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Abstract A closed-form analytical solution is presented for the dynamic response of a

SDOF oscillator, supported by a flexible composite foundation embedded in an elastic half-

space, and excited by plane SH waves. The solution is obtained by the wave function

expansion method. The solution is verified for the two limiting cases of a rigid–flexible

composite foundation and a homogeneous flexible foundation by comparison with pub-

lished results. The model is used to investigate the effect of the foundation flexibility

variation on the system response. The results show that the effect is significant for both

foundation response and structural relative response. For a system with larger foundation

flexibility variation, the peak of the foundation effective input motion is smaller, while the

amplitude of structural relative response less changes. When foundation flexibility varia-

tion decreases, system frequency will shift to lower frequency, and the shift value is also

highly dependent on the foundation flexibility variation.

Keywords Foundation flexibility � System response � System frequency � Composite

foundation � Dynamic soil–structure interaction (SSI) � Plane SH waves

1 Introduction

Dynamic soil–structure interaction (SSI) is one fundamental problem in the field of

earthquake engineering. In actual SSI process, foundation flexibility (foundation defor-

mation) is very significant, which has been proved by many tests and observation records

(Wong et al. 1977; Hudson 1977; Trifunac et al. 1999). Some scholars made efforts on

& Jianwen Liang
liang@tju.edu.cn

1 Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing 210009, China

2 State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University,
Tianjin 300354, China

123

Bull Earthquake Eng (2018) 16:113–127
https://doi.org/10.1007/s10518-017-0212-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s10518-017-0212-9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10518-017-0212-9&amp;domain=pdf
https://doi.org/10.1007/s10518-017-0212-9


flexible foundation to try to make the theoretical models more suitable to the actual

situation.

The earlier research works (Iguchi and Luco 1981; Rajapakse 1989; Wang et al. 1991;

Gucunski and Peek 1993; Liou and Huang 1994) pointed out that foundation flexibility has

strong effect on foundation impedance function and contact stresses distribution beneath

the foundation. The theoretical models in these earlier research works are usually the

circular-shaped surface plate ignoring the embedding effect, and these earlier research

works did not investigate how foundation flexibility influence structural response. Hayir

et al. (2001 and Todorovska et al. 2001) first noticed that and carried some research works.

The results illustrated that the structure near the foundation has larger deformations when

taking account of foundation flexibility into the analysis. Liang et al. (2016) presented an

analytical solution of dynamic soil–structure interaction with a SDOF oscillator on a

homogenous embedded semi-circular flexible foundation. The analysis showed that

foundation flexibility has strong effect on system response and system frequency. Le et al.

(2016) presented an analytical solution to the response of a shear wall standing on a rigid–

flexible composite foundation. They compared the results with that of the shear wall with

rigid foundation (Trifunac 1972), but they did not investigate the effect of foundation

flexibility on system response and system frequency. Liang and Jin (2016) presented an

analytical solution of dynamic soil–structure interaction with a SDOF oscillator on a rigid–

flexible composite foundation, and studied how foundation flexibility influences system

response and system frequency.

It is worth to note the forced vibration test of Millikan Library Building (Wong et al.

1977). The results showed that foundation has very significant deformation and the dis-

tribution of the contact stresses beneath the foundation focus on the stiffer elements of

structure, which is different to that of rigid foundation. Take a foundation base plate

surrounded by shear walls for example. When the stiffness of the shear walls is very large,

the region that the plate connected with the shear walls will be very stiff. The stiff region

brings flexibility variation in the plate, which makes the response of the plate is different to

that of completely rigid plate assumption. Thus, in SSI analysis, it is of significance to

consider the effect of the stiff region that foundation connected with structure on foun-

dation response and structural response.

However, the models in the current researches on flexible foundation are either

homogenous flexible foundation models or rigid–flexible composite foundation models.

The homogenous flexible foundation models ignore the flexibility variation in foundation

caused by superstructure, while the rigid–flexible composite foundation models treat the

stiff region in foundation caused by superstructure completely rigid, which will exaggerate

scattering of the waves and the effective input motion to the superstructure. Therefore, it is

of significance to study the dynamic soil–structure interaction based on the completely

flexible composite foundation model, in which, the stiff region is treated as a flexible

region, rather than completely rigid region.

This paper presents a closed-form analytical solution of dynamic soil–structure inter-

action with a SDOF oscillator on semi-circular flexible composite foundation in elastic

half-space for incident plane SH waves, and analyzes the effects of the foundation flexi-

bility variation on the dynamic response of the foundation, the relative response of the

SDOF oscillator and the system frequency.
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2 Methodology

2.1 The model

The two-dimensional (2D) model, shown in Fig. 1, consists of a SDOF oscillator, with

only out-of-plane shear deformation, supported by a semi-circular flexible composite

foundation embedded in the half-space, representing a structure and its foundation. Point

o is the origin of the Cartesian x–y–z and cylindrical r–h–y coordinate systems, and the

flexible composite foundation is infinite long in y direction (axis y points to the reader).

The flexible composite foundation has radius a, and its interior is composed of region I and

region II. Region I is between the boundary Ca and Cb with smaller stiffness, and Region II

has radius b with larger stiffness. The half-space has respectively shear modulus l, shear-
wave velocity b, and mass density q; the region I has respectively shear modulus l1, shear-
wave velocity b1, and mass density q1; the region II has respectively shear modulus l2,
shear-wave velocity b2, and mass density q2. Further, the foundation has total mass M0 per

unit length (in the y-direction), and the mass of the soil replaced by the flexible composite

foundation is MS per unit length. The SDOF oscillator has mass Mb per unit length,

undamped circular frequency xb, and is connected with the foundation through a finite

width d (d � a). The excitation is an incident plane SH wave with circular frequency x,
incidence angle c (measured from the vertical z-axis) and unit amplitude.

The superstructure is simplified into a single-degree-of-freedom (SDOF) oscillator as a

pole attached to the flexible foundation below at the center point. This approximation,

which is simple, is a worthwhile attempt to study such SSI of flexible foundations. Indeed,

this approximation was first used by Lee and Trifunac (1982) to investigate three-di-

mensional (3D) SSI problem for rigid hemispherical foundation.

The solution steps are as follows. In Sect. 2.1, the model is introduced, while, in

Sect. 2.2, the excitation, the free-field motion and the wave functions are defined, and the

solution is presented.

Fig. 1 The model of dynamic soil–structure interaction with flexible composite foundation
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2.2 Governing equations and solution

The free-field motion caused by incident plane SH wave can be expressed as viþr (Trifunac

1972)

viþr ¼ 2J0ðkrÞ þ 4
X1

n¼1

ð�1ÞnJ2nðkrÞ � cosð2ncÞ � cosð2nhÞ

� 4i
X1

n¼0

ð�1ÞnJ2nþ1ðkrÞ � sinð2nþ 1Þc � sinð2nþ 1Þh
ð1Þ

where k ¼ x=b, and Jp(x) are the Bessel function of the first kind with argument x and

order p.

In the half-space, the scattered wave vR outgoing from the foundation is represented as

vR ¼
X1

n¼0

anH
ð2Þ
2n ðkrÞ � cosð2nhÞ þ bnH

ð2Þ
2nþ1ðkrÞ � sinð2nþ 1Þh

h i
ð2Þ

The wave motion in region I of the flexible composite foundation can be written as

vS1 ¼
X1

n¼0

cnH
ð2Þ
2n ðk1rÞ þ dnJ2nðk1rÞ

h i
� cosð2nhÞ

þ
X1

n¼0

enH
ð2Þ
2nþ1ðk1rÞ þ fnJ2nþ1ðk1rÞ

h i
� sinð2nþ 1Þh

ð3Þ

where k1 ¼ x=b1, HP
(2)(x) is the Hankel function of the second kind with argument x and

order p.

The wave motion in region II of the flexible composite foundation can be written as

vS2 ¼ g0J0ðk2rÞ þ
X1

n¼1

gnJ2nðk2rÞ � cosð2nhÞ þ
X1

n¼0

hnJ2nþ1ðk2rÞ � sinð2nþ 1Þh ð4Þ

where k2 ¼ x=b2.
Motion vF in foundation region II, due to the inertia load from the oscillator, F, acting

on the point o is represented as (Liang et al. 2016)

vF ¼ � F

2l2
� i � Hð2Þ

0 ðk2rÞ ð5Þ

All the wave motions must satisfy the wave differential equation given by

o2v

or2
þ 1

r

ov

or
þ 1

r2
o2v

oh2
¼ 1

b2
o2v

ot2
ð6Þ

where v stands for the motions viþr, vR, vS1, v
S
2 and vF respectively, and b stands for b, b1

and b2 respectively.
All the wave motions must also satisfy the boundary conditions given by

rhy ¼
l
r

ov

oh
¼ 0 at h ¼ � p

2
ð7Þ

viþr þ vR ¼ vS1 at r ¼ a ð8Þ
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l
oðviþr þ vRÞ

or
¼ l1

ovS1
or

at r ¼ a ð9Þ

vS1 ¼ vS2 þ vF at r ¼ b ð10Þ

l1
ovS1
or

¼ l2
oðvS2 þ vFÞ

or
at r ¼ b ð11Þ

vF ¼ D at r ¼ 0 ð12Þ

In Eq. (5), v stands for the motions viþr, vR, vS1, v
S
2 and vF respectively, and l stands for l,

l1 and l2 respectively. In Eqs. (2), (3) and (4), the an, bn, cn, dn, en, fn, gn, and hn are the

complex constants that can be determined by boundary conditions (8), (9), (10), (11) and

(12). D is the effective input motion at point o to the SDOF oscillator.

The inertia load F that the SDOF oscillator acts at point o of the flexible foundation can

be determined as follows. The system equilibrium equation of the undamped SDOF

oscillator subjected to effective input motion D can be written as

ð €Db þ €DÞ þ x2
bDb ¼ 0 ð13Þ

where, Db is the relative motion of the SDOF oscillator to point o, and

Db ¼
x2

x2
b � x2

D ð14Þ

So, the inertia load F is

F ¼ x2MbðDb þ DÞ ¼ x2Mb

x2
b

x2
b � x2

D ð15Þ

The complex expansion coefficients an, cn, dn, and gn can be determined by substituting

Eqs. (1) through (5) into boundary conditions (8), (9), (10), (11) and (12). This gives for

n = 1, 2, 3 …

an � Hð2Þ
2n ðkaÞ � cn � Hð2Þ

2n ðk1aÞ � dn � J2nðk1aÞ ¼ �4� ð�1ÞnJ2nðkaÞ � cosð2ncÞ ð16aÞ

an � lW2;n � cn � l1W3;n � dn � l1W4;n ¼ �lW1;n ð16bÞ

cn � Hð2Þ
2n ðk1bÞ þ dn � J2nðk1bÞ � gn � J2nðk2bÞ ¼ 0 ð16cÞ

cn � l1
2n

b
H

ð2Þ
2n ðk1bÞ � k1H

ð2Þ
2nþ1ðk1bÞ

� �
þ dn � l1

2n

b
J2nðk1bÞ � k1J2nþ1ðk1bÞ

� �

� gn � l2
2n

b
J2nðk2bÞ � k2J2nþ1ðk2bÞ

� �
¼ 0

ð16dÞ

where,

W1;n ¼ 4� ð�1Þn 2n

r
J2nðkrÞ � kJ2nþ1ðkrÞ

� �
cosð2ncÞ ð17aÞ

W2;n ¼
2n

r
H

ð2Þ
2n ðkrÞ � kH

ð2Þ
2nþ1ðkrÞ ð17bÞ
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W3;n ¼
2n

r
H

ð2Þ
2n ðk1rÞ � k1H

ð2Þ
2nþ1ðk1rÞ ð17cÞ

W4;n ¼
2n

r
J2nðk1rÞ � k1J2nþ1ðk1rÞ ð17dÞ

The complex expansion coefficients bn, en, fn, and hn can be determined by solving

Eqs. (18a) through (18d) together, and it gives for n = 0, 1, 2, 3 …

bn � Hð2Þ
2nþ1ðkaÞ � en � Hð2Þ

2nþ1ðk1aÞ � fn � J2nþ1ðk1aÞ ¼ 4i� ð�1ÞnJ2nþ1ðkaÞ � sinð2nþ 1Þc
ð18aÞ

bn � lP2;n � en � l1P3;n � fn � l1P4;n ¼ �lP1;n ð18bÞ

en � Hð2Þ
2nþ1ðk1bÞ þ fn � J2nþ1ðk1bÞ � hn � J2nþ1ðk2bÞ ¼ 0 ð18cÞ

en � l1
2nþ 1

b
H

ð2Þ
2nþ1ðk1bÞ � k1H

ð2Þ
2nþ2ðk1bÞ

� �
þ fn � l1

2nþ 1

b
J2nþ1ðk1bÞ � k1J2nþ2ðk1bÞ

� �

� hn � l2
2nþ 1

b
J2nþ1ðk2bÞ � k2J2nþ2ðk2bÞ

� �
¼ 0

ð18dÞ

where,

P1;n ¼ �4i� ð�1Þn 2nþ 1

r
J2nþ1ðkrÞ � kJ2nþ2ðkrÞ

� �
sinð2nþ 1Þc ð19aÞ

P2;n ¼
2nþ 1

r
H

ð2Þ
2nþ1ðkrÞ � kH

ð2Þ
2nþ2ðkrÞ ð19bÞ

P3;n ¼
2nþ 1

r
H

ð2Þ
2nþ1ðk1rÞ � k1H

ð2Þ
2nþ2ðk1rÞ ð19cÞ

P4;n ¼
2nþ 1

r
J2nþ1ðk1rÞ � k1J2nþ2ðk1rÞ ð19dÞ

Especially, for n = 0, the complex expansion coefficients a0, c0, d0, g0 and D can be

determined by solving Eqs. (20a) through (20e) together, and it gives

a0 � Hð2Þ
0 ðkaÞ � c0 � Hð2Þ

0 ðk1aÞ � d0 � J0ðk1aÞ ¼ �2J0ðkaÞ ð20aÞ

a0 � lkHð2Þ
1 ðkaÞ � c0 � l1k1H

ð2Þ
1 ðk1aÞ � d0 � l1k1J1ðk1aÞ ¼ �2lkJ1ðkaÞ ð20bÞ

c0 � Hð2Þ
0 ðk1bÞ þ d0 � J0ðk1bÞ � g0 � J0ðk2bÞ þ

i

2l2
x2MbTðxÞHð2Þ

0 ðk2bÞ � D ¼ 0 ð20cÞ

c0 � l1k1H
ð2Þ
1 ðk1bÞ þ d0 � l1k1J1ðk1bÞ � g0 � l2k2J1ðk2bÞ

þ i

2
k2 � x2MbTðxÞHð2Þ

1 ðk2bÞ � D ¼ 0
ð20dÞ
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g0 � J0ðk2dÞ �
i

2l2
x2MbTðxÞHð2Þ

0 ðk2dÞ þ 1

� �
� D ¼ �Sum ðd is a small valueÞ ð20eÞ

where,

TðxÞ ¼ x2
b

x2
b � x2

ð21aÞ

Sum ¼
X1

n¼1

gnJ2nðk2dÞ � cosð2nhÞ þ
X1

n¼0

hnJ2nþ1ðk2dÞ � sinð2nþ 1Þh ð21bÞ

Because the inertia load F is applied at point o of the flexible composite foundation, the

motion at point o cannot be calculated directly by letting r = 0 due to singularity. So, we

let r = d in Eq. (20e), where d is a number that tends to zero, but not equal to zero. h can

be an arbitrary value due to d tending to zero. Here, we let h = 0, and so

Sum ¼
X1

n¼1

gnJ2nðk2dÞ ð22Þ

It should be noted that, a0, c0, d0, g0 and D are independent with the incident angle, which

is due to that, except for the unknowns a0, c0, d0, g0 and D, all the other parameters are

independent with the incident angle in Eqs. (20a) through (20e).

Both D and Db are normalized by surface displacement amplitude of the free-field

motion vi?r

�D ¼ D= viþr
�� ��; �Db ¼ Db= viþr

�� ��: ð23Þ

3 Verification by comparison with results for homogenous flexible
foundation and rigid–flexible composite foundation

For the SDOF oscillator, the dimensionless parameter g is defined as (Todorovska and

Trifunac 1992)

g ¼ xba

pb
ð24Þ

which depends on the relative stiffness of the SDOF oscillator to the half-space and the

relative mass of the SDOF oscillator to the foundation mass. In this study we call it

‘‘structural stiffness’’ for short in the following. Small g means a flexible SDOF oscillator

and/or stiff soil and large g means a stiff SDOF oscillator and/or very flexible soil. The

limiting value g ? ? corresponds to a rigid SDOF oscillator, and g ? 0 corresponds to a

flexible SDOF oscillator on a rigid half-space (Todorovska and Trifunac 1992). Figure 2

shows the results of this paper with that of the homogenous flexible foundation model

(Liang et al. 2016), and Fig. 3 shows the results of this paper with that of the rigid–flexible

composite foundation model (Liang and Jin 2016). It can be seen that our results agree very

well with those of the two limiting cases.
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4 Numerical results and analysis

4.1 Calculation parameters

Figures 4, 5, 6, 7, 8 and 9 illustrate the effect of foundation flexibility variation on

foundation dynamic response and structural relative response. To easily make comparison,

the results of two limiting cases [homogenous flexible foundation (Liang et al. 2016) and

rigid–flexible composite foundation (Liang and Jin 2016)] are also plotted in each sub-

figure. The parameters are as follows. The shear-velocity contrast between the foundation

region I and the half-space b1/b = 2, and foundation flexibility variation b2/b1 = 2/2, 3/2,

5/2 and 100/2. Especially, for b2/b1 = 2/2, it means that the flexible composite foundation

is homogeneous flexible foundation. The mass-density contrast between the foundation and

the half-space q1/q2/q = 1/1/2, which is equivalent toM0/MS = 1/2. We call the parameter

b/a as ‘‘foundation flexibility variation region’’ for short in the following, and b/a = 0.25,

0.50 and 0.75. The mass contrast between the SDOF oscillator and the foundation (we call

it ‘‘structural mass’’ for short in the following)Mb/M0 = 1, 2 and 4. The structural stiffness

g = 1/12, 1/6 and 1/3. The wave incident angle c = 0�, 30�, 60� and 90�. d/a = 0.05,

which is a practical value for common structures (Liang et al. 2016).

4.2 Foundation effective input motion

Figures 4, 5 and 6 show how foundation flexibility variation (b2/b1) influence the effective
input motion that foundation to structure. It can be seen that when taking account of

foundation flexibility variation (b2/b1) into the analysis, the input motion that foundation to

structure is different to that of the homogenous flexible foundation model and that of the

rigid–flexible composite foundation model. For g = 1/3, b/a = 0.25 and Mb/M0 = 4,

when b2/b1 = 2/2, 3/2, 5/2 and 100/2, the peak responses of point o are 1.827, 1.548, 1.417

and 1.349, respectively, and the frequencies corresponding to the peaks are 0.497, 0.509,

0.509 and 0.504, respectively. While, the peak response of point o for homogenous flexible

Fig. 2 Comparison with the results of homogenous flexible foundation with SDOF oscillator (Liang et al.
2016)
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foundation model is 1.827 and its corresponding frequency is 0.497, and the peak response

of point o for rigid–flexible composite foundation model is 1.349 and its corresponding

frequency is 0.504. This shows that for b2/b1 = 100/2, the results of flexible composite

foundation are very close to that of rigid–flexible composite foundation and the flexible

composite foundation can be treated as rigid–flexible composite foundation approximately.

This also illustrates the effective input motion that foundation to structure is highly

dependent on foundation flexibility variation. The larger the foundation flexibility variation

(b2/b1) is, the result will more approach to the result of the rigid–flexible composite

foundation model. The smaller the foundation flexibility variation (b2/b1) is, the result will

Fig. 3 Comparison with the results of rigid–flexible composite foundation with SDOF oscillator (Liang and
Jin 2016)

Fig. 4 Dynamic response of point o (structural stiffness g = 1/3)
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more approach to that of the homogenous flexible foundation model. This means when

foundation flexibility variation (b2/b1) increases, the peak of effective input motion will be

smaller and the frequency corresponding to the peak will shift to higher frequency.

The reason why the effective input motion occurs the above phenomenon is that

foundation flexibility variation highly influences foundation stiffness. Depending on the

degree of foundation flexibility variation, flexible composite foundation is between rigid–

Fig. 5 Dynamic response of point o (structural stiffness g = 1/6)

Fig. 6 Dynamic response of point o (structural stiffness g = 1/12)
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flexible composite foundation and homogenous flexible foundation. It is necessary to

consider foundation flexibility variation (b2/b1) in actual SSI analysis, because both the

homogenous flexible foundation model and the rigid–flexible composite foundation model

are limiting cases.

Foundation flexibility variation region (b/a), structural mass (Mb/M0) and structural

stiffness (g) also influence the effective input motion.

Fig. 7 Relative response of the superstructure (structural stiffness g = 1/3)

Fig. 8 Relative response of the superstructure (structural stiffness g = 1/6)
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For fixed g and Mb/M0, when b/a increase, the peak of point o will decrease. For g = 1/

3, Mb/M0 = 4 and b2/b1 = 3/2, when b/a = 0.25, 0.50 and 0.75, the peak of point o are

1.548, 1.435 and 1.370, respectively.

For fixed g and b2/b1, when Mb/M0 increases, the frequency corresponding to the peak

of point o will shift to lower frequency. For g = 1/3, b/a = 0.25 and b2/b1 = 3/2, when

Mb/M0 = 1, 2 and 4, the frequencies corresponding to the peaks of point o are 0.801, 0.670

and 0.509.

For fixed b/a and Mb/M0, when g decreases, the peak of point o will increase and the

frequency corresponding to the peak will shift to lower frequency. For b/a = 0.25, b2/
b1 = 3 and Mb/M0 = 2, when g = 1/3, 1/6 and 1/12, the peaks of point o are 1.430, 1.621

and 1.917 respectively, and the frequencies corresponding to the peaks are 0.670, 0.442

and 0.248, respectively. While for b/a = 0.25, b2/b1 = 5 and Mb/M0 = 2, when g = 1/3,

1/6 and 1/12, the peaks of point o are 1.299, 1.492 and 1.787 respectively, and the

frequencies corresponding to the peaks are 0.667, 0.444 and 0.248, respectively.

4.3 Structural relative response

Figures 7, 8 and 9 show how foundation flexibility variation (b2/b1) influences the struc-

tural relative response. It can be seen that the peak of structural relative response is close to

that of the homogenous flexible foundation model and that of the rigid–flexible composite

foundation model, but the frequency corresponding to the peak is significantly different.

The frequency corresponding to the peak for flexible composite foundation model is

strongly affected by foundation flexibility variation (b2/b1). For g = 1/3, b/a = 0.75 and

Mb/M0 = 2, when b2/b1 = 2/2, 3/2, 5/2 and 100/2, the peaks of structural relative response

are 1.351, 1.405, 1.446 and 1.477, respectively, and the frequencies corresponding to the

peaks are 0.733, 0.841, 0.921 and 0.976, respectively. While, the peak of structural relative

response for the homogenous flexible foundation is 1.351 and its corresponding frequency

Fig. 9 Relative response of the superstructure (structural stiffness g = 1/12)
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is 0.733, and the peak of structural relative response for the rigid–flexible composite

foundation is 1.477 and its corresponding frequency is 0.976.

Foundation flexibility variation region (b/a) also influences the structural relative

response. For g = 1/3, Mb/M0 = 2 and b2/b1 = 3/2, when b/a = 0.25, 0.50 and 0.75, the

peaks of structural relative response are 1.371, 1.387 and 1.405, respectively, and the

frequencies corresponding to the peaks of point o are 0.789, 0.820 and 0.841, respectively.

Structural stiffness (g) and structural mass (Mb/M0) also influence the structural relative

response. When structural stiffness (g) is very small, the effect of foundation flexibility

variation (b2/b1) on the structural relative response is very little. For g = 1/12, b/a = 0.25

and Mb/M0 = 1, when b2/b1 = 2/2, 3/2, 5/2 and 100/2, the peaks of structural relative

response are 38.073, 38.187, 38.507 and 38.472, respectively, and the frequencies corre-

sponding to the peaks are 0.255, 0.256, 0.257 and 0.257, respectively. For fixed g, when
structural mass (Mb/M0) increases, the frequency corresponding to the peak of structural

relative response will shift to lower frequency. For g = 1/13, b/a = 0.25 and b2/b1 = 3/2,

when Mb/M0 = 1, 2 and 4, the frequencies corresponding to the peaks of structural relative

response are 0.898, 0.789 and 0.638, respectively.

4.4 System frequency

Todorovska and Trifunac (1992) defined a system frequency for rigid foundation with a

SDOF oscillator, by the frequency corresponding to the peak of the ratio of the structural

relative response to the system input. This paper follows this definition, and the dimen-

sionless system frequency can be expressed as

gsys ¼ xa=b ð37Þ

Based on this definition, the effect of foundation flexibility variation on the system fre-

quency can well be described by the shift of peak frequency in Figs. 7, 8 and 9.

Figures 7, 8 and 9 show that when considering foundation flexibility variation (b2/b1),
system frequency of flexible composite foundation is highly dependent on foundation

flexibility variation (b2/b1). With foundation flexibility variation (b2/b1) decreasing, sys-
tem frequency of flexible composite foundation will shift to lower frequency, and the shift

value (relative to the system frequency of rigid–flexible composite foundation) is depen-

dent on foundation flexibility variation (b2/b1). For g = 1/3, b/a = 0.75 and Mb/M0 = 2,

when b2/b1 = 2/2, 3/3, 5/2, 100/2, the system frequencies are 0.733, 0.841, 0.921 and

0.976, respectively, while that of the homogenous flexible foundation model is 0.733 and

that of the rigid–flexible composite foundation model is 0.976, and the shift value (relative

to the system frequency of rigid–flexible composite foundation) are 0.243, 0.135, 0.055

and 0.000.

Foundation flexibility variation region (b/a) and structural stiffness (g) also influence

the system frequency. When b/a increases, the system frequency will shift to higher

frequency. For g = 1/3, Mb/M0 = 2 and b2/b1 = 3/2, when b/a = 0.25, 0.50 and 0.75, the

system frequencies of flexible composite foundation are 0.789, 0.820 and 0.841, respec-

tively. When structural stiffness (g) is very small, the effect of foundation flexibility

variation (b2/b1) on system frequency is very little. For g = 1/12, b/a = 0.25 and Mb/

M0 = 1, when b2/b1 = 2/2, 3/2, 5/2 and 100/2, the system frequencies are 0.255, 0.256,

0.257 and 0.257, respectively. However, as the structural stiffness (g) increases, the effect
of foundation flexibility variation (b2/b1) on system frequency becomes large. For g = 1/3,

b/a = 0.25 and Mb/M0 = 1, when b2/b1 = 2/2, 3/2, 5/2 and 100/2, the system frequencies
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are 0.857, 0.898, 0.922 and 0.936, respectively. From the two examples, it can be seen that

for larger structural stiffness (g), the effect of foundation flexibility variation on system

frequency will become larger.

5 Conclusion

This paper derived an analytical solution of a SDOF oscillator on a semi-circular flexible

composite foundation in half-space for incident plane SH waves, and studied the effects of

foundation flexibility variation on system response and system frequency. Some conclu-

sions are as follows.

1. Foundation flexibility variation has strong effect on the effective input motion of the

foundation to the structure, but has small effect on the peak of structural relative

response. The peak and the frequency corresponding to the peak of the effective input

motion are highly dependent on foundation flexibility variation. When foundation

flexibility variation become larger, the peak of input motion will be smaller and the

peak frequency will shift to higher frequency. The peaks of structural relative response

correspond to different foundation flexibility variation have little different.

2. Foundation flexibility variation also has strong effect on system frequency. When

foundation flexibility variation decreases, system frequency will shift to lower

frequency, and the shift value (relative to the system frequency of rigid–flexible

composite foundation) is also highly dependent on foundation flexibility variation.

3. The influence of foundation flexibility variation on system response is also dependent

on structure stiffness. For larger structural stiffness, the influence of foundation

flexibility variation on system frequency becomes larger.

Acknowledgements This study is supported by the National Natural Science Foundation of China under
Grant 51578372, which is gratefully acknowledged.

References

Gucunski N, Peek R (1993) Parametric study of vertical vibrations of circular flexible foundations on
layered media. Earthq Eng Struct Dyn 22:685–694

Hayir A, Todorovska MI, Trifunac MD (2001) Antiplane response of a dike with flexible soil–structure
interface to incident SH waves. Soil Dyn Earthq Eng 21:603–613

Hudson DE (1977) Dynamic test of full-scale structures. J Eng Mech Division ASCE 103(6):1141–1157
Iguchi M, Luco JE (1981) Dynamic response of flexible rectangular foundations on an elastic half-space.

Earthq Eng Struct Dyn 9:239–249
Le T, Lee VW, Luo H (2016) Out-of-plane (SH) soil–structure interaction: a shear wall with rigid and

flexible ring foundation. Earthq Sci 29(1):45–55
Lee VW, Trifunac MD (1982) Body wave excitation of embedded hemisphere. J Eng Mech ASCE

108(3):546–563
Liang J, Jin L (2016) The effect of foundation flexibility on system response of dynamic soil–structure

interaction: an analytical solution. China Earthq Eng J (accepted)
Liang J, Jin L, Todorovska MI, Trifunac MD (2016) soil–structure interaction for a SDOF oscillator

supported by a flexible foundation embedded in a half-space: closed-form solution for incident plane
SH-waves. Soil Dyn Earthq Eng 90:287–298

Liou GS, Huang PH (1994) Effect of flexible on impedance functions for circular foundation. J Eng Mech
ASCE 120(7):1429–1446

126 Bull Earthquake Eng (2018) 16:113–127

123



Rajapakse RKND (1989) Dynamic response of elastic plates on viscoelastic half space. J Eng Mech ASCE
115(9):1867–1881

Todorovska MI, Trifunac MD (1992) The system damping, the system frequency and the system response
peak amplitudes during in-plane building-soil interaction. Earthq Eng Struct Dyn 21:127–144

Todorovska MI, Hayir A, Trifunac MD (2001) Antiplane response of a dike on flexible embedded foun-
dation to incident SH-waves. Soil Dyn Earthq Eng 21:593–601

Trifunac MD (1972) Dynamic interaction of a shear wall with the soil for incident plane SH Waves. Bull
Seismol Soc Am 62:62–83

Trifunac MD, Ivanovic SS, Todorovska MI, Novikova EI, Gladkov AA (1999) Experimental evidence for
flexible of a building foundation supported by concrete friction piles. Soil Dyn Earthq Eng 18:169–187

Wang Y, Rajapakse RKND, Shah AH (1991) Dynamic interaction between flexible strip foundations. Earthq
Eng Struct Dyn 20:441–454

Wong HL, Luco JE, Trifunac MD (1977) Contact stresses and ground motion generated by soil–structure
interaction. Earthquake Eng Struct Dyn 5:67–79

Bull Earthquake Eng (2018) 16:113–127 127

123


	The effect of foundation flexibility variation on system response of dynamic soil--structure interaction: an analytical solution
	Abstract
	Introduction
	Methodology
	The model
	Governing equations and solution

	Verification by comparison with results for homogenous flexible foundation and rigid--flexible composite foundation
	Numerical results and analysis
	Calculation parameters
	Foundation effective input motion
	Structural relative response
	System frequency

	Conclusion
	Acknowledgements
	References




