
ORIGINAL RESEARCH PAPER

Assessment of Frequency versus Time Domain enhanced
technique for response-only modal dynamic identification
under seismic excitation

Fabio Pioldi1 • Egidio Rizzi1

Received: 14 April 2017 /Accepted: 1 November 2017 / Published online: 11 November 2017
� Springer Science+Business Media B.V., part of Springer Nature 2017

Abstract In the present study, response-only system identification is explored towards

estimating modal dynamic properties of buildings under earthquake excitation. Seismic

structural response signals are adopted with two different implemented Operational Modal

Analysis (OMA) techniques, namely a refined Frequency Domain Decomposition algorithm

and an improved data-driven Stochastic Subspace Identification (SSI-DATA) procedure,

working in the Frequency Domain and in the Time Domain, respectively. These algorithms

are specifically conceived to operate with seismic structural responses and at simultaneous

heavy damping (in terms of identification challenge), towards achieving consistent esti-

mations of natural frequencies, mode shapes and modal damping ratios. Classical OMA

assumptions shall not contemplate short-duration, non-stationary earthquake-induced

response signals. Nevertheless, the present enhanced output-only algorithms allow for

estimating all strong ground motion modal parameters. First, a linear three-storey frame

structure under ten selected earthquake base-excitations is considered, in order to assess the

two OMA techniques at synthetic seismic response input. Comprehensive results are pre-

sented, by comparing the two developed methods, between achieved modal estimates and

sought target values. Second, an existing instrumented building (CESMD database) is

analyzed, by adopting real seismic response signals, reaching again effective modal esti-

mates and corroborating the previous necessary condition analysis. According to this

investigation, best up-to-date, re-interpreted, output-only techniques may effectively be used

for potential Structural Health Monitoring purposes in the Earthquake Engineering range.
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1 Introduction

The dynamic description of mechanical and civil engineering systems constitutes a fun-

damental target towards the characterization of structural modal properties. To this pur-

pose, not only ambient or experimentally controlled vibrations, but also earthquake-

induced excitations may be adopted (Ntotsios et al. 2009; Sevim et al. 2016). In Earth-

quake Engineering, specifically developed identification procedures may be adopted in

order to detect structural modifications and to achieve reliable strong ground motion modal

parameter estimates.

In the Earthquake Engineering field, most of known identification procedures pertain

directly to Experimental Modal Analysis (EMA), where both input and output signals need

to be available for achieving an appropriate operation of the estimation procedures (Heylen

et al. 2006; Steiger et al. 2016). During the last decades, Operational Modal Analysis

(OMA) has been increasingly adopted in this field (Rainieri and Fabbrocino 2014; Bindi

et al. 2015). With OMA procedures, only structural responses (input signals for the

identification technique) need to be known, which makes it particularly suitable for treating

ambient vibrations, but in principle also for processing earthquake excitations.

Generally, for OMA applications, the unknown excitation input acting on the structure

shall be considered to be similar, in main characteristics, to that of a (stationary) white

noise signal, as it may be recorded under typical ambient or operational excitations. In the

field of OMA algorithms, the adoption of input channels coming from (short-duration, non-

stationary) earthquake-induced structural response signals has been considered quite a few

times in the dedicated literature, either in the Time or in the Frequency Domain. On that, a

brief summary on recent literature contributions is reported below.

By adopting earthquake-induced structural response signals, most of current OMA

techniques refer to Time Domain methods. In Pridham and Wilson (2004), a Stochastic

Subspace Identification (SSI) approach was combined to an Expectation Maximization

method in order to identify shear-type frames under seismic base excitation. In Lin et al.

(2005), an Ibrahim time domain method with modified random decrement was adopted, by

relying only on a few floor acceleration seismic responses. In Kun et al. (2009), Taylor’s

first-order approximations for the identification equations were adopted and solved with

damped iterative Least-Squares (LS). In Ghahari et al. (2013), spatial time-frequency

distributions were used for blind identification of strong motion modal parameters.

In Gouache et al. (2013), OMA under harmonic transient input was attempted through a

phase analysis. In Pioldi and Rizzi (2016a, b), a Full Dynamic Compound Inverse Method

(FDCIM) was developed, to simultaneously identify output-only modal parameters, ele-

ment-level structural features and earthquake input excitation, through a two-stage iterative

identification algorithm.

Conversely, by adopting OMA techniques at seismic input in the Frequency Domain,

only a few notable exceptions have been investigated in the field. In Ventura et al. (2005),

a real street overpass was studied through ambient vibrations and earthquake ground

motions, by a commercial software version of Frequency Domain Decomposition (FDD)

(Brincker et al. 2001) (and of SSI, Peeters and De Roeck 1999). In Mahmoudabadi et al.

(2007), a method based on iterative Least-Squares was proposed to identify classically

damped linear systems. In Michel et al. (2010), the seismic response of a building to weak

earthquakes was studied through a FDD algorithm.

By making reference to such output-only identification techniques, earthquake-induced

structural responses are adopted here as input channels for a refined Frequency Domain

Decomposition (rFDD) algorithm (Brincker et al. 2001) (Frequency Domain) and an
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improved Data-Driven Stochastic Subspace Identification (SSI-DATA) technique (Peeters

and De Roeck 1999) (Time Domain). Both methods were implemented autonomously

within MATLAB, for rFDD in Pioldi et al. (2015a, b), Pioldi and Rizzi (2017) and for SSI-

DATA starting from Pansieri (2016) and as definitely presented here. The traditional

versions of these algorithms rely on the typical assumption of white noise input, which no

longer holds with seismic response input. On the contrary, the present methods have been

specifically developed to deal with earthquake-induced structural responses and simulta-

neous heavy damping (in terms of identification challenge, i.e. with modal damping ratios

larger than only a few percents and up to 10% or higher).

In the present investigation, the autonomously-implemented rFDD and SSI-DATA

techniques are separately adopted first to identify the modal properties of a reference linear

heavy-damped 3-dof shear-type frame under ten different selected strong ground motions.

This work shall constitute a first basis for a comparison between the two OMA identifi-

cation methods within the Earthquake Engineering range, in order to inspect their positive

and negative aspects, concerning their reliability of correctly identifying strong ground

motion modal parameters, within the linear range of seismic response, as recorded by

synthetic response signals. From the performed analyses, the achieved estimates are

compared among them and also with the known target values computed before stage, in

order to extract general and specific considerations on the efficiency and consistency of

both OMA algorithms and to investigate and compare their effectiveness in identifying all

current strong ground motion modal parameters. Second, a real structural case is consid-

ered, based on a single earthquake record and attached real seismic response signals. The

two identification techniques are further employed, again with very consistent results,

which further corroborates and completes the previous necessary condition analysis with

synthetic seismic response signals.

Presentation is structured as follows. In Sects. 2 and 3, necessary main theoretical

backgrounds (Sects. 2.1, 3.1) and enhancements (Sects. 2.2, 3.2) of the developed rFDD

and SSI-DATA algorithms are outlined, respectively. In Sect. 4 the selected earthquake

dataset and the adopted numerical model for the first synthetic analyses are presented

(Sect. 4.1), jointly with the results separately achieved by the two OMA identification

methods for a reference three-storey frame (Sect. 4.2). Then, real recorded seismic

response signals for an existing instrumented building are finally processed by the two

identification techniques and presented in Sect. 5. In the end, salient conclusions on the

whole investigation are gathered in closing Sect. 6.

2 Fundamentals of the present refined Frequency Domain Decomposition
algorithm

2.1 Classical FDD theoretical background

Classical FDD theory is based on a general input/output expression as a function of

frequency x for a MDoF system (Bendat and Piersol 1986; Brincker et al. 2001):

GyyðxÞ ¼ HðxÞGxxðxÞHTðxÞ ð1Þ

where GxxðxÞ 2 Rr�r is the input Power Spectral Density (PSD) matrix (excitations), r is

the number of input channels; GyyðxÞ 2 Rm�m is the output PSD matrix (responses), m is
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the number of output response signals; HðxÞ 2 Rm�r is the Frequency Response Function

(FRF) matrix; overbar denotes complex conjugate and apex symbol T transpose.

FRF HðxÞ may also be written in pole/residue form as Heylen et al. (2006):

HðxÞ ¼
Xn

k¼1

Rk

ix� kk
þ Rk

ix� �kk
ð2Þ

where n is the number of modes, kk and �kk are the kth poles (in complex conjugate pairs) of

the FRF function (Heylen et al. 2006), and Rk ¼ /kC
T
k 2 Rm�r is the residue matrix

(Brincker et al. 2001; Reynders 2012), obtained by the product between mode shape vector

/k 2 Rm�1 and modal participation factor vector Ck 2 Rr�1.

When all output measurements are taken as input references (i.e. when m ¼ r), HðxÞ
becomes a square matrix. So, by defining the residue matrix of PSD output Ak 2 Rm�m,

which corresponds to kth pole kk, as (Brincker et al. 2001):

Ak ¼
Xn

s¼1

 
Rs

�kk � ks
þ Rs

�kk � �ks

!
GxxR

T
k ð3Þ

output PSD matrix GyyðxÞ of Eq. (1), after substituting Eqs. (2) and (3), and by applying

the Heaviside partial fraction expansion theorem, may be reduced to the following final

pole/residue form (Brincker et al. 2001; Wang et al. 2005):

GyyðxÞ ’
Xn

k¼1

Ak

ix� kk
þ AH

k

�ix� �kk
þ Ak

ix� �kk
þ AT

k

�ix� kk
ð4Þ

where Hermitian apex symbol H denotes complex conjugate and transpose. Under the

assumption of stationary white noise input (Bendat and Piersol 1986), PSD matrix GxxðxÞ
degenerates to a real-valued non-negative single scalar constant Gxx.

When the structure is lightly damped (small modal damping ratios fk � 1), the pole in

the vicinity of kth modal frequency xk can be expressed in approximate form as (Brincker

et al. 2001):

Ak ’
RkGxxR

T
k

2fkxk

¼
�/kC

H
k GxxC

T
k/k

2fkxk

¼ dk �/k/
T
k ð5Þ

where index k spans modes k ¼ 1; . . .; n, fk is the modal damping ratio and term dk can be

proven to be a real scalar. So, by substituting Eq. (5) into Eq. (4), in the narrow band with

spectrum lines in the vicinity of a modal frequency, Eq. (4) can be simplified to:

GyyðxÞ ’
Xn

k¼1

dk �/k/
T
k

ix� kk
þ dk �/k/

T
k

�ix� �kk
¼ �U diag Re

2dk

ix� kk

� �� �� �
UT ð6Þ

where U is the eigenvector matrix, gathering all n eigenvectors /i as columns.

Therefore, the first step of classical FDD methods is the estimation of the PSD matrix of

system responses GyyðxÞ in previous Eq. (6) by time correlation first, in the Time Domain,

and then Fourier transform to the Frequency Domain. Then, its transpose shall be

decomposed by performing a Singular Value Decomposition (SVD) at each discrete fre-

quency line x ¼ xi:
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GT
yyðx ¼ xiÞ ’ Ui diag Re

2dj

ixi � kj

� �� �� �
UH

i ¼ UiSiU
H
i ð7Þ

where Ui is the ith eigenvector matrix, gathering all m eigenvectors /ij as columns, and

index j ¼ 1; . . .;m, being m the number output response signals, i.e. the input channels for

the algorithm. In parallel, Ui is a unitary complex matrix holding singular vectors uij and Si
is a real diagonal matrix holding Singular Values (SV) sij.

Starting from the SVD in Eq. (7), the identification of mode q can be made around a

modal peak in the frequency domain, which can be located by an appropriate peak-picking

procedure on the SV representations. Then, the response PSD matrix of the qth mode, in

correspondence of identified damped modal frequency xq, can be approximated

as (Brincker et al. 2001):

GT
yyðxi ¼ xqÞ ’ /q diag Re

2dq

ixq � kq

� �� �� �
/H
q ¼ s1uq1u

H
q1 ð8Þ

where first singular vector uq1 at qth resonance frequency xq leads to an estimate of related

mode shape vector /̂q ¼ uq1. Associated Singular Value s1 is the Auto-PSD function of the

corresponding SDoF system, which may be detected by comparing the identified mode

shape /q with the surrounding singular vectors around the peak. For this purpose, the

Modal Assurance Criterion (MAC) index may be classically used (Brincker et al. 2001):

MAC /q;/s

� 	
¼



/H
q /s



2


/H

q /q



 

/H
s /s



 ð9Þ

If MAC index is 1, the two compared vectors are considered to be identical; if 0, clearly

distinct (orthogonal).

Then, for the modal damping ratio identification it is possible to operate as follows. The

Inverse Discrete Fourier Transform (IDFT) (Time Domain) of the located qth Auto-PSD

function (Frequency Domain) allows to obtain an estimate of the SDoF Auto-Correlation

Function (ACF) related to the located resonance peak. In this process, remaining parts of

the Auto-PSD function are simply reset to zero (Brincker et al. 2001). All ACF extrema

(i.e. peaks and valleys), which represent the free amplitude decay of a damped SDoF

system may be detected by peak-picking of peaks and valleys within an appropriate time

window. The logarithmic decrement, which is classically defined as dq ¼ 2=jð Þln r0= rj


 

� �

,

can be estimated by a linear regression on d j and 2lnð rj


 

Þ, where j ¼ 1; 2; . . . is an integer

index counter of the jth ACF extreme and r0, rj are the initial and the jth extreme value of

the ACF, respectively. Then, modal damping ratio fq can be typically estimated as:

fq ¼
dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p2 þ d2q

q ð10Þ

Finally, knowing the estimated modal damping ratio, the undamped natural frequency can

be obtained from the estimated damped modal frequency by dividing it by factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2k

q
.
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2.2 Main enhancements of the present rFDD algorithm

Main assumptions of classical FDD methods consist of (stationary) white noise input, light

damping (modal damping ratios in the order of 1%) and geometrically-orthogonal mode

shapes of close modes (Brincker et al. 2001).

The present rFDD method, whose original theoretical background has been reported

in Pioldi et al. (2015a, b), conceptually derives from classical FDD methods (Brincker

et al. 2001), but has been specifically developed to deal with earthquake-induced structural

response signals and concurrent heavy damping (in terms of FDD identification challenge,

i.e. for realistic modal damping ratios up to 10%).

Pioldi et al. (2015a, b) have discussed the theoretical validity and efficacy of the present

rFDD technique, through the use of synthetic seismic response signals in the linear range,

possibly affected by simulated noise of different levels. Trials with real earthquake

responses and damage scenarios in the non-linear range have been effectively performed as

well in Pioldi et al. (2017). In Pioldi and Rizzi (2017), further rFDD computational

strategies have been introduced, by adopting excitation data from the complete

FEMA P695 earthquake database, towards achieving an extensive validation in the

Earthquake Engineering range. In Pioldi et al. (2016), the rFDD technique has been also

applied to frames under Soil-Structure Interaction (SSI) effects, towards obtaining the

identification of flexible- and fixed-base modal parameters from earthquake-induced

structural response signals.

For the sake of completeness, the following computational steps (and references quoted

therein) summarize the main workflow of the present rFDD algorithm:

• Suitably-developed filtering applied to the structural response input signals (earth-

quake-induced structural responses) before starting the modal identification process

(Pioldi et al. 2015a).

• Coupling of rFDD to a time-frequency Gabor Wavelet Transform (GWT), towards

achieving a correct evaluation of the time-frequency features of the signals and a best

setup for rFDD identification (Pioldi and Rizzi 2017).

• Processing of the auto- and cross-correlation matrix entries, by aiming at obtaining

clearer and well-defined SVs out of seismic response signals (Pioldi et al. 2015b).

• Integrated PSD matrix computation, implementing simultaneously both Wiener-

Khinchin and Welch’s modified periodogram methods (Pioldi et al. 2015a, b). The

Wiener-Khinchin’s approach works especially well with short signals, allowing for a

clearer peak detection, not only on the first SV curve, but also on the subsequent ones.

Welch’s method, instead, implements averaging and windowing before the frequency-

domain convolution, allowing to achieve better mode shapes, despite for the not so

good separation of the signals in the modal space. Then, the integrated PSD matrix

computation aims at extracting better modal estimates, by taking simultaneous

advantage of both PSD evaluation methods.

• Iterative loop and optimization algorithm towards achieving effective modal damping

ratio estimates, especially under heavy-damping identification conditions (Pioldi et al.

2015a).

• Coupled Chebyshev Type II bandpass filters computational procedure, aiming at

enhancing the SDoF spectral bells towards estimation improvement, when challenging

seismic input and heavy-damping conditions apply (Pioldi and Rizzi 2017).
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• Estimation of modal parameters by operating on different SVs and on their

composition, to detect each SV contribution and to reconstruct the original SDoF

spectral bells (Pioldi et al. 2015a).

• Inner procedure for frequency resolution enhancement, without the need of higher

frequency sampling, as first outlined in Pioldi et al. (2015a).

• Combined use of different MAC indexes towards modal validation purposes (Pioldi

et al. 2015a, 2017). After a preliminary ‘‘peak-picking’’ (Pioldi et al. 2015a), the use of

Modal Assurance Criterion (MAC) and Modal Phase Collinearity (MPC) indexes

(Pioldi et al. 2015b) becomes necessary to discern ‘‘spurious peaks’’ from true

(physical) modal ones. In particular, these indexes have been used to discard spurious

peaks that exhibit a complex-number character (i.e. displaying modal deflection phases

that significantly deviate from 0 or p).

Consistently, the rFDD results reported later in Sect. 4 demonstrate the robustness of

the developed rFDD algorithm in returning reliable modal parameter estimates at seismic

response input and concurrent heavy damping. These are going to be compared to those

independently achieved by a separate SSI-DATA implementation, as introduced in the next

section.

3 Fundamentals of the present improved Data-Driven Stochastic
Subspace Identification algorithm

3.1 Classical SSI theoretical background

A classical system of m second-order differential equations of motion of a dynamical linear

structural system may be written as (spatial model):

M€uðtÞ þ C _uðtÞ þKuðtÞ ¼ �Bf 0ðtÞ ð11Þ

where M;C and K 2 Rm�m are the mass, damping and stiffness matrices, matrix
�B 2 Rm�m defines the location of the input channels, f 0ðtÞ 2 Rm�1 is the input force vector

and €uðtÞ, _uðtÞ and uðtÞ 2 Rm�1 are the vectors of total acceleration, velocity and dis-

placement structural responses.

By switching to State-Space form, the m second-order differential equations of motion

in Eq. (11) can be rewritten into 2m first-order differential equations as (Van Overschee

and De Moor 1996):

_xðtÞ ¼ AcxðtÞ þ Bcf
0ðtÞ

yðtÞ ¼ CcxðtÞ þ Dcf
0ðtÞ

�
ð12Þ

being the first equation the state equation, in terms of state vector of responses

xðtÞ 2 R2m�1, xðtÞ ¼ fuðtÞ _uðtÞgT and its derivative _xðtÞ ¼ f _uðtÞ €uðtÞgT, and the second

equation the observer equation, in terms of observer vector of responses yðtÞ 2 Rm�1

(either displacements, velocities and/or, typically, accelerations). From Eq. (12) state

matrix Ac 2 R2m�2m, input matrix Bc 2 R2m�m, output matrix Cc 2 Rm�2m and feed-

through matrix Dc 2 Rm�m are defined as follows, where subscript c denotes continuous

time (Van Overschee and De Moor 1996):
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Ac ¼
0n�n In�n

�M�1K �M�1C

� �
; Bc ¼

0n�n

M�1 �B

� �

Cc ¼ ½�M�1K �M�1C�; Dc ¼ M�1 �B

ð13Þ

Here, the structures of matrices Cc and Dc refer to the adoption of total acceleration

responses for the observer vector, namely yðtÞ ¼ €uðtÞ.
In the OMA context, structures are excited by unmeasurable and spatially distributed

input excitations; this means that the information from excitation f 0ðtÞ is not available.

Also, experimental tests yield measurements taken at discrete time instants, while

Eqs. (11)–(13) are actually expressed in continuous time. For a given sampling time

interval Dt, continuous-time equations can be discretized and solved at discrete time

instants tk ¼ kDt; k ¼ 1; . . .;N, with N being the total number of sampling points of the

signal.

By taking into account the kth time instant and assuming unknown/unmeasured input

(treated as white noise), classical SSI-DATA theory takes as a typical starting point of the

identification process the following OMA Stochastic State-Space model in discrete-time

notation (Van Overschee and De Moor 1996):

xkþ1 ¼ Axk þ wk

yk ¼ Cxk þ vk

�
ð14Þ

being xk ¼ fuk ukþ1gT the state vector of responses and its derivative

xkþ1 ¼ fukþ1 ukþ2gT, and yk the observer vector of responses (either displacements,

velocities and/or, typically, accelerations, as considered here). Notation uk; ukþ1 and ukþ2

refers to the discrete-time counterparts of continuous-time vectors of displacement uðtÞ,
velocity _uðtÞ and acceleration €uðtÞ responses, respectively. There, also A and C are the

discrete-time counterparts of Ac and Cc matrices, while vectors wk and vk 2 R2m�1 are

zero mean, stationary white noise stochastic processes, representing process noise and

measurement noise, respectively (Van Overschee and De Moor 1996). These wk and vk
stochastic processes become necessary and shall be included, in order to describe real

measurement data, which are also driven by uncertainty and noise.

Then, the salient mathematical and computational steps described in the following

summarize the main workflow of the present SSI-DATA algorithm.

The first step of classical SSI-DATA identification algorithms is the computation of the

so-called block Hankel matrix H0j2i�1 2 R2mi�j of responses, which is directly calculated

from the measurement data (Van Overschee and De Moor 1996), i.e. system structural

responses yk (in the present case, total accelerations), as:

H0j2i�1 ¼
1ffiffi
j

p

y0 � � � yj�1

..

. . .
. ..

.

yi�1 � � � yiþj�2

yi � � � yiþj�1

..

. . .
. ..

.

y2i�1 � � � y2iþj�2

2
666666664

3
777777775

¼ Y0ji�1

Yij2i�1

� �
¼ Yp

Yf

� �
ð15Þ

where the two partition sub-matrices refer to past Yp ¼ H0ji�1 and future Yf ¼ Hij2i�1

output channel matrices, where subscripts on the lefthand and righthand sides of delimiter |

denote the first and the last element of the first column, respectively, of block Hankel
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matrix H0j2i�1. So, matrices Yp and Yf are defined by splitting matrix H0j2i�1 in two equal

parts of i block rows, where number of block rows i shall be determined in agreement with

condition m � i� n (Peeters 2000), being m the number of output (acquisition) channels and

n the so-called system order (i.e. the dimension of square matrix A in the identification

process, i.e. the rank of diagonal matrix R1 defined below). Number of columns j of block

Hankel matrix H0j2i�1 is usually taken as j ¼ N � 2iþ 1, which implies that all recorded

data samples are used (Van Overschee and De Moor 1996). Thus, all following quantities

showing subscript i refer to the assumed number of block rows. By observing Eq. (15), it is

clear that the block Hankel matrix consists of the repetition of the same element in each

anti-diagonal term.

The second computational step is based on the calculation of projection matrix

Pi 2 Rmi�mi, i.e. the orthogonal projection of the row space of future output channels Yf

into the row space of past output channels Yp, which can be expressed as (Van Overschee

and De Moor 1996):

Pi ¼ Yf =Yp ¼ YfY
T
p ðYpY

T
p Þ

yYp ¼ OiŜi ð16Þ

where symbol y indicates Moore-Penrose pseudo-inverse, whilst the factorization of pro-

jection matrix Pi into the product of observability matrix Oi 2 Rmi�n and Kalman filter

state sequence Ŝi 2 Rn�mi defines a main theorem of SSI-DATA (Van Overschee and De

Moor 1996; Rainieri and Fabbrocino 2014), where n is the selected system order, as

detailed in the following.

Then, through the application of specific weighting matrices W1 and W2 to projection

matrix Pi, a SVD may be derived, by holding non-zero singular values only (Van Over-

schee and De Moor 1996; Rainieri and Fabbrocino 2014), as:

W1PiW2 ¼ ½U1U2�
R1 0
0 0

� �
VT

1

VT
2

� �
¼ U1R1V

T
1 ð17Þ

where Uk and Vk 2 Rmi�n, k ¼ 1; 2 are the singular vector matrices, and R1 2 Rn�n is the

diagonal matrix holding the non-zero singular values (which allows to estimate the rank of

matrix Pi). The selection of the dimension (n) of square diagonal matrix R1 fixes system

order n of the State-Space model, which is adopted for the subsequent computational steps.

As concerning weighting matrices W1 2 Rmi�mi and W2 2 Rmi�mi, they may be defined

according to different weighting proposals (Van Overschee and De Moor 1996), namely

Principal Component (PC), Unweighted Principal Component (UPC) and Canonical

Variate Analysis (CVA). Accordingly, the corresponding weighting matrices can be

defined as follows:

• for the Principal Component (PC) weighting:

W1 ¼ I; W2 ¼ YT
p

1

j
YpY

T
p

� ��1
2

Yp; ð18Þ

• for the Unweighted Principal Component (UPC) weighting:

W1 ¼ I; W2 ¼ I; ð19Þ

• for the Canonical Variate Analysis weighting (CVA) (of a main use in the following):
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W1 ¼
1

j
YfY

T
f

� ��1
2

; W2 ¼ I; ð20Þ

where j is again the number of columns of block Hankel matrix H0j2i�1 (taken as

j ¼ N � 2iþ 1 in the present case, i.e. all recorded data samples are used).

Then, starting from Eq. (17), observability matrix Oi and Kalman filter state sequence Ŝi
may be computed as:

Oi ¼ U1R
1=2
1 T; Ŝi ¼ O

y
iPi ð21Þ

where T 2 Rn�n is a further possible weighting matrix, generally taken as an identity

matrix, T ¼ I (as done here). By taking into account Eqs. (16) and (21), Kalman filter state

sequence Ŝiþ1 and output sequence Yiji may be calculated as shown in Van Overschee and

De Moor (1996). Especially, Yiji comes directly from a different partition of block Hankel

matrix H0j2i�1:

H0j2i�1 ¼
Y0ji�1

Yiji
Yiþ1j2i�1

2
4

3
5 ¼ Y0ji

Yiþ1j2i�1

� �
¼ Yþ

p

Y�
f

� �
ð22Þ

where superscript symbols þ and - stay for addition and for subtraction of one block row

to the original Yp and Yf matrices. Then, from projection matrix Pi�1 it is possible to

obtain:

Pi�1 ¼ Y�
f =Y

þ
p ¼ Y�

f Y
þ
p

TðYþ
p Y

þ
p

TÞyYþ
p ¼ Oi�1Ŝiþ1 ð23Þ

and Kalman filter state sequence Ŝiþ1 can be determined as:

Ŝiþ1 ¼ O
y
i�1Pi�1 ð24Þ

At this stage, discrete-time State-Space matrices A and C may be computed through an

asymptotically-unbiased least squares estimate as (Van Overschee and De Moor 1996):

A
C

� �
¼ Ŝiþ1

Yiji

� �
Ŝ
y
i : ð25Þ

Then, the eigenvalue decomposition of discrete-time state matrix A ¼ WMW�1 allows

for the estimation of the modal parameters, through matrices W and M, holding discrete-

time eigenvectors wr and eigenvalues lr, respectively. Afterwards, discrete-time eigen-

values lr are converted to continuous-time eigenvalues kr , as kr ¼ lnðlrÞ=Dt (Rainieri and
Fabbrocino 2014), so that the so-called system poles are obtained. Finally, the rth mode

shape, natural frequency, damped modal frequency and modal damping ratio estimates

may be computed as (Rainieri and Fabbrocino 2014):

/r ¼ Cwr; fr ¼
krj j
2p

; fr;d ¼
ImðkrÞ
2p

; fr ¼ �ReðkrÞ
krj j : ð26Þ
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3.2 Main enhancements of the present improved SSI-DATA algorithm

Main assumptions of classical SSI methods consist of (stationary) white noise input and

adequately long structural response signals, to achieve a suitable stabilization of the

estimated poles. Light damping (modal damping ratios in the order of 1� 2%) leads to

better estimates, too, since it may reduce the occurrence of noise poles or of mathematical

poles (e.g. false stable poles characterized by a positive real part and a negative damping

ratio) (Van Overschee and De Moor 1996; Rainieri and Fabbrocino 2014).

The present SSI-DATA algorithm, whose original theoretical background comes from

the general formulation in Van Overschee and De Moor (1996), as outlined in Sect. 3.1

above, may be intended as a first implementation attempt, for SSI algorithms, to deal with

earthquake-induced structural response signals, at concurrent heavy structural damping in

terms of modal identification challenge.

Therefore, the following fundamental items summarize the main steps and issues related

to the present SSI-DATA implementation:

• A first issue is to appropriately define weighting matrices W1 and W2. After first

extensive simulations performed in Pansieri (2016), under white noise input or seismic

excitation, it was shown that the Canonical Variate Analysis weighting (CVA) (Van

Overschee and De Moor 1996), with weighting matrices W1 and W2 as given in

Eq. (20), turns out to be the most stable and performing weighting option towards

achieving reliable estimates at seismic response input and concurrent heavy damping

(as demonstrated later in Sects. 4, 5). This type of weighting, as opposed to widely-

used Principal Component (PC) [Eq. (18)] and Unweighted Principal Compo-

nent (UPC) [Eq. (19)]) weightings, returns even less noise or mathematical poles

and looks mostly able to separate true physical modes from possible spurious

earthquake harmonics.

• For the correct selection of system order n and for the determination of the stable poles

(i.e. the poles where frequency, mode shape and modal damping ratio estimates show to

be stable and not deriving from noise or mathematical poles), a stabilization diagram

may be constructed from the SSI-DATA identification outcomes (Cara et al. 2013). It

displays the poles that are obtained according to different considered system orders, as

a function of the estimated frequency lines. The Singular Value (SV) curves extracted

from SVD of SSI-DATA output spectral matrix GyyðxÞ may be reported too, within the

same stabilization diagram. This matrix may be typically calculated from the estimated

SSI model as outlined in Peeters (2000), by adopting the estimated next state-output

covariance matrix and the output covariance matrix (Rainieri and Fabbrocino 2014).

As an original alternative in the present work, a novel integrated arrangement considers

instead the use of SV curves, which are computed from the SVD of direct output

spectral matrix GyyðxÞ. This is calculated through a routine of the previous rFDD

algorithm, by adopting Welch’s modified periodogram (Pioldi et al. 2017). Such

proposed integration of SSI and FDD information demonstrates to provide a reliable

tool to support the individuation of the stable SSI poles within the stabilization

diagram, especially when dealing with earthquake-induced structural response signals

and at concurrent heavy damping, as handled here.

• Anyway, the most severe issue in the present SSI identification keeps lying in the fact

that seismic response signals are characterized by rather short durations (specifically

with respect to ambient vibration recordings). This directly affects the achievable

estimates, since the poles intrinsically display a harder stabilization. So, the maximum
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system order employed in the analysis shall be incremented, jointly with a careful

setting of the adopted number of block rows in the Hankel matrix. This has been

specifically pursued in the present implementation (see also preliminary investigation

results in Pansieri 2016). In this way, better natural frequency and mode shape

estimates may be achieved. As regarding to the modal damping ratios, they appear to

be the most challenging parameters to be detected by the present SSI identification,

especially in relation to the cited very short durations of the seismic response signals.

4 Numerical attempts and identification outcomes

4.1 Adopted earthquake dataset and numerical models

The current output-only algorithms require as input channels the recorded structural

responses of the considered building. In the present work, these responses are first obtained

from synthetic signals calculated from a heavy-damped linear three-storey frame. Out of

several preliminary MDoF trials in Pansieri (2016), this 3-DoF case has been selected

since it already constitutes a good and challenging synthetic sample for the present

identification methodologies within the seismic engineering range, providing a consistent

estimation of all the modal characteristics of the three modes and allowing for a compact

presentation of all the achieved results. Also, a coherence subsists with the forthcoming

analysis of a real MDoF case that will be exposed in subsequent Sect. 5, which will target

and report as well the successful identification of the first three modes of vibration of an

existing monitored building.

In the identification analyses, total storey accelerations are considered as input data for

the identification algorithms. These numerical response recordings are generated prior to

the modal identification by taking as base acceleration an earthquake signal out of a set of

ten selected seismic ground motions (see Table 1).

The ten adopted earthquake records have been chosen as representative ones from a

variety of available seismic excitations, displaying rather different peculiar characteristics,

i.e. time-frequency spectra [see e.g. further information reported in Pioldi et al. (2015b)],

duration, sampling, epicentral distance, magnitude M and PGA. Also, they have been

Table 1 Main features of the adopted set of ten selected earthquake base excitations

Earthquake Date Station Dur. (s) fs (Hz) M Comp. PGA (g)

(AQ) L’Aquila 06/04/2009 AQV 100 200 5.8 WE 0.659

(CH) Maule 27/02/2010 Angle S/N 760 180 100 8.8 WE 0.697

(EC) El Centro 18/05/1940 0117 40 100 7.1 NS 0.312

(IV) Imperial Valley 15/10/1979 01260 58 100 6.4 NS 0.331

(KO) Kobe 17/01/1995 Nishi Akashi 41 100 6.9 WE 0.510

(LP) Loma Prieta 17/10/1989 47459 40 50 7.0 WE 0.359

(NO) Northridge 17/02/1994 24436 60 50 6.7 WE 1.778

(NZ) Christchurch 03/09/2010 163541 82 50 7.1 NS 0.752

(TA) Tabas 16/09/1978 70 Boshrooyeh 43 50 7.3 WE 0.929

(TO) Tohoku 11/03/2011 MYG004 300 100 9.0 NS 2.699
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specifically selected as potential challenging instances for the present rFDD and SSI-

DATA output-only identification purposes, given their strong non-stationary nature.

Seismic signals have been imputed as is, as base excitation, and then considered as

unknown in the subsequent output-only identification process.

The simulated structural responses are calculated by direct time integration of the

equations of motion, via Newmark’s (average acceleration) method. The use of synthetic

signals shall fulfil a first necessary condition for the algorithms’ effectiveness, since modal

parameters are determined via direct modal analysis before identification and adopted as

known targets for validation purposes.

The frame structure that has been adopted for initial verification is a reference three-

storey shear-type frame, subjected to each single base excitation instance from the above

adopted set of ten strong ground motions. This reference 3-DoF case has been charac-

terized by a modal damping ratio fk ¼ 7%, for all the structural modes, a rather high value

for the present OMA identification purposes, especially within the seismic engineering

scenario. Structural and modal dynamic characteristics of the adopted three-storey

frame (Pioldi et al. 2015a) are reported in Table 2.

4.2 Results from synthetic output-only modal dynamic identification

By taking as base excitation the single instances from the set of ten selected earthquake

recordings presented in Sect. 4.1 (Table 1), separate dynamic identification analyses have

been performed here with the present rFDD and SSI-DATA algorithms, in order to identify

all strong ground motion modal parameters.

Both rFDD and SSI-DATA identification methods adopt constant time series lengths of

400 s and a 0.0025 Hz frequency resolution, by applying the method outlined in Pioldi

et al. (2015a), which allows to increase the frequency resolution of the recordings, despite

for the shortness of the seismic histories.

As concerning rFDD, the following parameters have been adopted for the performed

analysis:

• Butterworth low-pass filtering, order 8, cut-off frequency 15 Hz, applied to the

earthquake-induced structural response signals (input channels for the rFDD

algorithm);

Table 2 Properties of the analyzed reference three-storey frame (Pioldi et al. 2015a)

1 2 3

Floor

Stiffness �103 (kN/m) 202.83 202.83 202.83

Mass �103 (kg) 144 144 144

Mode

Natural frequency (Hz) 2.658 7.448 10.76

Mode shape [1] 0:328
0:591
0:737

8
<

:

9
=

;

�0:737
�0:328
0:591

8
<

:

9
=

;

0:591
�0:737
0:328

8
<

:

9
=

;

Assumed modal damping ratio 7% 7% 7%

Bull Earthquake Eng (2018) 16:1547–1570 1559

123



• Different decimation settings, as a function of the frequency sampling of the

recordings, i.e. no decimation (50 Hz signals), decimation of order 2 (100 Hz signals)

and of order 5 (200 Hz signals);

• Integrated PSD matrix computation through both Welch’s Modified Periodogram,

generally set with 1024-points Hanning smoothing windows and 66.7% overlapping

(2048-points Hanning smoothing windows when no decimation is applied), and

Wiener-Khinchin’s method, set with a de-trended biased correlation matrix (see Pioldi

et al. 2015b for more details).

Then, as concerning SSI-DATA, the performed analysis adopted the following settings:

• Butterworth low-pass filtering, order 8, cut-off frequency 25 Hz, no decimation of the

signals;

• Block Hankel matrix parameters: number of block rows set to i ¼ 50 (in general,

adopted as variable in the range 30	 i	 80), number of columns j ¼ N � 2iþ 1, for

all the analyzed cases;

• Stabilization diagram parameters: maximum order n ¼ 150 (in general, adopted as

n ¼ m � i, as a function of number of response channels m and number of block rows i),

detection of stable poles with tolerance levels set to Dfk ¼ jðfk � fkþ1Þj=fk\0:01,
Dfk ¼ jðfk � fkþ1Þj=fk\0:075 and DMACk ¼ 1�MACð/k;/kþ1Þ\0:02 for frequen-

cies, modal damping ratios and MACs, respectively, being k the current model order.

Notice that higher tolerance value 7.5% on the damping ratios has been set based on the

experience that has been gained by running the various cases, pointing out (expected)

higher dispersion on the damping ratio estimations, basically as the lowest that has

anyway allowed to produce the scores in the diagrams that will be reported in the

paper;

• Stabilization diagram SVs computed through SVD of the PSD matrix as estimated via

Welch’s Modified Periodogram, set with 2048-points Hanning smoothing windows and

66.7% overlapping.

A sample of the outcomes from the two rFDD and SSI-DATA algorithms, operating

here at seismic response input and concurrent heavy damping, is represented in Fig. 1. In

this representation, the Singular Value Decomposition with peak-picking of the modes of

vibration (left) and the enhanced Global stabilization diagram with the first rFDD Singular

Value, representing rFDD and SSI-DATA all together (right), respectively, are depicted.

Fig. 1 Singular Value Decomposition and peak-picking of the modes of vibration (rFDD) and enhanced
Global Stabilization Diagram with 1st rFDD SV (SSI-DATA), three-storey frame, synthetic response
signals, rFDD (left) and SSI-DATA (right) algorithms, earthquake of Maule (CH) (Table 1)
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The Global stabilization diagram displays the stable poles, at increasing system order n,

concerning frequency, damping ratio and mode shape. Stable poles are selected as poles

with a stable frequency, damping ratio and mode shape, between two consecutive system

orders (they are marked with blue circles in Fig. 1).

The case of Maule (CH) excitation has been selected here because it constitutes a non-

stationary case characterized by several earthquake harmonics in the structural frequency

range of interest, which makes modal identification rather challenging. Anyway, similar

features have been displayed also by the other SVs curves and stabilization diagrams

obtained from the other seismic excitations.

As concerning rFDD outcomes, the three modal peaks are detectable from the frequency

lines on the first SV. Also, modal peaks are repeated on the remaining SVs, which is a clear

index of existence of the related mode of vibration. Anyway, MAC and MPC indexes may

be simultaneously adopted towards modal peak selection and validation, as extensively

outlined in Pioldi et al. (2015b, 2017).

Then, regarding SSI-DATA, the achieved enhanced Global Stabilization Diagram,

coupled with the representation of the 1st rFDD SV (see Sect. 3.2), shows three clear lines

of stabilization of the poles. These lines may be discerned from the remaining poles, which

are spurious poles coming from the earthquake harmonics or from numerical or mathe-

matical poles. For example, the left line of stabilization for the first modal frequency

contains several noise and mathematical poles, with poor consistency also by adopting

different and combined MAC indexes, while the right one clearly defines better poles, and

constitutes the line that is chosen for the identification purposes. Then, the use of the rFDD

SV considerably helps in the selection of the correct stable poles, since it provides a better

indication with respect to classically adopted PSDs within the stabilization diagrams. For

example, in the right plot in Fig. 1 there appears a bifurcation of stable pole lines for the

first mode of vibration, which can be anyway discerned by reading as well the underlying

SV representation.

Thus, by the strategies and settings reported above, complete synthetic output-only

analyses with the two OMA methods have been performed. A synopsis from all the

achieved results is reported in Fig. 2, where the estimates in terms of absolute deviations of

rFDD and SSI-DATA identified natural frequencies and modal damping ratios and

achieved MAC indexes for the estimated mode shapes are depicted. Estimates are reported

in terms of absolute deviations of estimated natural frequencies (Df ¼ jðfest � ftargÞ=ftargj)
and modal damping ratios (Df ¼ jðfest � ftargÞ=ftargj) from the target parameters, and of

achieved MAC indexes for the estimated mode shapes on the target ones

(MAC ¼ j/H
est/targj

2=ðj/H
est/estj j/H

targ/targjÞ.
The rFDD estimated frequencies show deviations that are always below 5%, except for

the last modes of the NO, LP and TA earthquake cases (Table 1), where deviations

increase up to 9%. SSI-DATA estimated frequencies show more scattered deviations, with

values up to 14%. The estimated modal damping ratios display very low deviations, at

around 10%, for the rFDD algorithm. This is not true for the SSI-DATA algorithm, where

modal damping ratios display discrepancies raising up to 70%. By this method, the order of

magnitude is more or less caught, but deviations look much higher and often rather

unacceptable in engineering terms. However, it should be recalled that really tough heavy-

damping identification conditions have been considered here. Generally, the frequency and

damping estimates from the rFDD cases show to be much closer to the target values than

from the SSI ones. In this sense, Frequency Domain rFDD appears superior to Time

Domain SSI-DATA, within the considered seismic engineering scenario at simultaneous
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heavy damping and according to the present implementations and their achieved level of

refinement.

MAC values are always higher than 0.91 for the rFDD instances, for all the modes. With

SSI-DATA, MAC indexes perform slightly less well. For the first two modes, MAC values

are always higher than 0.75, with acceptable values in engineering terms. The third modes,

instead, display some problems, especially with the IV, NO and NZ cases (Table 1), which

return quite unreliable mode shapes. Thus, also in terms of mode shape estimates, rFDD

performs better than SSI-DATA, in the present seismic and heavy damping context.

Then, global results on the achieved modal estimates are further summarized in Fig. 3,

where the absolute deviations of estimated natural frequencies and modal damping ratios,

and the MAC indexes are represented, in terms of suitably-designed dispersion dia-

grams (Pioldi and Rizzi 2017). The synthetic estimates for the adopted three-storey frame

have been condensed all together, by displaying the minimum, the mean and the maximum

(absolute) deviations, in blue, black and red coloured lines and markers, respectively.

Then, the normalized truncated Gaussian Probability Density Functions (PDF) related to

the dispersion of the estimates have been depicted for each mode, jointly with an indication

of standard deviation r of the estimated values. In the present case, frequency and modal

damping ratio deviations shall turn out strictly positive (since absolute percentage devia-

tions are adopted), while MAC indexes shall vary between 0 and 1. By taking into account

such boundaries, truncated Gaussians are fitted on the achieved estimates, for each

examined case.

These truncated Gaussians represent the probability of appearance of a certain devia-

tion, as associated to each estimate, between the minimum and the maximum value, and

are centred on the mean value. As it is possible to be appreciated, the maximum deviations

are always on the Gaussian tails, while the minimum deviations lay in the Gaussian center.

This confirms the goodness of the achieved modal identification estimates, especially for

the rFDD outcomes.

Fig. 2 Deviations of estimated natural frequencies (first column), modal damping ratios (second column)
and MAC indexes (third column), three-storey frame, synthetic response signals, rFDD (first row) and SSI-
DATA (second row) algorithms, complete considered earthquake dataset
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Finally, the achieved results are also reported in statistical form in Fig. 4, through

appropriate boxplots. In these representations, each boxplot relates to the natural fre-

quencies, modal damping ratios and MAC values estimated from the performed analyses.

In each boxplot the inner rectangular box represents the central 50% of the identified

parameters, while the centred line indicates their median. Then, the right and left boundary

segments depict the 25% and 75% quantiles of the related statistical distributions. Finally,

the vertical through-plot dashed green lines mark the known targeted modal parameters for

the identification procedure.

Presented boxplots confirm again the goodness of the achieved results, especially as

concerning the rFDD outcomes. Natural frequency estimates show to substantially catch

the expected target values. Also MAC indexes reveal very good mode shape estimates, also

Fig. 3 Dispersion diagrams of deviations of estimated natural frequencies (first row), modal damping ratios
(second row) and MAC indexes (third row), three-storey frame, synthetic response signals, rFDD (first
column) and SSI-DATA (second column) algorithms, complete considered earthquake dataset. Minimum,
mean and maximum values, and standard deviations are indicated
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for the last modes of vibration, where SSI-DATA returns less accurate results, though still

acceptable in engineering terms. Finally, modal damping ratios display very good esti-

mates for the rFDD outcomes, by showing a rather contained dispersion, while for the SSI

results some troubles appear, especially on the second and third modes of vibration.

The effect of artificial noise of a controlled amount added to the synthetic response

signals does not impede the output-only identification analysis, up to noise levels that could

be associated to those typical of practical instrumentations, as extensively demonstrated in

Pioldi et al. (2015a, b). This is also testified by the effective processing of real signals,

likely endowed with a certain amount of inherent noise, which is presented next, for final

validation (see also Pioldi et al. 2017).

5 rFDD and improved SSI-DATA analyses with real earthquake-induced
structural response signals

Next to the numerical analysis earlier reported in Sect. 4, where synthetic response signals

have been adopted first, as a necessary validation condition, the present rFDD and

improved SSI-DATA OMA approaches are now applied to real earthquake-induced

structural response recordings. The selected building is the San Bruno six-storey office

building (in short SBOB), California (Fig. 5). Data are taken from the Center of Engi-

neering Strong Motion Data (CESMD) online database (CESMD Database 2016), and

represent one of the likely few well-documented and available cases, already studied in the

dedicated EMA literature (Marshall et al. 1992; Celebi 1996) (notice that here OMA is

instead attempted).

This six-storey building is constituted by RC moment resisting frames, with individual

spread footings, located in the city of San Bruno, in the metropolitan area of San Francisco.

The design was made in 1978 and displays a plan of 60:96m� 27:43m, and a height of

23.77 m. More information on the building, its history and characteristics may be found

in Marshall et al. (1992) and Celebi (1996).

Thanks to the California Strong Motion Instrumentation Program, the building was

instrumented in 1985 (CSMIP Station n. 58490). The recording system consisted of 13

accelerometers, on four levels of the building: four channels were devoted for the NS

direction, eight channels were devised to the WE direction and one channel was setup for

Fig. 4 Boxplot diagrams for estimated natural frequencies, modal damping ratios and MAC values, three-
storey frame, synthetic response signals, rFDD (first row) and SSI-DATA (second row) algorithms,
complete considered earthquake dataset
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the UP direction. Fig. 5 briefly represents the overall building dimensions and the

instrumentation layout.

In this work, the adopted SBOB seismic response data refer to the local earthquake

excitation of Loma Prieta (1989), already considered in the previous synthetic analysis (see

Table 1), now with main local characteristics as recorded at the building site and reported

in Table 3. Recorded data belong to the total accelerations of the seven WE channels and

of the three NS channels (the channels at the ground floor have not been considered, both

for the OMA purposes of the present analysis and for their low signal-to-noise ratio).

The developed rFDD and SSI-DATA algorithms have been adopted to analyse the real

earthquake-induced structural response data coming from the local Loma Prieta earthquake

excitation. Sample of the outcomes from the two identification techniques are represented

in Fig. 6. In this figure, the Singular Value Decomposition with modal peak-picking and

the enhanced Global Stabilization Diagram with the first rFDD Singular Value, for the NS

response component, are depicted. Despite for the real seismic responses, the first three

modes of vibration can still be detected from the graphs.

Then, main results, in terms of estimated natural frequencies and modal damping ratios,

are reported in Table 4. The analyses and the resulting modal parameter estimates have

been subdivided into the two spatial components of the excitation, namely the NS and the

WE responses. The first three modes of vibration can be identified as well, and deviations

between the two methods are reported, as Df ¼ ½ðfSSI � frFDDÞ=frFDD�% and

Df ¼ ½ðfSSI � frFDDÞ=frFDD�%. These deviations show to be very limited concerning the

natural frequencies, with a maximum of 8:14% on the third natural frequency of the NS

case. Then, also the modal damping ratios reveal rather reasonable deviations, with a

maximum of about 30% for the first mode of the NS cases. The only exceptions are related

to the second modes of vibration, where deviations increase, for both NS and WE

Fig. 5 External view of the San Bruno six-storey office building (SBOB), California, and three-dimensional
sensor layout (adapted from Marshall et al. 1992). Input data are taken from the CESMD database (storey
acceleration responses)

Table 3 Main local characteristics and properties of the Loma Prieta earthquake (CESMD database). PGA
and PSA values are referred to as the maximum between NS and WE components

Adopted earthquake Date Dur. (s) fs (Hz) M Dist. (km) PGA (g) PSA (g)

Loma Prieta (LP) 17/10/1989 60 50 7.0 81.0 0.14 0.32
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components. In these cases, SSI-DATA shows much higher modal damping ratios than for

rFDD; this is probably due to the presence of two very close modes of vibration, i.e. the

first and the second, which may negatively affects the damping estimates.

Fig. 6 Singular Value Decomposition and peak-picking of the modes of vibration (rFDD) and enhanced
Global Stabilization Diagram with 1st rFDD SV (SSI-DATA), San Bruno six-storey office building, real
response signals, rFDD (left) and SSI-DATA (right) algorithms, earthquake of Loma Prieta (LP),
NS component (Table 3)

Table 4 Identified natural frequencies fi, modal damping ratios fi and related deviations, computed
between rFDD and SSI-DATA estimates, San Bruno six-storey office building, real response signals,
earthquake of Loma Prieta (LP), NS and WE components (Table 3)

Mode Loma Prieta (NS) Loma Prieta (WE)

rFDD SSI-DATA DrFDD-SSI rFDD SSI-DATA DrFDD-SSI

fi (Hz) 1 1.185 1.187 0.133% 0.9957 0.9872 0.851%

2 1.386 1.348 2.73% 1.286 1.267 1.52%

3 1.873 1.720 8.14% 2.302 2.231 3.11%

fi (%) 1 6.38% 8.37% 31.2% 3.99% 3.51% - 12.2%

2 2.54% 7.83% 208% 4.96% 11.2% 125%

3 4.55% 5.50% 20.9% 6.06% 5.00% - 17.5%

Fig. 7 MAC indexes for the estimated mode shapes, computed between rFDD and SSI-DATA eigenvector
estimates, San Bruno six-storey office building, real response signals, earthquake of Loma Prieta (LP),
NS and WE components (Table 3)
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Mode shapes, instead, are reported in terms of MAC indexes in Fig. 7, i.e. by adopting

MACð/rFDD;/SSIÞ ¼ j/H
rFDD/SSIj

2=ðj/H
rFDD/rFDDj j/H

SSI/SSIjÞ, as calculated between the

rFDD and the SSI-DATA outcomes. Here, 3D MAC barplots are made by combining the

rFDD and the SSI mode shapes, for each mode of vibration. On the diagonal terms, where

the same modes are combined, MAC values turn out very close to one, as expected (since

the first rFDD mode shape is combined with the first SSI mode shapes, and so on), while

off-diagonal terms shall be close to zero, as effectively detected (since different modes are

combined to each other, resulting to be orthogonal among them).

Notice that the direct comparison with the two rFDD and SSI-DATA methods (with

respect to natural frequencies, modal damping ratios and mode shapes), after the earlier

numerical analysis with synthetic response signals made in Sect. 4, helps with the vali-

dation of the achieved strong ground motion modal parameters. In fact, by adopting the

two validated method, it is possible to achieve a set of rFDD and SSI-DATA modal

parameters, which can be ‘‘self-compared’’ in order to reach final identification outcomes.

Finally, the barplots proposed in Fig. 8 represent the achieved natural frequencies and

modal damping ratios, computed with the rFDD and SSI-DATA methods for the LP

earthquake responses, NS and WE components. In particular, jointly with the estimated

parameters, also the target ones are proposed, towards further comparison purposes. Target

modal parameters are taken from the work of Marshall et al. (1992), Celebi (1996). For the

NS case, the first three natural frequencies and the first modal damping ratio are available,

while for the WE case the first two natural frequencies and the first modal damping ratio

are provided. These target parameters are marked in red in Fig. 8, and deviations are

calculated on them as Df ¼ ½ðfID � fTARGETÞ=fTARGET�% for natural frequencies and

Df ¼ ½ðfID � fTARGETÞ=fTARGET�% for modal damping ratios. The very limited deviations

between the estimated and the target values confirm once again the reliability of the

proposed rFDD and SSI-DATA techniques, also in detecting strong ground motion modal

parameters with real earthquake-induced structural response signals.

Fig. 8 Natural frequency and modal damping ratio barplots for rFDD and SSI-DATA, San Bruno six-storey
office building, real response signals, earthquake of Loma Prieta (LP), NS and WE components (Table 3).
Percentage deviations from the target values (where available) are indicated
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6 Conclusions

In this work, two different output-only identification algorithms have been adopted to

achieve strong ground motion modal parameter estimations. Simultaneous heavy damping,

in terms of identification challenge, has been considered all together. In this framework,

both synthetic (Sect. 4) and real (Sect. 5) seismic response signals have been effectively

analyzed.

Consistently, two enhanced OMA methods have been originally developed and

implemented within MATLAB, by referring either to the Frequency Domain (refined

Frequency Domain Decomposition, rFDD) or to the Time Domain (improved Data-Driven

Stochastic Subspace Identification, SSI-DATA). Starting from classical implementations

(Sects. 2.1, 3.1), the present algorithms have been specifically implemented to deal with

seismic vibration and simultaneous heavy damping. Specifically, a series of further

peculiar strategies, described in Sects. 2.2 and 3.2, have been successfully implemented to

handle such a challenging Earthquake Engineering identification context.

By adopting the two output-only methods, consistent estimates have been achieved from

both synthetic (reference linear three-storey shear-type frame) and real (six-storey

instrumented RC building in California) seismic response signals. The present rFDD and

SSI-DATA methodologies show to be rather robust in terms of global modal identification

capability, within the considered seismic engineering range. In these terms, readable

estimates of all the modal parameters have been achieved.

The obtained results from the adoption of synthetic earthquake-induced response signals

have been demonstrated and validated by the consistent outcomes from the use of real

seismic response recordings. With the present enhanced output-only implementations (to

be used separately or all together), the challenging modal identification within the

Earthquake Engineering range may effectively be performed. As a specific identification

outcome from the analyzed cases, rFDD overall looks superior to SSI-DATA, at this

particular stage of development and implementation. In such a sense, better modal esti-

mates may be achieved, especially for the modal damping ratios.

Future developments shall concern additional refinements of both methods, especially

by focusing on the improvement of the present SSI-DATA implementation, and more

extensive analyses and case studies.
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