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Abstract

Post-earthquake reconnaissance confirmed that the high vulnerability of non-seismically
detailed RC frame structures could be related to shear failure in the core of the beam—
column joints which might cause the collapse of the structure. The main focus was given
on developing a simplified numerical model to simulate RC beam—column joints collapse
based on theoretical formulations and experimental observations. For this, a joint model
has been proposed so that nonlinearities in the joint core were considered by two diago-
nal axial springs. According to the principal stress approach, a more refined calibration of
principle tensile stress versus joint rotation relation was developed to calculate the char-
acteristics of these springs. In the model, the effects of the main factors influencing the
mechanical behavior of RC joints i.e. column intermediate bars, joint aspect ratio, joint
shear reinforcements, type of beam bar anchorage, etc. were considered. To verify the sim-
plified numerical model, it was vastly applied to experimental specimens available in the
literature. Results revealed that the model was capable of estimating inelastic response of
RC joints with reasonable precision. Furthermore, assuming the joint core to behave as a
rigid body, even for joints reinforced by shear reinforcements might bring about non-con-
servative predictions in terms of strength and ductility capacities. Based on a parametric
study, it was also concluded that the effectiveness of the influential factors of RC beam—
column joints is noticeably a function of the level of the axial load applied on the column.
Using experimentally computed factors and simple procedure to calculate joint characteris-
tics could make the model properly suitable for practical applications.

Keywords Beam—column joint - Nonlinear analysis - Principal tensile stress - Simplified
numerical model

1 Introduction

Post-earthquake reconnaissance confirmed the high vulnerability of non-seismically

detailed reinforced concrete (RC) frame structures, with emphasis on poor performance of
the beam—column joints. Indeed, due to inadequately designed shear reinforcements in the
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joint core, being designed merely for gravity loads (lack of a capacity design principles)
and improper seismic specific details (insufficient anchorage length, short lap splices and
discontinuous longitudinal bars), non-seismically detailed joints are highly likely to be vul-
nerable to shear or bond failure, especially in seismic prone area. To improve seismic per-
formance of RC joints, several retrofitting techniques such as removal and replacement, RC
jacketing, steel jacketing, haunch retrofit solution (HRS), epoxy repair, steel fibers and fibre
reinforced polymers (FRP) bonding have been analytically and experimentally studied and
used in practical applications. However, prior to following each retrofitting technique, the
determination of the seismic response of RC joints in terms of failure mode, strength and
ductility is of paramount importance. Many investigations have been conducted to evaluate
inelastic response of RC joints and to appropriately review these studies, they were catego-
rized into three groups, experimental, numerical, and analytical studies.

In the group of experimental investigations, Genesio and Sharma (2010) tested exterior
non-seismic RC beam—column joints with various beam bar anchorages. It was found that
joint failure mechanism could be noticeably a function of the type of beam bar anchor-
age. It has also been confirmed by experimental studies (Pantelides et al. 2002; Hertanto
2005; Parvin et al. 2010; Melo et al. 2012; Sharma 2013; Shafaei et al. 2014). Kaung and
Wong (2013) investigated the effectiveness of horizontal stirrups in the joint core on the
seismic performance and shear strength of the non-ductile RC joints. The results showed
that horizontal shear reinforcements effectively improved seismic behavior and consider-
ably enhanced joint shear strength.

In the group of numerical investigations, Niroomandi et al. (2014) carried out a numeri-
cal parametric study on non-seismic RC beam—column joints with various beam longitu-
dinal bar and joint aspect ratios. It was concluded that these parameters could noticeably
overwhelm the joint nonlinear behavior. Del Vecchio et al. (2016) conducted a numerical
seismic assessment of RC structural systems designed without proper seismic details in
the joint core. A new modelling strategy was developed to account for the joint nonlinear
behavior in the finite element method. A mechanical model was also proposed to consider
the effect of beam longitudinal bar anchorages on the seismic response of the joint core.
Genesio (2012) dealt with a numerical parametric study through finite element analysis to
simulate non-ductile exterior joints. The influential factors, such as beam and column bar
ratio, the compressive strength of concrete f!, column axial force and joint aspect ratios,
on joint behavior in terms of principal tensile stress, were scrutinized. It was found that the
increase of joint shear capacity tend to be linearly proportional to \/ f!; Column longitu-
dinal ratios marginally influences principle tensile stresses corresponding to the peak load
and first diagonal cracking, respectively; The joint geometric aspect ratio can significantly
overwhelm the joint shear strength; Increasing axial load level on the column, maximum
principle tensile stress and joint shear capacity would generally decrease and increase,
respectively.

Finally, in the group of analytical studies, several beam—column joint models, consisting
of various types of springs i.e. axial or/and shear or/and rotational springs have been pro-
posed for simulating nonlinearities in the joint core as well as beam and columns (Pampa-
nin et al. 2003; Lowes and Altoontash 2003; Wong 2005; Favvata et al. 2008; Niroomandi
et al. 2010; Sharma et al. 2011; Unal and Burak 2013; Jeon et al. 2015; Shayanfar et al.
2016; De Risi et al. 2016a, b; Shayanfar et al. 2017; Shayanfar and Akbarzadeh 2018,
Shayanfar et al. 2018). A beam—column joint model, containing a zero length rotational
spring as well as rigid links to define the joint panel geometry, was proposed by Pampa-
nin et al. (2003). The rotational spring characteristics were determined through principal
tensile stress- shear deformation relation in the joint core. Sharma et al. (2011) followed a
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similar approach, but the joint model was included a flexural spring and two shear springs
to account for nonlinearities in the joint core. Shayanfar et al. (2016) came up with a joint
model with two diagonal axial springs in the joint core, in which the spring characteris-
tics were calculated based on principal tensile stress-shear deformation relation depend-
ing the type of beam bar anchorage. It is worth notifying that an incremental procedure
was proposed to calculate shear reinforcement contribution on maximum principal tensile
stress in the joint core using a combination of a mechanically-based model and empirical
observations.

Even though several beam—column joint models have been recommended, despite of
their effectiveness, a simple and generalized formulation, to be suitable for following in
practical applications of RC joints with various beam bar anchorages and joint shear rein-
forcement ratios, seems to be needed. Difficulties in the definition of the beam—column
joint model arise when the main factors influencing the mechanical behavior of RC joints
are considered. The RC joint response noticeably depends on several factors such as the
axial load level, column intermediate reinforcements, beam longitudinal bars, concrete
compressive strength, joint aspect ratio, the ratio of beam depth to beam width, joint shear
reinforcements, the type of beam bar anchorage, joint failure mechanism, etc. To studiously
overcome the challenges of definition of the exact nonlinear behavior of RC beam—column
joint, empirical equations along with simplified procedures to approximately predict the
principal tensile stress in the joint core can be developed using a large database of test
results and considering the mentioned influential factors. This approach has been recently
followed by Genesio (2012), Sharma (2013), Shayanfar et al. (2016) and Shayanfar and
Akbarzadeh (2016). In this paper, according to the principal stress approach, a more
refined calibration of principle tensile stress versus joint rotation relation was developed
to calculate inelastic behavior of corner RC beam—column joints. Accordingly, based on an
extended set of results of experimental and finite element studies on RC joints with various
beam bar anchorage types, available in literature, classified by the joint main parameters,
a refined analytical joint model was addressed in the paper. Ultimately, the simple analytic
approach and using experimentally calculated factors are prone to making the developed
model sufficiently suitable in practice.

2 Modelling approach

According to the poor performance of the beam—column joints in existing RC structures,
considering nonlinearities merely in the beam/column members along with the conven-
tional assumption of the rigid behavior for the joint core element is highly likely to cause
misleading results, especially for non-conforming joints. It is because that for RC struc-
tures, especially old buildings designed without using the prescriptions of modern seismic
provision, seismic response could be controlled by brittle failure in the joint core. In the
present study, the numerical model developed Shayanfar et al. (2016) containing two diag-
onal axial springs in the joint core, which is capable of being implemented in commercial
softwares, was followed as shown in Fig. 1. L, and L, define the beam length measured
from the column face and the total column height, respectively (the other parameters were
defined in the figure). As can be observed in the figure, in addition to axial springs, some
rotational springs were considered in beam and column elements. The mechanism of non-
linear behavior of an RC exterior beam—column joints under seismic actions was illustrated
in Fig. 2. V;, and V;, define the horizontal and vertical joint shear forces, respectively (the
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Fig. 1 Numerical model for an
RC FRP strengthened joint
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Fig.2 Mechanics of an RC beam—column joint subjected to lateral loading

@ Springer



Bulletin of Earthquake Engineering (2019) 17:803-844 807

other parameters were defined in the figure). As can be seen in the figure, the total horizon-
tal rotation/displacement are composed of the horizontal rotations/displacements induced
by the deformation of the joint core, beam and column. Accordingly, simulating nonlin-
earities in each component using the assigned springs, nonlinear behavior of the beam—col-
umn joint could be determined.

To generate the characteristics of joint axial springs, the principal tensile stress due to
concrete and shear reinforcements corresponding to the joint rotation can be converted
into diagonal axial force versus displacement relation. After the determination of beam/
column element characteristics, nonlinear analysis can be performed to simulate the seis-
mic response of RC joints. This approach is also proper for modelling beam—column joints
at the structural level through commercial softwares in compliance with lumped plasticity
approach or simplified seismic evaluation procedures i.e. Del Vecchio et al. (2017).

3 Determination of the characteristics of diagonal axial springs

In this section, the procedure to calculate the nonlinear characteristics of diagonal axial
springs, which can be used in nonlinear static analyse (pushover) with modelling the joint
core, will be addressed. It should be noted that from the point of view of seismic assess-
ment of RC structures, nonlinear dynamic analyses have been recognized as the most accu-
rate ones. Accordingly, in the case of developing a joint element model taking into account
strength and stiffness degradation hysteresis rules, including the case of pinching effect, is
of paramount importance. However, it should be considered that nonlinear dynamic analy-
sis can be highly prohibitive in terms of computational efforts and time required to com-
prehensively carry out a nonlinear dynamic analysis. Therefore, in the current study, the
focus has been on developing a simplified and accurate beam—column joint model to be
followed in nonlinear static analyses due to the fact that it can be more practical than non-
linear dynamic analyses for most engineers.

According to the mechanism of nonlinear behavior of an RC exterior beam—column
joints under seismic actions as illustrated in Fig. 2, through the internal equilibrium in joint
core, the column shear force, V,,, was derived as:

Ve=T,-Vy 1)
where T, =the tensile force in beam longitudinal reinforcements; Using the external equi-
librium in the beam—column joint, the beam shear force, V,, can be written as:

L

V=V,
b= Ve T 05k 2)

Substituting Eq. (2) into Eq. (1), we have:
L, +0.5h V,L,
Ve =5 3)

C

where f=the ratio of the beam moment to the beam tensile force at the column face. Rear-
ranging Eq. (3), V,, can be derived as:
bs.
Vy=———"Va 4
( fe _ ﬁ) Lb J: ( )

in which
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LcLb

%=L r05n (5)

To calculate the exact value of §§ corresponding to horizontal joint shear force as well
as beam shear force, an iterative procedure might be required as proposed by Sharma
et al. (2011) and Shayanfar et al. (2016). However, in the present study, for simplicity,
it was considered 0.9d (Akguzel and Pampanin 2012). In the present study, to transform
V), and V. corresponding to V;, and joint rotation, 6;, into diagonal axial force versus dis-
placement relationship to be used in the determination of the diagonal axial spring char-
acteristics, the equations proposed by Shayanfar et al. (2016), which was compatible
to the commercial software SAP2000 (2008) were adopted. Accordingly, the diagonal

axial force and corresponding displacement can be calculated as:

VL.—h)—05V,h.
P = (L 5;1 ¢ V1 + a2 (6a)
b
0. x
A, = 2L sin (2 x atan[h, /1)) (6b)

where a and r=the joint geometric aspect ratio and the length of diagonal of the joint core.
The other parameters were already defined in Fig. 2.

The principal stress approach consists of evaluating the average stress produced in
the joint core during seismic actions and compares the resulted principal stresses with
certain critical values, as damage index. These values of allowable stress have been rec-
ommended for different limit states i.e. joint cracking and ultimate capacities. Due to
its simplicity in application, it has been followed in various design codes i.e. NZS 3101
(1995), ACI 352 (2002) etc., where the average horizontal shear stress in the joint core
is compared to the allowable stresses. Accordingly, in this study, due to the fact that this
approach considers V;, corresponding to axial compressive stress on column, f,, enter-
ing in the joint core in a sufficiently practical way. It would be also proper to present an
appropriate understand and a rational basis of calculating Vj,. As a result, the approach
suggested by Priestley (1997) according to Mohr’s theory was adopted as:

2
ﬁ)z ( Vin > £, 5
Prior = v + ——= — V., = 14+ — pvbhc (7)
hlot < 2 b;h, 2 s Prior o

where b;=(b,+b,)/2 (Park and Mosalam 2012); p, ,,=the principal tensile stress contri-
butions due to concrete and stirrup. In the following, the focus was given on predicting
Py Dased on regression analysis. For this, a large database including 390 test results and
specimens generated by finite element analyses of exterior RC beam—column joints with
shear/bond failure in the joint core was provided whose details can be found in Appen-
dix Table 2. In Table 1, statistics consisting of minimum, maximum, mean, and coeffi-
cient of variation (COV) for important parameters were presented. pp=the beam bar ratio;
ry=the level of axial load applied on the column (N /A; X f’); S;=the joint shear reinforce-
ment index (S; = A, X[y X sm(atan [hb/h ])/A xf’) based on Shayanfar and Akbarza-
deh (2018). A and fy=total area of joint shear reinforcements and their yield strength,
respectively.

It should be noted that 103 specimens were generated by finite element analyses car-
ried out by Genesio (2012) (the finite element model was appropriately calibrated by the
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Table 1 Summary of the details of the test results and specimens generated by finite element analyses

Statistics 1 by, hy, b, h, P N a ry

Min 8.05 100 180 100 150 0.0026 0.003 0.89 - 0.04
Max 101.6 610 610 650 520 0.0209 0.162 2.00 0.47
Mean 30.9 250 370 276 275 0.0082 0.044 1.37 0.08
cov 0.419 0312 0.244 0.320 0.276 0.453 0.741 0.175 1.052

“Based on the test specimens with shear reinforcements

experimental studies conducted by Hertanto 2005 and Genesio and Sharma 2010) and
other ones were conducted in laboratories. Furthermore, 133 specimens were RC joints
with shear reinforcements (test specimens with shear failure in the joint core were only
chosen) and others were not reinforced.

According to experimental evidence, the limit states for principal tensile stress as
a function of concrete compressive strength have been suggested by Priestly (1997),
Sharma et al. (2011) and Akguzel and Pampanin (2012) for joints with 90°-hooks bent
into (0.421/£7), 90°-hooks bent away (0.29+/f), short embedded length (0.19+/f) and
180°-hooks (0. 2\/ f’ ). These limit states were compared to the results obtained from test
specimens available in literature (with no shear reinforcement in the joint core) to evalu-
ate their reliability (Fig. 3). Considering the values of the mean, mean absolute percent-
age error, MAPE, and COV, the limit states do not seem to be capable of precisely pre-
dicting the joint response, even though they present the merits of being quite simple and
efficiently practical. According to test results and specimens generated by finite element
analyses, Genesio (2012) recommended the limit states to calculate first diagonal crack
and maximum principle tensile stresses considering the influential effects of several fac-
tors i.e. concrete compressive strength, amount and detailing of beam longitudinal bars,
axial load level and joint aspect ratio.

Likewise, Sharma (2013) suggested that according to the experimental study conducted
by Wong and Kuang (2008) highlighting the significant effect of joint aspect ratio on princi-
pal tensile stress, its critical values can be divided by the factor a. Accordingly, the principal
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tensile stress does not seem to be influenced by just concrete compressive strength, while the
effects of factors of joint aspect ratio (a), the level of the axial load (r), joint shear reinforce-
ment index (Sj), the ratio of beam depth to beam width (/,/b,), and amount and detailing of
beam longitudinal bars () might be crucially noticeable as shown in Fig. 4.

It is noteworthy that joint capacity would be influenced by a combination of the effects
of these important factors and the figure can be useful to assess their general effects. As
can be seen in the figure, increasing S; and rg, principle tensile stress would considera-
bly increase. On the contrary, axial load level might negatively influence principle tensile
stress. However, the experimental principle tensile stresses seem to be variable increasing
a and h,/b,, although the trends reveal that p/ \/ f! insignificantly decrease increasing these
parameters, especially for joints with 90°-hooks bent away from the core and 180°-hooks.

For an RC beam—column joint, increasing the joint geometric aspect ratio, the concrete
strut angle with horizontal would be higher and the horizontal component of the concrete
strut resisting tensile force in beam longitudinal reinforcements should, subsequently, be
less. Therefore, more compression force in the diagonal strut would be needed to maintain
equilibrium, for same tensile force. Accordingly, due to the enhanced demand in the diago-
nal strut, shear capacity in the joint region could decrease. The tension force in beam longi-
tudinal reinforcements caused by bending moment at the face of the column is transferred
into the joint region through the bond mechanism as well as the mechanical anchorage at
the end of the beam longitudinal reinforcements. Considering the joint shear failure corre-
sponding to the strut failure which starts at the beam longitudinal reinforcement anchorage,
it can be argued that increasing beam bar ratio and subsequently, an increase in the com-
ponent of tensile forces transferred by bond mechanism, the concrete diagonal strut failure
would occur at a higher strength. Furthermore, increasing p,, the bending of the beam lon-
gitudinal reinforcement becomes more effectual in supporting the diagonal strut (Genesio
2012). As can be seen in Fig. 4, principle tensile stress seems to be negatively influenced
increasing ry. However, it is worth noting that the axial load is capable of improving joint
shear strength (Clyde et al. 2000; Pantelides et al. 2002; Wong 2005; Pampanin et al. 2007,
Parvin et al. 2010; Genesio 2012) so that it can increase the compression demand in the
concrete strut, whereas its width enhances by the expansion of the compression zone in the
end of the column, simultaneously. Likewise, increasing axial load level, tensile strains in
column longitudinal reinforcements would be reduced so that it could delay flexural yield-
ing of the column as well as column bar yield penetration into the joint region. Accord-
ingly, it would bring about an increase in joint strength.

In the current study, in light of these discussions, according to the provided database,
using nonlinear regression, the principal tensile stress contributions due to concrete and
shear reinforcements corresponding to maximum joint horizontal shear strength can be cal-
culated as:

®Ocr®pa
pt,tot = pl,c +pt,s = Wyw \/ft, (8)
setup
in which
w,; =0.25X" +0.2 ©)
o\ 04
X = <1 4 SJQ.zc) (1+ r%48)ﬂ0.31rg.45a—0.18<b_b> (10)
b
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(a) (b)
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M straight anchorage

0.80

Fig.4 Variations of experimental principle tensile stress in the joint core according to the geometry and
material properties in experimental RC joints: a joint aspect ratio; b the ratio of beam depth to beam width;
¢ axial load level; d joint shear reinforcement index; e beam reinforcement index

where §; was defined to introduce joint shear reinforcements in the joint core, based on
Shayanfar and Akbarzadeh (2018); wg, =the coefficient of the anchorage type of beam
longitudinal bars. w gz=the coefficient of the intermediate longitudinal reinforcement.

@, = the coefficient of the beam—column joint test setup. wy=the coefficient to consider

setup
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the effect of joint shear reinforcements on concrete contribution in maximum principal ten-
sile stress. Generally, two different setups have been adopted for conducting experimental
studies on exterior RC joints in which (1) a concentrated load (V) was considered to be
vertically applied at the end of the beam, while the ends of the column was considered to
be hinged (type A); (2) the end of top column was loaded horizontally, V,, so that could
freely move in the horizontal direction, whereas the ends of bottom column and beam were
hinged (type B). Despite the fact that the static of these systems in both test setups are quite
identical, the shape of deformation are different altogether. It is noteworthy that the results
which are extracted from experiment studies on RC beam—column joints (i.e. principle
tensile stress and joint shear strength) are generally considered identical for both the test
setups. However, according to the finite element study carried out by Genesio (2012), the
characteristics of an RC beam—column joint would be overwhelmed by the test setup type.
Considering this influential effect, the factor w,,,,, was, therefore, defined to transform
results extracted from one test setup to another. In the present study, ,,,,,=1.18 (Genesio
2012) was adapted for converting joint characteristics with type A into type B. It is noted
that since the boundary conditions and deformation shape in the type B seem to be closer
to the reality of deformation of an RC joint at the structural level, for modelling RC joints
at the structural level, in the calculation of the characteristics of the joint core, w,,,,=1.18
should be followed.

Experimental and analytical studies (Priestley 1997; Pampanin et al. 2002; Murty et al.
2003; Wong 2005; Akguzel and Pampanin 2010; Hassan 2011; Sharma 2013; Shafaei et al.
2014; Shayanfar et al. 2016; De Risi and Verderame 2017) confirmed that failure mecha-
nism and subsequently, the seismic response of RC joints noticeably depend on the type of
beam bar anchorage as shown in Fig. 5.

As can be observed in Fig. 5a, for RC beam—column joints with 90°-hooks bent into, as
the diagonal struts would be stabilized, after occurring the first diagonal cracking, the joint
core would resist more and a hardening behavior could be, consequently, expected to occur
in this region by the stage in which principal tensile stress in the joint region reaches its
maximum value corresponding to more severe diagonal cracks.

For RC beam—column joints with 180°-hooks, as it is clear in the Fig. 5b, the failure
mechanism is quite different from those with 90°-hooks bent in so that after forming the first
diagonal cracking, joint behavior would lead to a “concrete wedge” brittle failure mechanism
(Pampanin et al. 2002), due to the interaction between diagonal shear cracks and stress con-
centration at the location of the hook anchorage (Fig. 5b). Accordingly, maximum joint capac-
ity can be reasonably expected to occur corresponding to first diagonal cracking in the joint
core. Again, for RC beam—column joints with 90°-hooks bent away from joint region, the fail-
ure mechanism is approximately identical to those with 180°-hooks. In this type of the beam
bar anchorage of joints, owing to the fact that the first shear cracking propagates along the
beam longitudinal bars as well as because of the lateral thrust, the column cover could be frac-
tured (Fig. 5c). Therefore, the diagonal concrete struts in the joint core cannot have an oppor-
tunity to be stabilized and the joint failure is, subsequently, expected at early stage in com-
parison with RC joints with beam longitudinal bars bent in. It might be because that in joints
with 90°-hooks bent away or 180°-hooks, an effective node to active and develop the diagonal
compression strut cannot be fully provided. In case of RC beam—column joints in which beam
longitudinal bars terminates in the joint region with a short development length, the bond
mechanism between concrete and beam longitudinal bars becomes a critical factor. The crack
starts at the end of the anchorage, approximately at the column mid-depth as shown in Fig. 5d.
It might trigger the bond failure much prior to fully developing the diagonal compressive strut
mechanism. Accordingly, maximum joint strength can be expected to occur lower than that

setup
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Fig.5 Failure mechanisms of RC joints based on the experimental studies conducted by a Realfonzo et al.
(2014); b Ricci et al. (2016) ¢ Gergely et al. (2000); d Genesio and Sharma (2010)

of RC joints with 90°-hooks bent in. In the present study, according to the examination of test
specimens collected in the database, to consider the influential effect of the anchorage type of
beam longitudinal bars, wp, was defined which is equal to wgz,=0.82 and 0.61 for RC joints
with 180°-hooks and 90°-hooks bent away, respectively. For joints with straight anchorage, it
is assumed that since the response of this type of the anchorage significantly depends on the
development length of beam bars, increasing this length, the joint core tends to behave similar
to joints with 90°-hooks bent into and subsequently, joint shear capacity becomes the critical
parameter rather than bond mechanism between concrete and beam bars. In addition to the
development length, Hassan (2011) suggested that bond mechanism also depends on the level
of axial load and beam bar diameter. Accordingly, based on experimental studies, wg, as a
function of the development length of beam bars, axial load and beam bar diameter can be
calculated by:

Ly
wBA=0'75xWS(1+r12V)<hC—c’> .

zo.7s><l,fs(1+r;)<o93h

L,
>~0806><q/bh (1+72) <09

c

where y,=1 for bar diameter>19 mm and y,=1.2 for bar diameter <19 mm (Hassan
2011).

According to the finite element study conducted by Genesio (2012), it was found that there
is a marginal difference in the ultimate capacity of RC joints for variable column longitudinal
reinforcement ratios. Likewise, the joint shear deformation was inconsiderably influenced by
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the variations of this factor. On the basis of this study, it could be assumed that the joint shear
strength is independence on column longitudinal reinforcement ratios. However, it is notewor-
thy that in the all numerical specimens generated by Genesio (2012), there was not any col-
umn intermediate longitudinal reinforcement. On the other hand, experimental studies (Kaku
and Asakusa 1991; Tsonos et al. 1992; Karayannis et al. 1998; Wong 2005; Wong and Kuang
2008; Chalioris et al. 2008) confirmed that intermediate longitudinal reinforcements are capa-
ble of considerably enhancing shear strength and effectually improving the hysteretic behavior
of an RC beam—column joint. Figure 6 shows the results of the tests conducted by Wong and
Kuang (2008) on the joint specimens with various column intermediate reinforcement ratios.
As can be observed, the joint capacity can be influenced increasing column intermediate rein-
forcements so that the specimens of BS-L-V2 and BS-L-V4 experienced 24 and 33% growth in
shear strength corresponding to intermediate longitudinal steel ratio of 0.35% and 0.7%, respec-
tively. In this study, according to the studies of Kaku and Asakusa (1991), Tsonos et al. (1992),
Karayannis et al. (1998), Wong (2005), Wong and Kuang (2008) and Chalioris et al. (2008), the
coefficient of w; was used to consider the effect of the column intermediate longitudinal rein-
forcements on maximum principle tensile stress. To be conservative and simple, for all range of
column intermediate reinforcement ratio, o, was assumed equal to 1.15.

As it was discussed, for RC beam—column joints, except joints with 90°-hooks bent into,
the effective node point would not be provided in the joint core to develop diagonal com-
pression strut mechanism. According to experimental studies (Tsonos et al. 1992; Karayan-
nis et al. 1998; Murty et al. 2003; Wong 2005; Hwang et al. 2005; Wong and Kuang 2008;
Chalioris et al. 2008; Kuang and Wong 2013; Kim et al. 2016), shear reinforcements in the
joint core are prone to improving the joint capacity and also changing in failure mecha-
nism if adequate shear reinforcements in the joint core were used. Hence, the joints would
fail similar to joints with 90°-hooks and more severe diagonal cracking and damage in the
joint core can be expected (Fig. 5). Accordingly, for joints with 90°-hooks bent out, 180°-
hooks and straight anchorage, the concrete contribution of principle tensile stress might be
enhanced by using shear reinforcements in the joint core. If the effective node points might
be perfectly provided for developing diagonal compression strut mechanism, wg, =1 could
ideally be assumed. As a result, according to Eq. (8), principal tensile stress corresponding
to maximum joint horizontal shear strength can be rewritten as:

WcrWpy ,[1_(1_503,4)(1—1//)]
— B o\ /f!

Py = 12)
o wsetup Wpy

’

c
-
N

Fig.6 Variations of joint shear
capacity to column intermediate
longitudinal reinforcement ratio
(adopted from Wong and Kuang
2008)

BS-L-V4

BS-L-V2Z e __
08 1Bs.1,-450
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0-2

0

Normalized shear strength v Nf
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where y = the coefficient to consider the improvement in the shear capacity due to joint
shear reinforcements which was assumed equal to 15%. Accordingly, maximum principal
tensile stress can be calculated as:

,
Prion = — 2=, (0.15 +0.8503, ) \/fr "

setup

where o = 1.15 and 1 for RC joints with and without column intermediate reinforce-
ments. It should be noteworthy that for joints reinforced by shear reinforcements, although
joint shear capacity would be improved and these sufficiently designed joints are capable of
carrying the resulting principal tensile stresses, they can still lead to severe damage in the
joint core due to principal compression stress, P,.. Accordingly, the shear strength is more
likely to be governed by P, which can be calculated approximately based on Mohr’s theory,

using Eq. (14):
5
th = ( 1- p_ pc‘bjhc (14)

where p,. was considered equal to 0.5 fc’ based on Priestley (1997).

4 Principal Tensile Stress: Joint Rotation Relation

In this section, the determination of the principal tensile stress—joint rotation relation for
RC joints with various anchorages of beam bars in the joint core will be explained. In this
study, according to the analytical studies conducted by Hassan (2011), Sharma et al. (2011)
and Shayanfar et al. (2016), the effects of the bond-slip mechanism were indirectly con-
sidered in nonlinear analysis so that adding the joint rotation, 6;, as shown in Fig. 2, due to
beam bar slip, 8,,,, to joint shear deformation, y;, (Fig. 2) the rotation of the joint core can
be determined (6;=7;+6,,). In this paper, according to Shayanfar et al. (2016) with some
modifications, for RC beam—column joints with various anchorages of beam longitudinal
bars, principal tensile stress versus joint rotations can be calculated using the developed
relations shown in Fig. 7. K, is the post-peak stiffness in principle tensile stress—joint
rotation relation which for joints with 90°-hook bent in is 40 MPa/Rad. For joints with
straight anchorage, Kf,egnd Kflegvere considered equal to 35 and 12 MPa/Rad, respectively.

It should be noted that for joints with 90°-hook bent in the joint core, shear reinforce-
ments do not have any effect on the strength of the first cracking in the joint core due to
the fact that they cannot change the material characteristic of concrete. In other words, the
effect of shear reinforcements in the joint core can be exposed after the first cracking. How-
ever, maximum joint strength can increase using shear reinforcement. Accordingly, in this
study, this effect of stirrups was merely considered on maximum principal tensile stress.
Although it might influence initial stiffness of RC joints (Liu 2006; Shayanfar et al. 2016),
in the present work, to be conservative, this effect was ignored.

For other anchorage types of beam bars, as it was discussed, if adequate shear reinforce-
ments were provided in the core of an RC joint, the failure mechanism would tend to be simi-
lar to the failure mechanism of RC joints with 90°-hook bent in the joint core. Therefore, to
determine governed failure mechanism in an RC joint with an anchorage type except for joints
with 90°-hooks bent in, the joint strength can be calculated comparing p, . in joints with 90°-
hooks bent in without considering the effect of shear reinforcement (S; = 0 in Eg. 10) to one
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Fig.7 Principal tensile stress versus joint rotation. a beam bars bent in the joint core, b end-hook anchor-
age, ¢ straight anchorage, d beam bars bent away from the joint core

corresponding to joint anchorage type with considering the shear reinforcement effect on joint
capacity. Accordingly, at least two values can determine the joint failure mechanism and subse-
quently, the type of principal tensile stress versus joint rotation in the joint core.

In other words, for an RC joint with an anchorage type except for joints with 90°-hooks
bent in, if adequate shear reinforcements were considered in the core of an RC joint, the
proposed principal tensile stress versus joint rotation in Fig. 7a could be used and other-
wise, the relation recommended corresponding to joint anchorage type could be followed.

5 Flexural and shear behavior in beam/column

In this section, the calculation of the rotational spring characteristics in seismically prone
areas will be addressed. To determine flexural characteristics in terms of flexural moment
versus rotation relation, the moment—curvature analysis can be useful. After which, the rota-
tion of the beam/column elements corresponding to the curvature obtained from the analysis
can be calculated through the plastic hinge approach suggested by Priestley et al. (1996). On
the other hand, inadequate shear capacity in RC beam/columns is one of the most important
shortages of RC structures probably making these members completely vulnerable against
seismic loading (Lynn 2001; Sezen 2002; Elwood 2002). In this study, to calculate shear
as well as flexural behavior of an RC beam/columns, the fiber model developed by Shay-
anfar and Akbarzadeh (2017) was followed. To calculate flexural characteristics, the effects
of concrete confinement and buckling of longitudinal reinforcements were considered in the
model of moment—curvature analysis along with another model for simulating the axial load
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variation effect at the structural level. Likewise, the shear capacity as a function of the curva-
ture ductility was assumed as the sum of shear strengths due to concrete and stirrup (Fig. 8).

Af,d
S

V,= Z v(x)bt, + (15)
where ¢, =the strip thickness in the cross section; b=the member width; A =the total stir-
rup area in the beam/column; s=the centre to centre spacing of the stirrup; f,, =the yield
stress of the stirrup; d=the effective depth of cross-section; v(x)=the concrete shear stress
acting on an element of the compression regions of the cross section corresponding to the
normal stress £, (x) as well as tensile and compression strength of concrete as principle ten-
sile and compression stresses based on Mohr’s theory. The further details of the model can
be found in Shayanfar and Akbarzadeh (2017).

6 Validation of the proposed model with experiments

This section addresses the reliability of the proposed analytical model to carry out non-
linear analysis on RC beam—column joints. The results obtained from nonlinear analyses
were compared to experimental results. For each specimen, in order to appropriately
assess the dominant role of the joint core in nonlinear analyses, two nonlinear analyses
were performed, one taking into account the joint nonlinearities in nonlinear analyses
and another assuming the joint core as rigid. To extensively verify the capability of the
joint model, the results of the numerical analyses on RC joints in terms of the maxi-
mum principle tensile stress and the horizontal shear strength in the joint core were also
compared to experimental results reported by other researchers (Appendix Table 2). It
should be noted that nonlinear analyses were carried out via the commercial software
SAP 2000 (2008). In Fig. 9, a flowchart was provided for obtaining the characteristics
of diagonal axial springs of P; —4; of the joint core. As can be seen, the diagonal axial
spring characteristics can be easily obtained by converting the proposed principle ten-
sile stress—joint rotation relation into axial load—axial displacement relation.

On the other hand, once beam/column moment—curvature relation was determined,
flexural and shear capacities can be computed by the simple procedure to control shear
mechanism as developed by Shayanfar and Akbarzadeh (2017).

Fig.8 Shear model developed
by Shayanfar and Akbarzadeh
(2017) o Ty
-
E \
g \ .
% \ Shear failure _ _ _ _ _ _ _ _
© PR Y == ==~
5 ‘\ .- 1--1 =~ < Ultimate displacement
= R ~
g 4 VL s ~ ~
< . RN
E / Vn
§ [Tttt
’
=
’
“ / Vs
’
A
Displacement
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Fig.9 A flowchart for obtaining the characteristics of the diagonal axial springs

Wong (2005) conducted an experimental study on exterior RC beam—column joints
with different beam bar anchorages and various joint shear reinforcements. The beam
longitudinal bars were anchored as 90°-hooks. All specimens were designed without
shear reinforcement in the joint core. In the specimens BS-OL and BS-LL, beam bar
anchorage was considered 90°-hooks bent out and other ones were anchored as 90°-
hooks bent in. In the specimens BS-L-V2 and BS-L-V4, column intermediate reinforce-
ments was considered and other ones were designed with no column intermediate bars.
Specimens BS-L-H1T10, BS-L-H2T10, BS-L-H2T8 and BS-L-H4T8 were reinforced
by shear reinforcements and the others were with no shear reinforcements. Complete
detailed of the tested specimens can be found from Wong (2005).

In Fig. 10, the responses obtained from the tests and the numerical analyses were
compared. As can be observed, the close agreement between experimental and numeri-
cal results confirms that the proposed joint model is capable of simulating the response
of the RC joints. Likewise, as it was expected, without modelling nonlinearities in the
joint region, the higher ductility and strength than the results reported from the tests
were estimated. For the specimens with 90°-hooks bent out, the assumption for the prin-
ciple tensile stress—joint rotation relation seems to be correct according to the simulation
results. For the specimens with the column intermediate bars, with the increase of 15%
in the maximum value of principle tensile stress, the RC joint analyses led to the results
with reasonable accurate. For the specimens with shear reinforcements, the model was
capable of predicting the response of the RC joints with shear failure in the joint core.

It should be noted that load versus displacement responses of other test specimens were
also compared with the simulations obtained from the numerical model in Fig. 11. Com-
plete detailed of the tested specimens can be found from Table 1. As can be observed in
the figure, the nonlinear analysis considering the joint core as rigid led to quite unsafe
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Fig. 10 Validation of the proposed numerical model against test results reported by Wong (2005)

.

estimation of the response, whereas using the developed beam—column joint model, the
nonlinear analysis induced to results in close agreement with the experimental counter-
parts. It can be regarded as a further validation of the numerical joint model.

In the following, the capability of the developed beam—column joint model in estimat-
ing the maximum principle tensile stress and horizontal shear strength in the joint core will
be addressed. For this, the proposed principle tensile stress and the corresponding shear
strength were applied to the tested specimens as shown in Fig. 12 and Appendix Table 2.
As can be observed, using the beam—column joint model, the mean of the ratio of the prin-
ciple tensile stress and horizontal shear strength obtained-to-experimental was calculated
equal to 0.99 and 0.98 with SD 0.27 and 0.18 along with a MAPE, 19.4% and 14.6%,
respectively. Accordingly, it could be concluded that for RC joints with various beam bar
anchorages, the developed beam—column joint model is able to present the uniform predic-
tion of RC joint response with reasonable precision and a relatively low level of dispersion.

Figure 13 illustrates the variations of horizontal shear strength in the test specimen
of Wong (2005) for a range of axial load index, joint shear reinforcement ratios, beam
bar index and beam depth. The selected specimen was BS-L, which was not reinforced
by shear reinforcement and was anchored as 90°-hooks bent in. no intermediate longitu-
dinal bar was considered in the column (w-r=0). Complete detailed of the tested speci-
men can be found from Wong (2005). As can be observed in Fig. 13a, according to the
proposed model [Eqgs. (7) and (8)], joint horizontal shear strength enhanced increasing 7.
In Fig. 13b, c, the increase of joint shear reinforcement ratios and beam depth, the shear
strength increased and decreased, respectively. A closer at the data reveals that increasing
the level of axial load, the variations and effects of the mentioned factors on joint capac-
ity significantly dropped. It should be noted that according to Eq. (7), for a constant value
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Fig. 13 Variations of principle tensile stress in the test specimen of Wong (2005): a beam bar index; b joint
shear reinforcement index; ¢ beam depth

of principle tensile stress, axial load increases the joint shear capacity, while based on
Eq. (10), axial load negatively influences it. Therefore, interaction between the effects of
axial load on principle tensile stress and horizontal shear strength can cause a decrease in
the effects of the influential factors. Accordingly, based on the results of the parametric
study, the effectiveness of the influential factors of RC beam—column joints is noticeably a
function of the level of the axial load applied on the column.

7 Conclusion

In the present paper, to account for nonlinearities in the joint core, based on theoretical for-
mulations and experimental observations, a new simplified procedure was developed for
numerically modelling RC beam—column joints. For this purpose, a joint model was pro-
posed so that nonlinearities in the joint core were simulated by two diagonal axial springs. In
the model, the effects of the main factors influencing the mechanical behavior of RC joints
i.e. column intermediate bars,, joint aspect ratio, joint shear reinforcements, type of beam bar
anchorage, etc. were considered. According to the principal stress approach, a more refined
calibration of principle tensile stress versus joint rotation relation was developed to calculate
characteristics of these springs. To evaluate the reliability and capability of the developed
numerical model, results obtained from nonlinear analyses, considering the joint core behav-
ior, were compared to the ones reported from existing experimental results. It proved that
the joint model is prone to predicting the response of RC beam—column joints with reason-
able accuracy. According to this study, assuming the joint core to behave as a rigid, even
for joints reinforced by shear reinforcements might bring about unsafe and non-conservative
predictions in terms of both strength and ductility capacities. On the other hand, based on
the parametric study, it was concluded that the effectiveness of the influential factors of RC
beam—column joints is noticeably a function of the level of the axial load applied on the col-
umn. Ultimately, the simplified numerical model could provide a practical but reasonably
accurate procedure to model inelastic behavior of the joint core in nonlinear analyses.

Appendix

See Table 2.
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