number of stations of each event. The results are com-
pared with the models proposed by Goda and Hong (2008) and by Jayaram and Baker (2009). b Dispersion 
(weighted logarithmic standard deviation) of β (for α = 0.55) as a function of the period of vibration

Table 2  Weighted geometric mean and weighted logarithmic standard deviation of β 

Period T [s] Geomean β 
[km]

σ lnβ Period T [s] Geomean β 
[km]

σ lnβ Period T [s] Geomean β 
[km]

σ lnβ

0.0 13.10 0.71 1.2 13.91 0.64 2.6 11.96 0.81
0.1 14.25 0.83 1.3 13.95 0.65 2.8 11.72 0.91
0.2 11.90 0.75 1.4 13.68 0.66 3.0 11.51 0.92
0.3 11.44 0.75 1.5 14.04 0.62 3.5 11.01 0.82
0.4 12.20 0.73 1.6 13.84 0.63 4.0 10.18 0.94
0.5 12.11 0.75 1.7 13.32 0.64 4.6 9.81 1.00
0.6 11.58 0.89 1.8 13.42 0.65 5.0 9.85 0.99
0.7 11.69 0.85 1.9 13.35 0.66 6.0 8.73 1.21
0.8 11.52 0.99 2.0 13.36 0.66 7.0 8.15 1.24
0.9 12.20 0.92 2.2 12.98 0.67 8.0 7.57 1.36
1.0 12.81 0.78 2.4 12.39 0.72 9.0 7.72 1.49
1.1 13.09 0.75 2.5 12.08 0.77 10.0 9.04 1.16
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4.2  Probability distribution of β

At every period of vibration, the empirical cumulative probability distribution of β was 
computed. For this, the β values were sorted in ascending order and for each observation i, 
a probability (i.e., plotting position) equal to (i − 3/8)/(n + 1/4) was assigned, where n is the 
sample size (i.e., the number of earthquakes in this case). This plotting position, proposed 
by Blom (1958), has been demonstrated to be a suitable approximation of the unbiased 
plotting position (Cunnane 1978). An example for T = 2.0 s is presented in Fig. 5, where a 
positive-skewed distribution (higher upper tail) of the data points can be observed. Thus, a 
lognormal distribution is evaluated to determine if it can characterize the probability distri-
bution of β, using the Kolmogorov–Smirnov (K-S) goodness-of-fit test (Massey 1951). The 
fitted lognormal distribution and its K-S 10% significance confidence boundaries are also 
presented in Fig. 5. This test was repeated for every period of vibration. Figure 6 shows 
the maximum absolute difference between the empirical cumulative distribution of β, Fβ, 
and the fitted lognormal distribution of β, Fβ

*, as a function of period, along with the K-S 
10% significance limit for this sample size, Dcrit,10%. As can be seen, β can be adequately 
assumed to have a lognormal distribution for all the periods.

4.3  Influence of earthquake magnitude and clustering of site conditions

In order to evaluate the influence of the event moment magnitude, Mw, β values were plot-
ted against the magnitude of their corresponding events for each period of vibration. An 
example of this evaluation for T = 3.0 s is shown in Fig. 7. The Pearson’s empirical correla-
tion coefficient between β and Mw at this vibration period is 0.35, and a slight influence can 
be observed, where higher magnitudes are correlated with higher β values. This correlation 
was found to be higher for periods greater than 1.0 s than for shorter periods, as can be 
seen in Fig. 8a, which presents the Pearson’s empirical correlation coefficient between β 
and event moment magnitude as a function of the period of vibration. However, despite 
this relatively important level of correlation for periods of vibration larger than 1.0 s, the 
variability of β is only slightly decreased (less than 20%) when the event magnitude is 

Fig. 5  Empirical cumulative dis-
tribution of β for T = 2.0 s, along 
with a fitted lognormal distribu-
tion and its K-S 10% significance 
confidence boundaries
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explicitly taken into account for estimating β. This is shown in Fig. 8b, which compares the 
dispersion of β before and after taking into account the earthquake magnitude for estimat-
ing it, considering a linear trend between β and Mw. This means that only a small fraction 
of the high variability of β is explained by changes in Mw. Considering a nonlinear model 
between β and Mw did not improved these results, as no clear trend, either linear or nonlin-
ear, is observed between β and Mw.

On the other hand, Jayaram and Baker (2009) showed a trend between β values and the 
clustering of soils with similar geological conditions. To evaluate this, they used the spatial 
correlation of VS30 values as a proxy for clustering of site conditions. Considering seven 
earthquakes, the authors concluded that regions with higher spatial correlations of VS30 
present higher spatial correlations between spectral ordinates at short periods of vibration. 
This is the reason behind the two branches for periods shorter than 1.0 s shown in Fig. 4a, 

Fig. 6  Maximum absolute dif-
ference between the empirical 
cumulative distribution of β, Fβ, 
and the fitted lognormal distribu-
tion of β, Fβ

*, as a function of 
period, along with the K-S 10% 
significance limit for this sample 
size, Dcrit,10%
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Fig. 7  Influence of event moment 
magnitude on β for T = 3.0 s. The 
corresponding Pearson’s empiri-
cal correlation coefficient is 0.35
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where the top branch (higher β values) is for regions with clustering of VS30 and the bot-
tom branch (lower β values) is for regions where the soil conditions vary widely. Sokolov 
et al. (2012) and Sokolov and Wenzel (2013a) drew similar conclusions about the influ-
ence of clustering of site conditions in Taiwan and Japan, using the same procedure than 
the one used by Jayaram and Baker (2009). In this study, we follow the same approach for 
evaluating the influence of clustering of site conditions. Similar to the spatial correlation of 
intensity measures, the empirical semivariogram was computed from VS30 values of each 
station, at every earthquake event. From the semivariograms, empirical spatial correlation 
coefficients were calculated using Eqs. (5) and (8) was fitted to the resulting data. The β 
values obtained are termed βVS30, and represent a proxy for the clustering of site conditions: 
higher βVS30 values mean higher spatial correlations of VS30, which are related to the clus-
tering of site conditions. Then, βVS30 was used as a possible explanatory variable that could 
partially explain the high variability of β, by conducting a linear regression analysis for β 
as a function of βVS30. Note, however, that this procedure only takes into account the influ-
ence of VS30, and it does not consider other possible geological variables, such as the depth 
of sediments. Similarly to the procedure with the magnitude, Fig. 9 shows an example of 
a scatter plot between β and βVS30 for T = 0.2 s, where the corresponding Pearson’s empiri-
cal correlation coefficient is only − 0.03, illustrating a negligible influence of βVS30 on β. 
Pearson’s empirical correlation coefficients computed for every period of vibration are pre-
sented in Fig. 10a, again showing a very low correlation for all periods. Moreover, Fig. 10b 
shows that the reduction in the dispersion of β when explicitly considering a regression 
analysis between β and βVS30 is negligible, demonstrating that βVS30 (and thus the clustering 
of VS30) has no influence on the spatial correlation of these intensity measures.

Finally, a linear regression analysis was conducted for every period of vibration, with the 
event moment magnitude, βVS30, and two earthquake characteristics: tectonic region and fault 
mechanism. From these predictor variables, only the event moment magnitude was found to be 
statistically significant at a 5% significance level, and just for β values at periods greater than 
1.0 s. Moreover, the resulting reduction of the variability of β is similar to the one presented in 
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Fig. 8  a Pearson’s empirical correlation coefficient between β and event moment magnitude as a function 
of the vibration period. b Comparison of variability of β before and after considering event magnitude, Mw, 
through a linear regression analysis for β as a function of Mw
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Fig. 8b, for regressions using only the event moment magnitude as explanatory variable. This 
is also consistent with Figs. 7 and 9, where no clear difference between fault mechanisms is 
observed.

Fig. 9  Influence of βVS30 (proxy 
for clustering of site conditions) 
on β for T = 0.2 s. The corre-
sponding Pearson’s empirical 
correlation coefficient is − 0.03
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Fig. 10  a Pearson’s empirical correlation coefficient between β and βVS30 (proxy for clustering of site condi-
tions) as a function of the vibration period. b Comparison of variability of β before and after considering 
clustering of soil conditions through a linear regression analysis for β as a function of βVS30
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5  Monte Carlo approach for considering the variability of spatial 
correlation

The previous section demonstrated that the intraevent spatial correlation of intensity meas-
ures during a given earthquake is characterized by a high inherent variability, and there-
fore, rather than just considering one correlation model (derived with either one event or 
a set of events), regional risk assessments can be improved by explicitly considering this 
dispersion. In this context, Eq. (8) can be used with β as a lognormally distributed random 
variable. It is proposed that the median and the dispersion of β are computed with the fol-
lowing simplified equations, which are also shown in Fig. 11:

A simple and direct approach for incorporating the variability of the spatial correlation 
is to perform Monte Carlo simulations, by considering the spatial correlation model param-
eters as random variables. In most of the cases, different intensity measures (at different 
vibration periods) must be simulated at many sites. Therefore, taking advantage of the 
Markov approximation for reducing the number of correlated variables that must be simu-
lated, the following simulation sequence for a given scenario earthquake can be adopted 
(note that, at each Monte Carlo simulation, this scenario earthquake can either stay fixed 
for estimating ground motion intensity measures for that particular event, or may vary for 
an event-based probabilistic seismic hazard analysis):

 1. Define the set of locations (subscript j = 1,2,… J) and periods (subscript i = 1,2,… I) 
at which ground motion intensity measures will be simulated.

 2. Obtain the maximum period of vibration to be simulated, Tmax = max(Ti).

(9)𝛽(T) =

{

4.231 ⋅ T2 − 5.180 ⋅ T + 13.392 T < 1.37 s

0.140 ⋅ T2 − 2.249 ⋅ T + 17.050 T ≥ 1.37 s

(10)�Ln�(T) = 4.63x10−3 ⋅ T2 + 0.028 ⋅ T + 0.713
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Fig. 11  a Computed weighted geometric mean and proposed fitted model. b Computed weighted logarith-
mic standard deviation and proposed fitted model
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 3. Choose a GMPE to be used for simulating the ground motion intensity measures.
 4. Use Eqs. (9) and (10) with T = Tmax to compute the median and dispersion of β(Tmax).
 5. At the k-th simulation, obtain a realization of β(Tmax) considering a lognormal distribu-

tion with median and dispersion computed at step 4.
 6. Assemble the total spatial correlation model with Eqs. (4) and (8).
 7. Obtain a realization of the residuals for Tmax, ηk(Tmax) + εjk(Tmax), at every location 

j =  1,2,…J from a multivariate normal distribution with zero mean, total standard 
deviations computed from Eq. (2), and spatially correlated with the model obtained 
in step 6.

 8. At each location j, obtain a realization of residuals for the rest of the periods, 
ηk(Ti) + εjk(Ti), conditioned on the value of the residual ηk(Tmax) + εjk(Tmax) computed 
in step 7 (here is where the Markov approximation is used). The conditional distribu-
tions of the residuals for the rest of the periods, Ti, can be computed using a correlation 
model ρ0(Ti,Tmax), such as those proposed by Inoue and Cornell (1990), Baker and 
Cornell (2006), Abrahamson and Silva (2007), Baker and Jayaram (2008), or Abra-
hamson et al. (2013).

 9. Compute f(Ti, Mk, Rjk, θjk) for every location j and each period i, and finally obtain the 
ground motion intensity measures using Eq. (1).

 10. Repeat steps 5 through 9 for the total number of simulations.

This procedure can also be used with efficient sampling schemes, such as importance 
sampling (Rubinstein 1981), as the standard Monte Carlo simulation method is not com-
putationally efficient for estimating low-probability high-consequence risks (Au and 
Beck 2003). Moreover, note that this simulation sequence can also be applied with other 
intraevent spatial correlation models different than the one presented in Eq. (8), incorporat-
ing a variability into the model parameters, as did with β in this study. However, values of 
dispersion must be estimated with a similar approach than the one presented in this paper.

6  Conclusions

This study quantitatively evaluated the event-to-event variability of the intraevent spatial 
correlation of common ground motion intensity measures (PGA and spectral acceleration 
ordinates). For this, 39 world-wide seismic events, each having more than 100 recording 
stations, were considered, for a total of 15,940 ground motion records. An exponential 
model as a function of separation distance and using a single parameter, β, was fitted to 
every event independently. A probabilistic assessment of the model parameter was con-
ducted, showing that it follows a lognormal distribution, and that the logarithmic stand-
ard deviation around its central tendency can be as high as 1.2. Different linear regres-
sion analyses were performed, and although the event moment magnitude was found to 
be statistically significant as a predictor variable at long periods, it explains less than 20% 
of the total variability of β. Moreover, the spatial correlation of VS30 values (as a proxy for 
clustering of site geological conditions, while the depth of sediments was not considered), 
the tectonic region, and the fault mechanism of the earthquakes were found not statistically 
significant at a 5% significance level.

Finally, this paper has presented a simple and direct Monte Carlo simulation approach 
for explicitly considering the event-to-event variability of the spatial correlation model 
when performing regional seismic hazard and risk analyses. The proposed sequence of 
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simulation takes advantage of the Markov dependence of residuals for reducing the total 
number of correlated variables to be simulated, therefore greatly decreasing the computa-
tional effort involved. Explicit consideration of the event-to-event variability of the spatial 
correlation model will provide improved results when conducting regional hazard and risk 
assessments.
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