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Abstract
In this article a ground motion selection and modification (GMSM) method is presented, 
suitable for the probabilistic seismic assessment of the damage state and collapse poten-
tial of building structures. The objective is to predict the probability distribution of the 
engineering demand parameters in a future earthquake event, provided that the spectral 
acceleration at the fundamental period of the structure is given. The GMSM method uses a 
vector-valued intensity measure that incorporates the Normalized Spectral Area parameter. 
Through stratified sampling on the Normalized Spectral Area, optimised ground motion 
suites are formed. Its advantage over other GMSM methods is that it implicitly matches the 
multivariate distribution of the response spectrum in the region of the structure elongated 
period, and it adopts an unbiased estimator of the response central tendency. The GMSM 
method is applied in the probabilistic response assessment of a first-mode dominated 
multi-degree-of-freedom system that represents a ten-storey building. Substantial reduction 
in the computational work is achieved, compared to another method.

Keywords  Ground motion selection method · Intensity measure · Normalized spectral 
area · Nonlinear response · Probabilistic seismic assessment

1  Introduction

A ground motion selection and modification (GMSM) method is presented, suitable for 
the probabilistic seismic assessment of the damage state and collapse potential of build-
ing structures. The objective is to predict the probability distribution of the engineering 
demand parameters (EDPs) when the structure is subjected to a ground motion having a 
spectral acceleration Sa

(
T1
)
 at the fundamental period of the structure, T1 . Its advantage 

over other GMSM methods is that it implicitly matches the multivariate distribution of the 
response spectrum in the region of the structure elongated period, and it adopts an unbi-
ased estimator of the EDP central tendency.
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Ground motion intensity is expressed using the vector-valued intensity measure (IM) ⟨
Sa
(
T1
)
, SdN

(
T1, T

′
1

)⟩
 (Theophilou 2014; Theophilou et al. 2017), where T ′

1
 is an approxi-

mation of the elongated period of the structure due to inelasticity effects. Optimized suites 
of ground motions are obtained from a large ground motion dataset, through stratified sam-
pling on SdN

(
T1, T

′
1

)
 . The optimized suites are used in the dynamic analysis of the struc-

ture, resulting in a response prediction that is optimized, compared to using a less effi-
cient IM, or to random sampling. An optimized response prediction implies that a reduced 
number of ground motions is required to obtain the same level of prediction accuracy, or, 
conversely, an improved accuracy is achieved when the same number of ground motions is 
used. The concept is that stratified sampling on IM results in an optimized replication of 
the central tendency and the dispersion of the IM as well as the associated EDPs, provided 
that there is sufficiently high correlation between the IM and the EDP.

The proposed GMSM method is applied to the dynamic analysis of a multi-degree-
of-freedom (MDOF) structure with high participation of the fundamental mode, which is 
assumed to represent a real ten-storey building structure designed to Eurocode 2 (2004a) 
and Eurocode 8 (2004b) for ductility class ‘High’.

2 � Motivation and background

Probabilistic seismic response assessment is of interest both in the design of new struc-
tures, and in the assessment of existing structures. In the design of new structures the goal 
is to ensure that the safety level required by the building codes is attained, while in the 
assessment of existing structures the goal is to quantify the inherent safety level.

Dynamic response-history analysis has various advantages over other methods of evalu-
ating structural response, i.e. it is more accurate, it enables the explicit evaluation of the 
response at every time step, and it can be used in cases where other methods are unsuitable, 
such as with structures having complex configuration and complex nonlinear response. 
However, there are two significant impediments in adopting dynamic response-history 
analysis for meeting the above safety objectives. First, the dynamic response-history anal-
ysis of MDOF structures requires substantial computational work, especially when non-
linear behaviour is considered. Even though computers are becoming continuously more 
sophisticated in terms of processing power and memory resources, the sophistication and 
complexity of the mathematical models representing the structural system are also evolv-
ing. The specification of appropriately small suites of ground motions, consequently result-
ing in decreased computational work, will always be a topic of great interest and utility. 
Second, although the number of recorded ground motions is continuously increasing, there 
is still relative scarcity of high intensity records, which are of most interest. These two 
challenges call for the need to develop GMSM methods, to predict the true response with 
sufficient accuracy and efficiency.

A convenient way of conveying the seismic intensity of the earthquake scenario to the 
structural engineer is through the spectral ordinate at the fundamental period of the structure, 
such as Sa

(
T1
)
 . One category of GMSM methods aim at predicting the central tendency of 

the structural response, given Sa
(
T1
)
 . Such methods are the response spectrum matching (e.g. 

Eurocode 8 2004b; ICB 2015), which can be facilitated with software tools such as REXEL 
(Iervolino et al. 2010), the Conditional Mean Spectrum matching proposed by Baker (2011), 
the genetic algorithm selection and scaling proposed by Naeim et  al. (2004), the selection 
based on a vector of record properties identified by proxy proposed by Watson-Lamprey and 
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Abrahamson (2006), the selection based on a precedence list proposed by Azarbakht and 
Dolsek (2007), the selection using a harmony search algorithm proposed by Kayhan et  al. 
(2011), the scaling to target scenario with epsilon preservation and selection based on median 
dispersion minimization proposed by Ay and Akkar (2012), and the integrated software envi-
ronment coupling ground motion selection with structural analysis proposed by Katsanos and 
Sextos (2013).

The proposed GMSM method predicts, in addition to the central tendency, the dispersion 
of the response. A method consistent with this objective is the FEMA P-58 (2012) procedure. 
A weakness of this method is that by selecting all records to have essentially the same shape, 
the multivariate nature of the response spectrum distribution (Jayaram and Baker 2008) is sup-
pressed. Jayaram et al. (2011) illustrate through application examples that GMSM methods 
focusing on matching the response spectrum shape underestimate the response central ten-
dency and dispersion. The semi-automated procedure proposed by Kottke and Rathje (2008), 
matches the central tendency and the dispersion of the entire suite. Since the procedure 
matches the median response spectrum to the target response spectrum, the response spectrum 
shape of the individual records within a suite could exhibit significant variation. However, this 
procedure does not match the multivariate distribution of the response spectrum.

Some GMSM methods have been proposed that consider, directly or indirectly, the multi-
variate nature of the response spectrum distribution (Jayaram and Baker 2008). Shome et al. 
(1998) suggested forming bins of records based on magnitude and distance, and then forming 
record suites through random sampling and scaling them to Sa

(
T1
)
 ; this method is used herein 

for comparison with the proposed GMSM. Goulet et al. (2007) selected records to match the 
deaggregation results in terms of magnitude, distance, and epsilon (Baker and Cornell 2005), 
and subsequently scaled them to the target Sa

(
T1
)
 . Jayaram et al. (2011) proposed an algo-

rithm for selecting suites of records to match simulated response spectra that have a specified 
mean, variance, and correlation between any two periods. Wang (2011) proposed a similar 
method, with the difference that the response spectra are conditioned on magnitude and dis-
tance, rather than Sa

(
T1
)
 . Bradley (2010) proposed the concept of the Generalized Conditional 

Intensity Measure, which is a vector-valued IM that contains a multitude of different IMs; 
records are selected using the algorithm proposed by Bradley (2012) such that the empirical 
distribution function of the suite matches the target IM distribution.

The proposed GMSM method is a contribution to the methods that match the multivariate 
nature of the response spectrum distribution.

3 � Intensity measure

The proposed GMSM method uses the vector-valued IM shown below

The vector-valued IM is comprised of the spectral acceleration, Sa
(
T1
)
 , which is an abso-

lute measure, and the Normalized Spectral Area parameter, SdN
(
T1, T

′
1

)
 (Theophilou 2014; 

Theophilou et al. 2017), which is a relative measure, given by

(1)
⟨
Sa
(
T1
)
, SdN

(
T1, T

′
1

)⟩

(2)SdN
(
T1, T

�
1

)
=

1

Sd
(
T1
)
TN

T �
1

∫
T1

Sd(T)dT , T1 < T �
1
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where T1 is the initial fundamental period of the structure, T ′
1
 is an approximation of the 

elongated period due to inelasticity effects, TN = 1.0 s is a normalizing constant, and 
Sd
(
T1
)
 is the response spectrum displacement at period T1.

Due to the normalization to Sd
(
T1
)
 , the SdN

(
T1, T

′
1

)
 value does not change with scaling. 

In this way, SdN
(
T1, T

′
1

)
 captures the effect of the excitation spectral characteristics (i.e. 

frequency content) on the response. Thus, it is a measure of the intensity that affects the 
inelastic response associated with period elongation. In turn, the degree of period elonga-
tion depends on the frequency content, which is unique for each ground motion. Hence, 
the purpose of integrating the response spectrum is to capture the elongated period within 
appropriately estimated bounds. In this context, SdN

(
T1, T

′
1

)
 can be seen as a descriptor of 

the local response spectrum shape between periods T1 and T ′

1
.

Theophilou et  al. (2017) review a number of similar vector-valued IMs proposed by 
other researchers.

4 � Specification of large‑sample datasets

A dataset comprised of a large number, Ngm , of ground motions is initially formed, which 
is sufficiently large, e.g. Ngm ≥ 30 , so that the central tendency and the dispersion of the 
ground motion parameters can be accurately captured (Walpole et al. 2007). It is therefore 
termed ‘ground motion large-sample dataset’, denoted as

where GMi is ground motion i . The GMSM method performs sampling on dataset G , to 
form optimized suites of ground motions.

The vectors representing the IM and the EDPs at a particular Sa
(
T1
)
 are denoted as 

IM and EDP , respectively. More specifically, IM
i
 and EDP

i
 represent the IM and EDP , 

respectively, that correspond to ground motion i . The dataset of the IM
i
 and EDP

i
 pairs is 

therefore termed ‘dynamic analysis large-sample dataset’, denoted as

IM is the vector-valued IM presented in (1). The EDP vector is comprised of scalar EDPs 
that are considered as relevant for the particular problem studied. The EDPs considered 
should be appropriately selected so as to collectively provide a representative description 
of the structural damage state and collapse potential, consistent with the objective of struc-
tural assessment. It is, thus, desirable that EDPs representative of different damage/failure 
mechanisms are included.

5 � Methodology

The GMSM method aims to replicate the true inelastic response distribution of the struc-
ture, for a given Sa

(
T1
)
 . In the present section the GMSM method is presented, and in the 

following section the sample statistics are described. Use is made of the IM and EDP dis-
tributions, appropriately transformed so that they are normally distributed, and denoted as 
follows: IMT  is defined as the SdN

(
T1, T

′

1

)
 element of IM transformed so that its distribu-

tion is normal; EDPT  is defined as a scalar element of EDP transformed likewise.
The proposed GMSM method consists of the following steps:

(3)G =
{
GMi|i = 1, 2, 3,… ,Ngm

}

(4)S =
{(

IM
i
,EDP

i

)
|i = 1, 2, 3,… ,Ngm

}
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Step 1: Formation of ground motion large-sample dataset
Initially, dataset G is formed, having a sufficiently large size (e.g. Ngm ≥ 30 ). Ground 
motions selected have seismological parameters (such as magnitude, and source-to-site 
distance) consistent with the earthquake scenario. It is strongly recommended to check 
the distribution of the dataset with respect to a ground motion prediction model repre-
sentative of the expected earthquake.
Step 2: Ground motion normalization to Sa

(
T1
)

All ground motions in dataset G are normalized to Sa
(
T1
)
 . An upper limit can be 

imposed to the scale factor, e.g. 3 as proposed by Shome et  al. (1998) or 4 by Ierv-
olino and Cornell (2005), beyond which scaling is considered inappropriate (i.e. the 
frequency characteristics of the scaled motion are not consistent with its amplitude); 
ground motions exceeding this limit should be discarded.
Step 3: Determination of T1 and T ′

1

The integration interval periods T1 and T ′
1
 are determined, which are then used in the 

evaluation of SdN
(
T1, T

′
1

)
 . T ′

1
 represents the ‘ultimate’ elongated period and can be cal-

culated using the simplified procedure proposed by Theophilou et al. (2017), or the pro-
cedure proposed in FEMA 440 (2005). Alternatively, the optimum T ′

1
 can be evaluated 

by first carrying out dynamic analyses on a single-degree-of-freedom system using all 
ground motions in dataset G . Then, through regression analysis for a range of candidate 
T ′
1
 values, the final T ′

1
 value is selected as the one with the highest correlation between 

IMT  and EDPT .
Step 4: Calculation of SdN

(
T1, T

′
1

)

SdN
(
T1, T

′
1

)
 is calculated for each ground motion using Eq. (2).

Step 5: Evaluation of IMT  mean and variance
The IMT  mean and variance of dataset G are evaluated.
Step 6: Partition of IMT  distribution into Ns strata
The IMT  domain is partitioned into Ns strata, such that all strata have equal probability 
of occurrence. It is strongly recommended that at least Ns = 5 strata are used.
Step 7: Formation of optimized suites
In the last step, optimized suites are formed through ‘stratified sampling’, by selecting 
Ni ground motions from each stratum. The total number of selected ground motions is 
Ng,s = Ns ⋅ Ni.

6 � Estimation of response distribution through stratified sampling

6.1 � Statistical dependence between intensity and response

Simple linear regression analysis is performed between the independent variable IMT  , and 
the dependent variable EDPT  , using the data in dataset S,

where � is the axis intercept, � is the slope, � is the random error that is assumed to be nor-
mally distributed with E(�) = 0 and Var(�) = �2 , and imt is the value of IMT  . The regres-
sion equation parameters � and � are determined, together with the variance, �2 , and the 
correlation, � . By visual observation of the regression analyses in Theophilou (2014), �2 
can be inferred to be constant with respect to IMT  . These are used next, in the evaluation 
of the stratified sampling statistics.

(5)EDPT = � + � ⋅ imt + �
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6.2 � Stratified sampling on IMT

The theoretical distribution of IMT  is normal with mean �IMT and standard deviation 
�IMT . The area under the curve is divided into Ns strata, which have equal probability of 
occurrence. Random variable IMTi represents variable IMT  within stratum i . Within any 
stratum i the theoretical mean is denoted as �IMTi , and the theoretical standard deviation 
as �IMTi . The sampling fraction of stratum i , wIMTi , is equal to 1∕NS for all strata.

The estimator of the sample mean IMTi , IMTi , is an unbiased estimator of �IMTi
 , on 

the assumption of simple random sampling within stratum i (e.g. Ang and Tang 1975). 
Consequently, the estimator of the sample mean IMT  , IMT  , is an unbiased estimator of 
�IMT (e.g. Cochran 1977).

6.3 � EDPT statistics

The method proposed, based on regression analysis principles, finds the relationship 
that best fits to the data in dataset S . The simple linear regression model is adopted to 
describe the relationship between the sample mean EDPT  of stratum i, EDPTi , and the 
value of IMTi , imti , as shown below

The sample mean EDPT  , EDPT  , can be calculated from EDPTi , as shown below

where wEDPTi is equal to wIMTi , because of the linear relationship assumed.
It is thus possible to calculate EDPT  from imti and from imt as

where a , and b are the estimates of � and � . Since IMT  is an unbiased estimator of the 
mean IMT  , and EDPT  is a linear function of IMT  , it is proved that EDPT  is an unbiased 
estimator of the theoretical mean EDPT .

The standard error of the mean EDPT  , �
EDPT ,s

 , is (Cochran 1977)

where �2
EDPTi

 is the variance of EDPT  in stratum i , assumed to be equal to �2.

(6)EDPTi = � + � ⋅ imti + �

(7)EDPT =

Ns∑

i=1

wEDPTi ⋅ EDPTi

(8)EDPT =

∑Ns

i=1

�
a + b ⋅ imti

�

Ns

= a + b

∑Ns

i=1
imti

Ns

= a + b ⋅ imt

(9)�
EDPT ,s

=

����
Ns�

i=1

w2
EDPTi

⋅ �2
EDPTi

=

����
Ns�

i=1

�2

N2
s

=
�

√
Ns
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6.4 � Comparison to random sampling

Stratified sampling on IMT  nearly always results in a standard error of the mean that is 
lower than that obtained through random sampling (Cochran 1977). In this section it is 
shown that, as a consequence, the standard error of the mean EDPT  is also lower, by a 
degree that depends on �.

The ratio �
EDPT ,s

∕�
EDPT ,r

 can be evaluated assuming an equal number of ground 
motions between stratified and random sampling, i.e. Ng,s = Ng,r , where Ng,r is the number 
of randomly sampled ground motions, and �

EDPT ,r
 is the standard error of the mean EDPT  

through random sampling. The following equation gives the relationship of �
EDPT ,s

∕�
EDPT ,r

 
to � for the case of Ni = 1

Plotted in Fig. 1 is �
EDPT ,s

∕�
EDPT ,r

 , for |�| values from 0 to 1.0.
It can be inferred from Fig. 1 that at one extreme, at � = 0 , �

EDPT ,s
 is equal to �

EDPT ,r
 , 

which means that stratified sampling is not more accurate than random sampling. At the 
other extreme, at |�| = 1.0 , �

EDPT ,s
 is equal to zero, which means that the IMT  obtained 

through stratified sampling on IMT  can be used to evaluate the exact EDPT  . In the inter-
mediate region, �

EDPT ,s
∕�

EDPT ,r
 is decreasing as |�| is increasing, which means that, strati-

fied sampling on IMT  is potentially more efficient than random sampling, because �
EDPT ,s

 
is lower than �

EDPT ,r
 . The decrease becomes more pronounced at high |�| values, because 

�
EDPT ,s

 is decreasing at a higher rate than �
EDPT ,r

.

6.5 � Size of suites

The size of the suites plays an important role in the accuracy of IMT  and EDPT  estimation. 
Theophilou (2014) applied the method to a single-degree-of-freedom system assumed to 
represent an idealized structure. Using suites of Ng,s = 8 ground motions ( Ns = 8 , Ni = 1 ) 
resulted in a standard error in the mean IMT  of < 2%, and in a standard error in the mean 
EDPT  of approximately 10%. The variance of IMT  was overestimated by about 10%, and 
the variance of EDPT  by about 10%. This estimation accuracy is deemed acceptable. 

(10)
�
EDPT ,s

�
EDPT ,r

=
�∕

√
Ns

�∕
�√

Ng,r

√
1 − �2

� =
√
1 − �2

Fig. 1   Relationship between 
�
EDPT ,s

∕�
EDPT ,r

 and |�|
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Using suites of Ng,s = 5 ground motions ( Ns = 5 , Ni = 1 ) resulted in less accurate, but still 
acceptable estimation.

Further research could lead to further optimization of the method with respect to the Ns 
and Ni combinations used, e.g. choosing between ( Ns = 4 , Ni = 2 ) and ( Ns = 8 , Ni = 1).

6.6 � Multivariate distribution of response spectrum

The objective of the proposed GMSM method is to match the multivariate distribution of 
the response spectra between T1 and T ′

1
 . This is achieved in an implicit manner, by matching 

the dispersion of SdN
(
T1, T

′
1

)
 , given that the response spectra are conditioned on Sa

(
T1
)
 . 

The match is implicit, in the sense that instead of matching the multivariate distribu-
tion of the response spectra over a range of discrete periods, the dispersion of the scalar 
SdN

(
T1, T

′
1

)
 is matched.

7 � Application to a building structure

The GMSM method was applied in the probabilistic response assessment of a first-mode 
dominated MDOF system, representative of a real building structure.

7.1 � Structure description

The structure examined is a ten-storey reinforced concrete building, used for residential 
occupancy. Each storey has a rectangular floor plan of dimensions 24  m × 16  m, and a 
height of 3.2 m. The columns are located in a 5 × 5 array, spaced 6 m apart in the longi-
tudinal direction, and 4 m apart in the transverse direction. The structure was designed to 
Eurocode 2 (2004a) and Eurocode 8 (2004b) for ductility class ‘High’. Further details of 
the structure are provided in Theophilou (2014).

7.2 � Finite element model

A two-dimensional finite element model was developed, representing one interior frame 
in the longitudinal direction of the structure. The model was analysed using the computer 
program OpenSees version 2.4.0 (PEER 2013). Beams and columns were represented as 
elastic beam-column elements. At the locations of the beam and column joints, and at 
the location of the column and foundation joints, the beam and column frame elements 
are connected to the respective nodes by zero-length ‘nonlinear spring’ elements that 
allow rotation only. The moment-rotation relationship assigned to the nonlinear springs is 
obtained using the modified Ibarra-Krawinkler hysteresis model (Lignos and Krawinkler 
2012a). The nonlinear spring parameters were determined using the empirical relationships 
and values given by Haselton and Deierlein (2007), and by Lignos and Krawinkler (2012b). 
The hysteresis rules are consistent with the modified Clough-Johnston model (Clough and 
Johnston 1966; Mahin and Lin 1983), with the exception that they are modified to conform 
with the multilinear backbone curve. The finite element model considered second-order 
(P-Delta) effects.
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7.3 � Natural modes

The first three natural periods of the structure and the corresponding mass participation 
ratios are summarized in Table  1. As anticipated, the structure is first-mode dominated, 
which is consistent with the concept of selecting ground motions based on the inelastic 
response of the first mode, adopted in the proposed GMSM method.

7.4 � Ground motion large‑sample dataset

The ground motion large-sample dataset (i.e. dataset G ) was formed by selecting 40 ground 
motions, listed in Table 2, with seismological characteristics consistent with the earthquake 
scenario. The earthquake scenario can be described as a strong earthquake, at a close dis-
tance to the fault, but sufficiently long to avoid near-fault effects. The main criteria used in 
the selection of the records were a moment magnitude higher than 6, and closest distance 
to fault less than about 30  km. The source of the records was the NGA Database 2005 
(PEER 2005) and the European Strong-Motion Database (Ambraseys et  al. 2002). The 
graph in Fig. 2 presents the distribution of the moment magnitude and closest distance of 
the records. It can be observed that these two variables are widely distributed throughout.

To ensure that the dataset of ground motions is a representative sample of the popula-
tion, its statistics were compared to the Boore and Atkinson (2008) ground motion predic-
tion model. Epsilon was evaluated in the period range 0.5–2.0 s and was found to match 
very well the standard normal distribution, which is the theoretical distribution of epsilon.

7.5 � Ground motion suites

One dataset of 2000 optimized suites was formed through stratified sampling, using Ns = 8 
strata, sampling Ni = 1 ground motion from each stratum, resulting in Ng,s = 8 ground 
motions per suite. For comparison, another dataset of 2,000 suites was formed through ran-
dom sampling, using Ng,r = 8 ground motions per suite.

Figure 3 shows the displacement response spectra of the ground motions, normalized to 
Sd(1.45 s) so as to facilitate the observation of the spectral shape in the region T1 = 1.45 s 
to T �

1
= 2.90 s . Figure 3a shows the spectral distribution of dataset G , and Fig. 3b shows 

suite No. 1 obtained through stratified sampling. It can be observed that the distribution of 
the suite approximates well the distribution of dataset G.

The “Random” sampling method referred to herein, corresponds to the method 
described in PEER Report 2009/01 (Haselton et al. 2009) as “ Sa

(
T1
)
 Scaling with Bin 

Selection” proposed by Shome et al. (1998). With this GMSM method a bin of ground 

Table 1   Natural modes of structure

Mode Period (s) Mass participation ratio (%)

1 1.452 81.0
2 0.479 9.9
3 0.276 3.7
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Table 2   Ground motion records

Earthquake Station M R (km) Azimuth/direction

Loma Prieta CDMG 47379 6.93 28.64 000
18/10/1989—00:05 Gilroy Array #1 090
Victoria, Mexico Cerro Prieto 6.33 33.73 045
09/06/1980—03:28 315
Coalinga CDMG 46175 6.36 33.52 045
02/05/1983—23:42 Slack Canyon 315
San Fernando CDMG 126 6.61 24.19 111
09/02/1971—14:00 Lake Hughes #4 201
Duzce, Turkey Lamont 531 7.14 27.74 000
12/11/1999 090
Kozani, Greece ITSAK 99999 6.40 18.27 L
13/05/1995—08:47 Kozani T
Irpinia, Italy ENEL 99999 6.20 22.29 000
23/11/1980—19:35 Bagnoli Irpinio 270
Whittier Narrows CDMG 24399 5.99 19.56 000
01/10/1987—14:42 Mt Wilson 090
Basso Tirreno Milazzo 6.00 34 NS
15/04/1978—23:33 EW
Montenegro Hercegnovi Novi 6.90 65 NS
15/04/1979—06:19 Pavicic School EW
Tabas, Iran 9102 Dayhook 7.35 20.63 LN
16/09/1978 TR
Umbria Marche Assisi-Stallone 6.00 21 NS
26/09/1997 EW
North Palm Springs CDMG 12206 Silent Valley 6.06 20.70 000
08/07/1986 090
Loma Prieta USGS 1032 Hollister 6.93 49.52 270
18/10/1989—00:05 360
Chi-Chi, Taiwan CWB 99999 TCU045 7.62 77.50 N
20/09/1999 E
Northridge USC 90059 Burbank Howard 6.69 23.18 060
17/01/1994—12:31 330
San Fernando USGS 266 Pasadena 6.61 39.17 180
09/02/1971—14:00 270
Whittier Narrows USC 90017 5.99 28.48 075
01/10/1987—14:42 LA Wonderland 165
Northridge USGS 5080 6.69 19.19 270
17/01/1994—12:31 Monte Nido 360
Irpinia, Italy Auletta 6.90 33.10 000
23/11/1980—19:34 270
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motions is first selected with moment magnitude and distance criteria. Then a suite of 
ground motions is formed through random sampling without replacement, and scaling 
to Sa

(
T1
)
.

7.6 � Incremental dynamic analysis

Incremental dynamic analysis (Vamvatsikos and Cornell 2002) was carried out by 
incrementing Sa

(
T1
)
 up to 1.2 g. SdN

(
T1, T

′
1

)
 is evaluated by integration of the elastic 

displacement spectrum from T1 = 1.45 s to T �
1
= 2.90 s , i.e. T �

1
= 2.0T1 . The upper inten-

sity limit corresponds to the highest Sa
(
T1 = 1.0 s

)
 found on seismic hazard maps (e.g. 

Southern California) with probability of exceedance of 2% in 50 years. At this prob-
ability of exceedance, safety against collapse is evaluated. The ground motions used 
at each intensity increment were scaled to the target Sa

(
T1
)
 . The response parameters 

investigated were the Park-Ang overall structural damage index (Park and Ang 1985), 
OSDI , and the maximum interstorey drift ratio, MIDR.

Fig. 2   Magnitude-distance dis-
tribution of records (each point 
corresponds to one station and 
hence two horizontal records)
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Fig. 3   Ground motion displacement response spectra normalized to S
d(1.45 s) a dataset G , b Suite No. 1 

through stratified sampling
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7.7 � Regression analysis

The probability distribution of SdN(1.45, 2.90) was found to conform well to the normal 
distribution, and to the lognormal distribution, using Lilliefors (1967) test at a signifi-
cance level of 5%. The normal distribution was assumed in the regression analysis, as it 
resulted in the highest correlation with the response parameters. Similarly, by Lilliefors 
(1967) test it was found that the probability distributions of the response parameters 
OSDI , and MIDR , conform well to the lognormal distribution, at a significance level of 
5%.

Thus, regression analyses were carried out between SdN(1.45, 2.90) and the natural 
logarithms of the response parameters, at various Sa

(
T1
)
 intensities, using the simple 

linear model. The correlation coefficient, � , between SdN(1.45, 2.90) and (a) ln(OSDI) is 
shown in Fig. 4a, and (b) ln(MIDR) in Fig. 4b.

It can be observed that, in general, � is low (in the range of 0.2–0.3) at the low non-
linearity levels (at intensity Sa

(
T1
)
 between 0.2 and 0.6 g), and moderate (in the range of 

0.5–0.6) at the high nonlinearity levels (at intensity Sa
(
T1
)
 between 1.0 and 1.2 g).

Fig. 4   Correlation coefficient between S
dN (1.45, 2.90) and a ln (OSDI) , b ln (MIDR)

Fig. 5   Mean a ln (OSDI) , b ln (MIDR)
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7.8 � Response sample statistics

Figure  5 shows the mean ln(OSDI) , and ln(MIDR) , plotted against Sa
(
T1
)
 . It appears 

that, in general there is excellent conformity between the random sampling, the strati-
fied sampling, and the large-sample dataset results. This is an empirical proof that esti-
mator EDPT  through stratified sampling is unbiased.

Figure  6 shows the standard error of the mean ln(OSDI) , and ln(MIDR) , plotted 
against Sa

(
T1
)
 . It appears that, in general, stratified sampling results in a lower standard 

error than random sampling, and that there is a marked reduction at Sa
(
T1
)
≥ 0.8 g . In 

particular, the maximum reduction in the standard error is 22% for ln(OSDI) , and 27% 
for ln(MIDR) . The standard error obtained using both methods, between 7 and 13%, is 
deemed acceptable.

Figure  7 shows the variance of ln(OSDI) , and ln(MIDR) , plotted against Sa
(
T1
)
 . It 

appears that, there is excellent conformity between the random sampling and the large-
sample dataset results. The stratified sampling results exhibit some discrepancy from 
the large-sample dataset results, reaching a maximum of 15% overestimation in the case 
of ln(OSDI) (corresponding to 7% overestimation in the standard deviation).

Fig. 6   Standard error (SE) of the mean a ln (OSDI) , b ln (MIDR)

Fig. 7   Variance of a ln (OSDI) , b ln (MIDR)
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7.9 � Response prediction

In Fig. 8 response parameters OSDI , and MIDR are plotted at 95% probability of occurrence 
as 95% prediction intervals. It can be observed that the stratified sampling prediction interval 
is generally narrower than the random sampling prediction interval. It is also observed that the 
stratified sampling prediction interval converges towards the large-sample prediction interval. 
It appears that despite the small overestimation in the variance, the proposed GMSM method 
is still more efficient than random sampling.

The efficiency of the GMSM method in reducing the prediction interval can be quantified 
through the ‘Efficiency Index’, EI , defined as

where S , R , and L denote the interval bounds of stratified sampling, random sampling, and 
the large-sample, respectively, and subscripts U and L denote the upper and lower interval 
bounds, respectively. The higher the EI , the more efficient the GMSM method; at zero 
EI the GMSM method is not more efficient than random sampling, whereas at unity EI 

(11)EI =

(
RU − RL

)
−
(
SU − SL

)
(
RU − RL

)
−
(
LU − LL

)

Fig. 8   Prediction intervals of a OSDI , b MIDR

Fig. 9   Efficiency index for a OSDI , b MIDR
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the GMSM method achieves the same accuracy as the large-sample dataset. EI is plotted 
in Fig. 9 against Sa

(
T1
)
 . It appears that EI for OSDI is in the range of 0.07–0.43, and for 

MIDR in the range of 0.20–0.52. The highest EI was observed at Sa
(
T1
)
 equal to 1.0 g and 

1.2 g; this is attributed to the higher correlations obtained at the high nonlinearity levels.
The computational work needed using the proposed GMSM method, expressed as num-

ber of ground motions required to obtain the same standard error as through random sam-
pling, was reduced to about 72% at the moderate nonlinearity levels, and to about 50% at 
the high nonlinearity levels.

7.10 � Elongated period estimation

After the application of the GMSM method in the response prediction of the MDOF sys-
tem, in which the elongated period was assumed to be equal to T �

1
= 2.0T1 for practical pur-

poses (Theophilou et al. 2017), the elongated period observed was investigated. The elon-
gated period is the predominant period of oscillation when the structure enters the inelastic 
range and was estimated from the response power spectrum.

Initially, the power spectrum of the top node response displacement was calculated. Fig-
ure 10 shows the response spectrum for the Loma Prieta 090 ground motion at intensities 
Sa
(
T1
)
= 0.2 g and Sa

(
T1
)
= 1.0 g . In the Sa

(
T1
)
= 0.2 g spectrum it is obvious that the 

dominant frequency is close to 0.69  Hz, which corresponds to the natural period of the 
fundamental mode T1 = 1.45 s . The spectral power at frequencies lower than 0.69 Hz is 
close to zero, inferring a predominantly elastic response. In the Sa

(
T1
)
= 1.0 g spectrum 

it is observed that the spectral power in the frequencies lower than 0.69 Hz is substantial, 
which is attributed to period elongation due to inelasticity effects. The abrupt increase in 
the spectral power at frequencies close to zero observed in both spectra has various pos-
sible explanations, however this range is not of practical interest. This range is excluded by 
seeking the elongated period at frequencies above 0.2 Hz.

Within the frequency range of interest, i.e. 0.2 Hz and 0.69 Hz, the elongated period 
was calculated. The dominant frequencies were first identified as the localised peaks on 
the power spectrum. The frequency corresponding to the elongated period was calculated 
as the average of the frequencies, weighted with respect to the spectral power. The curve 

Fig. 10   Power spectrum of Loma Prieta 090 record
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resulting from this approach is presented in Fig. 11. The mean estimated elongated period, 
T ′
1
 , at Sa

(
T1
)
 equal to 1.0 g, and 1.2 g, was found to be 2.31 s, and 2.41 s, respectively, 

using the power spectrum method. This is a reasonable agreement with the assumed elon-
gated period of 2.90 s.

8 � Differentiation to other methods

Goulet et al. (2007) suggested selecting records to match the deaggregation results in terms 
of magnitude, distance, and epsilon (Baker and Cornell 2005), and subsequently scaling 
them to the target Sa

(
T1
)
 . In their method the spectral shape (i.e. epsilon) is assumed to be 

dependent on the magnitude and distance, thus a sufficiently large number of records (e.g. 
in their example 34) is required to cover all magnitude-distance combinations. The differ-
ence of the present GMSM method is that the selection criteria of magnitude and distance 
are relaxed. Thus, the method is applicable when the normalized spectral shape between T1 
and T ′

1
 (i.e. Normalized Spectral Area) does not change significantly with magnitude and 

distance, as supported by the findings of Shome et al. (1998). In this way the number of 
required records for the same magnitude and distance ranges is reduced.

Jayaram et  al. (2011) proposed a method that initially generates simulated accelera-
tion response spectra, which collectively match the central tendency, dispersion, and mul-
tivariate distribution of the target response spectrum. Subsequently, ground motions are 
selected that match the simulated response spectra. As Jayaram et  al. (2011) states, the 
suite of selected ground motions resulting from the main procedure may deviate slightly 
from the target central tendency and dispersion. For this reason, a supplementary “greedy” 
procedure is specified to replace the ground motions one-by-one and thus minimize the 
residuals.

Bradley (2012) proposed an algorithm that generates random simulations of response 
spectra from the conditional multivariate distribution of intensity measures, obtained from 
the Generalized Conditional Intensity Measure (Bradley 2010). The method considers a 
multitude of intensity measures (including spectral acceleration), in contrast to the Jayaram 

Fig. 11   Mean estimated elongated period
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et  al. (2011) method that considers only spectral acceleration. It can also utilize the full 
seismic hazard disaggregation probability. Bradley (2012) also discusses the issue of vari-
ability between the matching ground motion suites, particularly for small suites, and pro-
posed selecting the suite with the lowest residual between the empirical and target condi-
tional distribution.

Both the Jayaram et al. (2011) method and the Bradley (2012) method place stringent 
requirements over the matching spectral shape. As Bradley (2012) states, finding a ground 
motion with identical spectral shape to the simulation is generally not possible. For this 
reason, ground motion selection is based on minimizing the spectral shape deviation from 
the simulations. The proposed GMSM method adopts a different approach, in which selec-
tion is based on SdN

(
T1, T

′
1

)
 , which is a scalar parameter descriptive of the spectral shape, 

rather than the actual spectral shape. By limiting the matching period range between T1 and 
T ′
1
 , the number of matching ground motions is higher. In addition, it adopts an unbiased 

estimator of the EDP central tendency, and it has been found to match the EDP dispersion 
well, thus avoiding the problem of residuals associated with the Jayaram et al. (2011) and 
Bradley (2012) methods.

9 � Concluding remarks

A GMSM method has been proposed with which optimized suites of ground motions can 
be sampled, suitable for a probabilistic seismic response assessment of building structures. 
The key aim of the method is to estimate with reasonable accuracy the central tendency 
and the dispersion of the EDPs. It can be used in cases wherein seismic intensity can be 
defined in terms of Sa

(
T1
)
 . Its advantage over other GMSM methods is that it implicitly 

matches the multivariate distribution of the response spectrum in the region of the struc-
ture elongated period. It also adopts an unbiased estimator of the EDP central tendency, 
and has been found to match the EDP dispersion well.

Ground motion intensity is expressed using the vector-valued IM 
⟨
Sa
(
T1
)
, SdN

(
T1, T

′
1

)⟩
 . 

Optimized suites of ground motions are formed by partitioning the distribution of 
SdN

(
T1, T

′
1

)
 into Ns strata, and then selecting Ni ground motions from each stratum. The 

proposed method replicates the mean and variance of IMT  , whereas the standard error is 
reduced, compared to random sampling. At the same time the mean and the variance of 
EDPT  are also replicated. The advantage over random sampling is that when there is high 
enough correlation between IMT  and EDPT  , stratified sampling results in a reduced stand-
ard error in the mean EDPT  . Consequently, an optimized response prediction is achieved.

The method was applied in the analysis of a first-mode dominated MDOF system, rep-
resenting a ten-storey building frame designed to Eurocode 2 (2004a) and Eurocode 8 
(2004b) for ductility class High. The central tendency of the response was found to have 
excellent conformity to the large-sample dataset, while some discrepancy in the dispersion 
estimation was observed. Expressing the 95% percentile response as 95% prediction inter-
val it was found that the highest ‘Efficiency Index’ achieved was 0.43 for OSDI , and 0.52 
for MIDR . The computational work needed to obtain the same accuracy as through random 
sampling was reduced to about 72% at the moderate nonlinearity levels, and to about 50% 
at the high nonlinearity levels. The elongated period, estimated using the power spectrum 
method, was found to be in reasonable agreement with the assumed elongated period at the 
higher nonlinearity levels.
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In conclusion, the proposed GMSM method is most efficient in predicting response at 
moderate to high nonlinearity levels, due to the significant reduction in the standard error 
of the EDPT  , which is a result of the sufficiently high correlations observed between the 
proposed IMT  and the EDPT  . It is therefore suitable for first-mode dominated structures 
when the probabilistic assessment focuses on limit states associated with moderate to 
severe damage and collapse.
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