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Abstract The convex model approach is applied to derive the robust seismic fragility

curves of a five-span isolated continuous girder bridge with lead rubber bearings (LRB) in

China. The uncertainty of structure parameters (the yield force and the post-yield stiffness

of LRB, the yield strength of steel bars, etc.) are considered in the convex model, and the

uncertainty of earthquake ground motions is also taken into account by selecting 40

earthquake excitations of peak ground acceleration magnitudes ranging from 0.125 to

1.126 g. A 3-D finite element model is employed using the software package OpenSees by

considering the nonlinearity in the bridge piers and the isolation bearings. Section ductility

of piers and shearing strain isolation bearings are treated as damage indices. The cloud

method and convex model approach are used to construct the seismic fragility curves of the

bridge components (LRB and bridge piers) and the bridge system, respectively. The

numerical results indicate that seismic fragility of the bridge system and bridge compo-

nents will be underestimated without considering the uncertainty of structural parameters.

Therefore, the failure probability Pf,max had better be served as the seismic fragility,

especially, the fragility of the bridge system is largely dictated by the fragility of LRB.

Finally, the probabilistic seismic performance evaluation of the bridge is carried out

according to the structural seismic risk estimate method.
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1 Introduction

Since pacific earthquake engineering research (PEER) put forward the theoretical frame-

work of the next generation performance-based earthquake engineering (PBEE), structure

seismic fragility analysis have gained more concern as an important component of the

PBEE (FEMA 2006; Padgett et al. 2008). Seismic fragility analysis evaluates the proba-

bility of a certain damage state when structures are subjected to different earthquake

magnitudes. The analysis methods of seismic fragility commonly include empirical, sta-

tistical and numerical analysis (Shinozuka et al. 2000a, b; Karim and Yamazaki 2001a, b;

Hwang et al. 2001; Moschonas et al. 2009; Billah and Alam 2015). Although, the seismic

isolation technique has been widely used in bridge engineering, the destruction data of

isolated bridges subjected to earthquakes is still rare. Thus, the numerical analysis method

is the only effective way to derive the seismic fragility of isolated bridges. Currently,

probability model is usually employed in the seismic fragility analysis of the bridge

structures, the characteristics of the model is that probability density function of random

variables must be defined in advance. Nevertheless, the probability density functions of

mechanical parameters (e.g. yield force and post-yield stiffness) of lead rubber bearings

(LRB) are unknown and rarely reported in present papers. Therefore, how to accurately

take into account uncertainties of lead rubber bearings will be a significant factor of

seismic fragility analysis of isolated bridges.

The probabilistic seismic demand model (PSDM), which represents the statistical rela-

tionship between intensity measure (IM) and engineering demand parameters (EDPs), is

commonly considered as the base of seismic fragility analysis. Traditional probabilistic

seismic demand analysis (PSDA) was proposed by Shome (1999) for the first time, then

Cornell and Krawinkler (2000) improved the theoretical system of this method in order to

enhance its practicability. Generally, there are two kinds of calculation methods for seismic

demand: one is parametric analysis method which assumes that earthquake demand

parameters obey definite probability distribution (such as normal distribution or exponential

normal distribution). Moreover, probability distribution functions of EDPs can be confirmed

by estimating a little amount of model parameters (e.g. mean value adn variance value), and

then the probabilistic seismic demand model could be established. Karim and Yamazaki

(2007) employed the simplified fragility analysismethod to derive the fragility curves of piers

of isolated bridges, and the result showed that LRBs could effectively reduce the possible

damage of bridge piers. Zhang andHuo (2009) studied the optimal design of isolated bearings

of isolated bridges using seismic fragility method. The second method is called non-para-

metric analysis that the empirical probability of probabilistic seismic demand models can be

directly calculated under different earthquake ground motion intensity measures. However,

distribution types of EDPs may be not assumed in this method.

Probabilistic model method needs a great amount of sample data that is very hard to

receive in practical engineering, while non-probabilistic convex model approach can be

established with less information. Although probability distribution functions remain

unknown, the boundaries of uncertainty parameters can be determined according to the

available information and be described with the convex set (such as interval set or ellipsoid

set), so that the non-probabilistic set-theory can be introduced into engineering to solve all

kinds of uncertain problems (Qiu and Wang 2010). The description method on the uncertain

set first appeared in the 1960s. Elishakoff (1995) compared stochastic model and non-

stochastic model with convex model to illustrate the defections of probabilistic method,

which need enough accurate data and the significant result errors induced by input errors.

Moreover, he also put forward the non-probabilistic convex model for the unknown
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probabilistic distribution of design parameters. Pantelides andTzan (1996) illustrated that the

responses obtained by the convex model were relatively larger than the results calculated by

the normal way, so they developed a reduction factor to adjust the results obtained by the

convexmodel. Fan et al. (2014) considered uncertainties of isolated structure parameterswith

the convexmodel and proposed a new calculationmethod for collision fragility curves of base

isolated building subjected to near-fault earthquake excitation, and uncertainties of structures

and earthquake ground motion were simultaneously taken into account.

For the seismic response analysis of structures, two methods may be employed by

considering structural uncertainty factors: probabilistic model based on the mathematical

statistics and non-probabilistic convex model based on the convex theory. The design

mechanical parameters (e.g. yield force, post-yield stiffness) of the isolated bridge are very

sensitive to isolation effect on the structure. Though the probabilistic distribution functions

of LRBs are rarely mentioned in the recent research, national standard for rubber bearings

provides the bound values of these parameters (such as allowable deviation of shearing

property of bearings type S–A is within ±10%, and that of shearing property of bearings

type S–B is within ±20%) (GB/T 20688.1-2007 2007). In order to better describe the

uncertainties of structure parameters, the convex model is introduced into seismic fragility

analysis of isolated bridge in this paper. The objective of the work is to access the

vulnerability and seismic performance of a isolated continuous girder bridge with Lead

rubber bearings (LRB) when subjected to a total of 40 earthquake excitations of peak

ground acceleration (PGA) magnitudes ranging from 0.125 to 1.126 g. The cloud method

and convex model approach are used to evaluate the seismic fragility, respectively, which

is based on the results obtained from the nonlinear time-history analysis using software

package OpenSees (McKenna and Fenves 2001). A 3-D finite element model with the

nonlinear beam-column element for bridge piers and and zero length bilinear link element

for LRBs is built. The response functions in variable space of bridge components can be

obtained by the response surface method, and the maximum and minimum values of

response surfaces can be calculated by the optimization function in MATLAB. Thus,

robust fragility curves of bridge components and the bridge system bridge piers and LRBs

can be constructed. Finally, the probabilistic seismic performance evaluation of the bridge

is carried out according to the structural seismic risk estimate method.

2 Convex model approach

Here is the definition of convex set: Let S 2 EN , if random points P and Q belong to S

(P 2 S;Q 2 S), and the point aP ? (1 - a)Q also belongs to S, in which 0 B a B 1, then

we call S a convex set. According to this definition, we can know that the convex set has

the following characteristic: if two points belong to one convex set, the line segment

between two points must belong to the convex set, this property which can be applied to

the fitting of response surface. There are several convex models which can be selected by

considering features of uncertain variables. And the simpler model is the maximum bound

convex model (MB), which has been widely used for the simple form and few information.

The MB model is defined as follow: absolute value of each component of uncertain

variables is under a limit, which can be expressed as

XMB ¼ aðtÞ 2 Rr : ajðtÞ� aj; j ¼ 1; . . .; r
�
�

� �

ð1Þ
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where �aj are constant.

Let X ¼ ½X1;X2; . . .;Xn� is the convex vector that represents uncertainties of structure

material, and the uncertain variable I is described as uncertainty of earthquake ground

motions. So, the structural seismic response can be expressed as SðX; IÞ, where xi 2 Xi, xi
can be written as

xi ¼ ð1þ cidiÞxci ð2Þ

where xci ¼ ðxli þ xui Þ=2 is the mean value of xi, ci is the deviation rate of xi, x
l
i; x

u
i are the

upper and lower bounds of xi, respectively, and standardized variable di 2 ½�1; 1�. In
consideration of the related restriction or mutual independence among uncertain parame-

ters, which would be grouped according to the correlation. Three parameters are selected as

uncertain variables, namely yield force of LRBs d1, the post-yield stiffness of LRBs d2, the
yield strength of steel bars d3. Therefore, the standard variable can be expressed as

d = [f d1; d2g; d3�. If we define di with multi-unit super-sphere set, standard variables can

be defined as

d 2 E ¼ fd : did
T
i � 1; i ¼ 1; 2; . . .;mg ð3Þ

where d1 and d2 are combined as one group by considering of the correction. E is a multi-

unit super-sphere set containing two groups of uncertain parameters. Since E represents a

convex set, the uncertain parameters model expressed as Eq. (3) is defined as the convex

model.

N earthquake ground motions are selected by latin hypercube sampling (LHS), and the

ith of them is chosen as seismic input to conduct nonlinear time history analysis in order to

obtain the maximum responses of LRBs and bridge piers, which can be assumed as

Sðd; I ¼ iÞ. Since d belongs to the convex domain described by Eq. (4), Sðd; I ¼ iÞ also

have boundaries as shown below

SmaxðI ¼ iÞ¼ sup
d2E

fSðd; I ¼ iÞg;

SminðI ¼ iÞ ¼ inf
d2E

fSðd; I ¼ iÞg:
ð4Þ

The boundaries can be obtained by solving constrained optimization problems.

find d

SminðI ¼ iÞ ¼ minðSðd; I ¼ iÞÞ
SmaxðI ¼ iÞ ¼ maxðSðd; I ¼ iÞÞ
s:t: di � dTi � 1; i ¼ 1; 2; . . .;m

ð5Þ

where Sðd; I ¼ iÞ is not an explicit expression. Obviously, this implicit function needs to be

transformed into explicit expression just to gain its extreme value. Quadratic polynomial

response surface method is applied in this paper to acquire the explicit expression

Sðd; I ¼ iÞ, Subsequently, the maximum value SmaxðI ¼ iÞ and the minimum value

SminðI ¼ iÞ of this expression can be solved.
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3 Methodology of fragility analysis and seismic performance evaluation

3.1 Cloud method

Probabilistic seismic demand model (PSDM) is used to derive analytical fragility func-

tions. PSDM is to establish a statistical relationship between engineering demand

parameters (EDP) and the ground motion Intensity Measure (IM). The PSDA method

utilizes regression analysis to obtain the mean and standard deviation for each limit state

by assuming the logarithmic correlation between the median EDP and the selected IM.

lnðEDPÞ ¼ ln aþ b lnðIMÞ ð6Þ

where the parameters a and b are regression coefficients obtained from the nonlinear time-

history response analysis. The standard deviation can be estimated as

nEDP=IM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ½lnðEDPiÞ � ðln aþ b ln IMiÞ�2

n� 2

s

ð7Þ

seismic fragility functions of the bridge structure describe the conditional probability of

reaching a certain limit state (LS) under different seismic IM. The failure probability of the

certain LS can be expressed as (Alam et al. 2012)

Pf ¼ PðDI�LS=IMÞ ¼ U
lnðaIMbÞ � lnðLSÞ

nEDP=IM

� �

ð8Þ

where nEDP=IM is the standard deviation of the logarithmic distribution that computed from

Eq. (7), and Uð�Þ is the standard normal distribution function.

Different definitions exist among the engineering field in different countries for the

definition of the structural damage state in the seismic fragility analysis. The common

damage indices for bridge structures are shown in Table 1. Based on the results of

numerous studies, the ductility of a pier section lj is selected as the pier damage index and

Table 1 Damage indices of piers and isolation bearings under different limit states

Bridge
component

Damage index Slight
(LS1)

Moderate
(LS2)

Extensive
(LS3)

Collapsed
(LS4)

Bridge pier A. Section ductility lj lj [ 1 lj [ 2 lj [ 4 lj [ 7

B. Displacement
ductility ld

ld [lfirst�yield

ð1:0Þ
ld [ lyield

ð1:20Þ
ld [ lec¼0:002

ð1:76Þ
ld [ lmax

ð4:76Þ
C. g ¼ ðld þ blhÞ=lu g[ 0:14 g[ 0:40 g[ 0:60 g[ 1:0

D. Load-carrying
capacity loss bh, bv

bh [ 0%

bv [ 5%

bh [ 2%

bv [ 10%

bh [ 5%

bv [ 25%

bh [ 20%

bv [ 50%

Isolation
bearing

E. Drift ratio h h[ 0:007 h[ 0:015 h[ 0:025 h[ 0:050

B. Displacement d d[ 0mm d[ 50mm d[ 100mm d[ 150mm

F. Shear strain c c[ 100% c[ 150% c[ 200% c[ 250%

A. Choi et al. (2004); B. Hwang et al. (2001); C. Karim and Yamazaki (2007); D. Mackie and Stojadinovi¢
(2004); E. Yi et al. (2007); F. Zhang and Huo (2009)
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the shear strain c is selected as the damage index (DI) for isolation bearings under different

limit states (LS).

3.2 Convex model method

The detailed calculation method consists of the following steps:

1. Choose uncertain parameters of isolated bridge. The standard random variable d is

sampled by the LHS method and is satisfied with the necessary condition d21 þ d22 � 1.

Sampling results should be transformed into structure parameters and then nonlinear

time history analysis would be carried out. Moreover, the number of standard variables

must guarantee the enough accuracy of response surface.

2. Conduct the nonlinear time history analysis of the structure using OpenSees. The

structural seismic responses, i.e. shearing strain of LRBs and curvature of piers, can be

obtained under different peak ground accelerations (PGAs).

3. Fit the seismic fragility response surface of the isolated continuous bridge. The

quadratic polynomial is selected to fit the response surface of seismic fragility based

on to least square method. The selected samples are treated as the training set with

quadratic polynomial response surface method to calculate the limit state function.

Furthermore, reasonable selection of experimental points and iterative calculation can

ensure that polynomial functions are converged to real limit state function as far as

possible.

The fitting function Sðd; I ¼ iÞ of output variables can be written as follows

Sðd; I ¼ iÞ ¼ aþ
Xn

i¼1

bidi þ
Xn

i¼1

Xn

j¼1

cijdidj ð9Þ

where n is the number of random variables, a is the constant term, bi (i = 1,…,n) are

linear coefficients, cij(i = 1,…,n; j = 1,…,n) are quadratic coefficients and di, dj are
uncertain variables.

Regression coefficients in response surface functions can be obtained by the least

square estimation, and the number of undetermined coefficients is (n ? 1)(n ? 2)/2.

And the real responses of structure can be approximated by response surface functions

in subsequent analysis after response surface functions of the structure are obtained.

4. Substitute Eq. (9) into Eq. (5) to replace Sðd; I ¼ iÞ. Using function ‘fmincon’ in

MATLAB to solve constrained optimization problems with constraint conditions d21 þ
d22 � 1 and d3

�
�
�
�� 1, SmaxðI ¼ iÞ and SminðI ¼ iÞ can be calculated by iteration. The

function command ‘fmincon’ can be adopted.

½x; fval; exitflag� ¼ fminconð‘bearings0; ½0; 0; 0:5�; ½�; ½�; ½�; ½�; l; u; ‘constrains0Þ;

where, x returns regression coefficients, fval returns minimum values of the function,

exitflag returns states of output values, [0, 0, 0.5] is the initial iteration value. Number

1 and u represent the lower and upper limit of parameters, respectively. The ’con-

strains’ is defined as the nonlinear constraint function which must meet d21 þ d22 � 1.

5. Acquire the values of Smax and Sminwhen the structure is subjected to the ith

earthquake excitation at a given PGA from step 1) to 4). Due to the random of

earthquake excitation, Smax and Smin are two uncertain variables. Thus, the
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corresponding maximum and minimum seismic responses of the structure at different

PGAs can be obtained.

6. Combined with damage indices as described before, seismic fragility curves of

different damage states of LRBs and piers can be derived by Eq. 10. Thus, the

maximum and minimum failure probability can be solved according to Eq. 11.

Pf ¼
nfS�LS IMj jg

N
ð10Þ

where n is the number of earthquake ground motions which satisfies failure conditions,

and N is the total number of earthquake ground motion records.

Pf ;minðimÞ ¼ PðSmin � LS IMj Þ;Pf ;maxðimÞ ¼ PðSmax � LS IMj Þ
Pf ;minðimÞ�Pf ðimÞ�Pf ;maxðimÞ

ð11Þ

where Pf,min and Pf,max are the lower and upper bound of Pf, respectively.

7. Fit the failure probability Pf based on the lognormal distribution function by the

command ‘nlinfit’ in MATLAB. Finally, the robust seismic fragility curves of LRBs

and bridge piers can be obtained.

3.3 Seismic fragility of the bridge system

For bridge structures, the fragility of system is more convincing than the fragility of

components (Choi et al. 2004; Nielson and DesRoches 2007; Zhang and Huo 2009).

However, the fragility curve of bridge system can be constructed according to the fragility

curves of bridge components (bridge piers and isolation bearings). There are two methods

to deal with the complicated calculation problem. One method is using the joint proba-

bilistic seismic demand model and capacity model of the bridge components (Nielson and

DesRoches 2007), and the other method is employing the first order reliability theory to

obtain the upper and lower bounds on the system fragility function. Nevertheless, the latter

has been widely utilized to derive the fragility curve of the bridge system in the current

study.

The common system may be divided into series, parallel and hybrid system. Because the

damage states of bridge components reflect the degree of the function loss in the system, it

is suitable that the bridge system is considered as a series system. For the series system, the

first order bound of system can be defined as Eq. (12) using the first order reliability

theory.

max½PðEiÞ� �Pfs �min
Xn

i¼1

PðEiÞ; 1
" #

ð12Þ

where PðEiÞ and Pfs is the failure probability of bridge components and system, respec-

tively. The lower bound of system fragility indicates the un-conservative estimate of the

failure probability of the system, whereas the upper bound gives the conservative estimate

of the failure probability of the system.

When the failure events of components are independent each other in the statistical

sense, the upper bound can be expressed as follows

Pfs � 1�
Yn

i¼1

½1� PðEiÞ� ð13Þ
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3.4 Probabilistic seismic performance evaluation of the bridge

The next-generation performance-based seismic design evaluation method, which is based

on the full probability theory, had been proposed by PEER. The propose of probabilistic

seismic demand analysis of structures is to predict the annual average exceeding frequency

(kEDP) of engineering demand parameters (EDP). In this paper, the curvature of bridge

piers and shear displacement of LRBs are assigned as the EDP.

kðEDP[ edpÞ ¼
Z

PðEDP[ edpjIM ¼ imÞ dkðimÞ
dðimÞ

�
�
�
�

�
�
�
�
dim ð14Þ

where IM is the intensity measure of earthquake ground motion(e.g. PGA. Sa(T1)).

PðEDP[ edpjIM ¼ imÞ is the conditional probability of reaching a certain limit state (LS)

under different IM, which is also known as the seismic fragility analysis of structures,

k(im) is the annual average exceeding frequency related to IM.

According to the energy law (Sewll et al. 1996), k(im) can be expressed as

kðimÞ ¼ k0im
�k ð15Þ

where k0 and k can be calculated by fitting method according to PGA under the two seismic

fortification criterion and characteristic of the bridge site. PðEDP[ edpjIM ¼ imÞ is

generally assumed as the lognormal distribution, which can be expressed as follows

PðEDP[ edpjIM ¼ imÞ ¼ 1� U
lnðimÞ � lnðgedpÞ

bedp

 !

ð16Þ

Where gedp and bedp can be obtained by the least square nonlinear fitting of the seismic

fragility curves under the different PGA.

The annual average exceeding frequency (kEDP) can be rewritten by substituting

Eqs. (16) and (15) into Eq. (14)

kðEDP[ edpÞ ¼ k0g
�k
edp exp

1

2
k2bedp

� �

ð17Þ

The probability of earthquake occurrence is assumed as the Poisson distribution model,

seismic hazard exceeding probability (EDP[ edp) of the bridge in 50 years can be

expressed as

P50ðEDP[ edpÞ ¼ 1� e�kðEDP[ edpÞ�50 ð18Þ

4 Seismic fragility analysis of isolated continuous girder bridge

4.1 Structural properties and analytical modeling of the bridge

The bridge was built in Tibet located in the southwest of China in 2003, which is a

reinforced concrete isolated continuous bridge with five equal spans and an overall length

of 100 meters. The geometric detail of the seismic isolated continuous girder bridge is

presented in Fig. 1, respectively. The seismic isolation bearing is used to connect the girder

and the tops of the bridge piers. The expansion joints in this bridge are set on the proscenia

162 Bull Earthquake Eng (2018) 16:155–182

123



of both sides and the girder is supported by a gravity U-shaped abutment with an expansion

base at each end of the bridge. The material parameters used in the bridge are shown in

Table 2. The seismic fortification intensity of this site is 9; the site classification type is II,

and the characteristic period of site is 0.4 s. The corresponding fortification peak accel-

eration of earthquake ground motion is 0.40 g in the horizontal direction of the bridge.

Using the finite element analysis software OpenSees, the box section girder is modeled

with an elastic beam-column element, while a nonlinear beam-column element is adopted

in the finite element modeling of bridge piers. A constitutive model of concrete is selected,

5×2000
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2 3
4

5

70
0

80
0

80
0

70
0

(a)

1040

270 500 270

120 120
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0
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0
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150
340

012 512512

09
09

031
62
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09
09

150

(b)

(d)

(c)

520
520

2a

2b

3a

3b

4a

4b

1a

1b

LRB

Fig. 1 Geometric details of the seismic isolated continuous girder bridge. a Longitudinal view of the
bridge. b Double column bridge pier. c Single column bridge pier. d Arrangement chart of LRBs on the top
of bridge piers
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which represents experimental results for the confined concrete and non-confined concrete

in a circular cross-section subjected to the axial force (Fig. 2). The elastic-linear hardening

(bilinear) model is used for the rebar (Fig. 3). Both models are represented with uniaxial

materials in OpenSees.

In Fig. 3, fy is the yield strength of the rebar. Es is the elastic modulus, E0 is the

secondary hardening stiffness, and E0 = 0.01Es. The mechanical properties of compres-

sion rebar are considered to be the same as those of tensile rebar in this case.

The non-linear material properties of bridge (Fig. 4) piers are considered and the cross

section of the bridge pier is divided into some elements to form the concrete and rebar fiber

based on the element types described above and the constitutive model of the materials

(Fig. 5).

The force–displacement relationship of the LRB500 type isolation bearing is shown in

Fig. 6. The area enclosed by the hysteresis curve indicates its energy dissipating capacity.

Thus, the larger this area is, the greater the equivalent damping of bearing and the stronger

the energy-dissipating capacity are. The isolation bearing is usually simulated with a bi-

linear model in numerical calculation, and its mechanical properties are described using the

pre-yield stiffness K1, post-yield stiffness K2 and yield shear force Q The values of these

variables are shown in Table 3.

Table 2 Geometries and material properties of the bridge

Properties Bridge piers Girder

Concrete type C30 C40

Elastic modulus of concrete (MPa) 3.00 9 104 3.25 9 104

Compressive strength standard values of concrete (N/mm2) 20.1 26.8

Tensile strength standard values of concrete (N/mm2) 2.01 2.39

Longitudinal rebar in bridge piers Pier1, Pier4 HRB335 28U25 –

Pier2, Pier3 HRB335 40U25

Lateral rebar in bridge piers HPB300 U10@100 –

Thickness of concrete cover (mm) Pier1, Pier4 70 –

Pier2, Pier3 80

εcoε 2 coε cuε

ccf ′

cof ′

ccε

'

sec
cc

cc

fE
ε

=
cE

f Breaking of
the first stirrup

Non-confined
concrete

Confined
concrete

Fig. 2 Constitutive model of
concrete
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ε

sf

yf

yε

sE

0E

Fig. 3 Constitutive model of
rebar

Fig. 4 Cross section of bridge
pier

Fig. 5 Fiber cross section of pier
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The Isolation bearing is simulated by combining a zero-length element with a uniaxial

material model in OpenSees. K2 = 0.1K1 when defining the parameters of the material

models. A rigid bar is used to connect the isolation bearings, girder and bridge piers, and is

simulated with an elastic beam-column element with a stiffness set to infinity.

-80 -40 0 40 80

-240

-120

0

120

240

Q

K1: pre-yield stiffness 
K2: post-yield stiffness 
Q : yield shear force 

K2

K1 K1

Displacement 

Fo
rc

e 

Fo
rc

e 
(k

N
)

Displacement (mm)

(a) (b)

Fig. 6 Hysteresis curve and bilinear model of LRB. a Experiment hysteresis curve of LRB. b Theoretical
bilinear model of LRB

Table 3 Design parameters of LRB500

Pre-yield stiffness
K1 (kN/m)

Post-yield stiffness
K2 (kN/m)

Yield shear
Q (kN)

Total thickness of rubber
layer tr (mm)

Bearing height
H (mm)

14,440 1413 65.2 75 150

Nonlinear beam-column element for bridge pier xy
z

Zero length bilinear link element for LRBs 

Elastic linear beam-column element for girder

Rigid bar 

Rigid bar  

Nodal point 
Lead rubber bearing: LRB 

Fig. 7 3-D Finite element model of the seismic isolated continuous girder bridge in OpeeSess
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The 3-D finite element model of the bridge by OpenSees is shown in Fig. 7. Modal

analysis is conducted using the Ritz vector method on the model to obtain the dynamic

characteristics of structures.

In order to verify the reliability and effectiveness of the finite element model by soft-

ware package OpenSees (Fig. 7), another finite element model is also built by software

package SAP2000. The modal analysis is carried out using SAP2000, and the first four

order periods and mode shapes are shown in Fig. 8.

The modal analysis results using SAP2000 and OpenSees are compared in Table 4,

respectively. The maximum relative deviation is 2.35% for the third order period, and the

first four order mode shapes are same. It is indicated that the modal analysis of the isolated

continuous girder bridge is reliable using OpenSees.

4.2 Selection of earthquake ground motions

It is important to properly select the input of the earthquake ground motion to conduct

structural seismic fragility analysis, because the seismic response of structures is subse-

quently dependent on the uncertainty characteristics of earthquake ground motions.

Characteristics of earthquake ground motions considering site type, intensity and fre-

quency contents have a great effect on nonlinear time history response of structural

Fig. 8 The first four order mode shapes of the finite element model (SAP2000). a The first mode shape
(T1 = 1.700 s). b The second mode shape (T2 = 0.610 s). c The third mode shape (T3 = 0.172 s). d The
fourth mode shape (T4 = 0.152 s)

Table 4 Comparison of the first four order mode shapes of the bridge

Modal number Period(s)
(OpenSees)

Period(s)
(SAP2000)

Description of mode shape

1 1.679 1.700 Longitudinal translation of girder

2 0.596 0.610 Transverse symmetric bending of girder

3 0.173 0.172 Transverse anti-symmetric bending of girder

4 0.154 0.152 Vertical bending of girder
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members. Some indices of earthquake ground motion, e.g., peak ground accelera-

tion(PGA), peak ground velocity(PGV), peak ground displacement(PGD), spectral accel-

eration(Sa), spectral velocity(Sv), spectral displacement(Sd) and time duration of strong

motion(Td) can be taken into account. The index PGA is a widely used to describe the

severity of the earthquake ground motion (Mackie and Stojadinovi¢ 2004; Padgeet and

DesRoches 2008).

The Chinese Code’’Guideline for Seismic Design of Highway Bridges (JTG/T B02-01-

2008 2008)’’ involves a demand: calculation results of the linear time history analysis

should be not less than 80% that of response spectrum method under the earthquake action

E1. In order to decrease the dispersion of structural response caused by different inputs of

earthquake ground motion records in the time history analysis, geometry mean response

spectra of the selected earthquake ground motion records should be closer to the target

response spectrum(Code response spectrum). The statistical analysis of numerous ground

motion records indicates that it is difficult to match well each other along the whole

frequencies range of the target response spectrum. Because the first mode shape of seismic

isolated bridge largely makes contribution to the structural seismic response, the selected

earthquake ground motion records may be limited at a nearby range around the funda-

mental period of the bridge (e.g. [T1 - DT1,T1 ? DT2]).

When considering the uncertainty of earthquake ground motion, the earthquake ground

motion records can be obtained from the latest earthquake database disseminated by the Pacific

EarthquakeEngineeringResearchCenter (PEER) in theUnitedStates according to the following

steps. (1) Establish a target response spectrum, as shown in Fig. 8, according to some important

information, such as the site type of this region, the seismic fortification intensity, the charac-

teristic period, etc. (2) Select earthquake ground motion records and make their geometry mean

response spectra closer to the target spectrum in the specifiedperiod rangeof time (e.g., [0.1 s,Tg]

and [T1 - DT1,T1 ? DT2]), as shown inFig. 9.A suite of 40 selected earthquake groundmotion

records from thePEERdatabase are presented inTable 5. ThePGAvalues ranging from0.125 to

1.126 g have been considered in the current study.

4.3 Response surface fitting of LRBs and bridge piers

According to the current studies, the yield force of LRBs d1, the post-yield stiffness of

LRBs d2 and the yield strength of steel barsd3 are selected as uncertain variables by the
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Fig. 9 Earthquake ground motion records. a Target response spectrum, b Response acceleration spectra
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Table 5 Characteristics of the earthquake ground motion records

No. Earthquake Year Station Magnitude Fault type PGA(g)

77-FP San Fernando 1971 Pacoima Dam 6.61 RV 0.171

77-FN San Fernando 1971 Pacoima Dam 6.61 RV 0.125

126-FP Gazli, USSR 1976 Karakyr 6.80 RV 1.123

126-FN Gazli, USSR 1976 Karakyr 6.80 RV 1.226

139-FP Tabas, Iran 1978 Dayhook 7.35 RV 0.573

143-FP Tabas, Iran 1978 Tabas 7.35 RV 0.715

143-FN Tabas, Iran 1978 Tabas 7.35 RV 0.328

162-FP Imperial Valley-06 1979 Calexico Fire Station 6.53 SS 0.836

162-FN Imperial Valley-06 1979 Calexico Fire Station 6.53 SS 0.852

169-FP Imperial Valley-06 1979 Delta 6.53 SS 0.149

169-FN Imperial Valley-06 1979 Delta 6.53 SS 0.219

173-FP Imperial Valley-06 1979 El Centro Array#10 6.53 SS 0.275

173-FN Imperial Valley-06 1979 El Centro Array#10 6.53 SS 0.198

174-FP Imperial Valley-06 1979 El Centro Array #11 6.53 SS 0.238

174-FN Imperial Valley-06 1979 El Centro Array #11 6.53 SS 0.337

178-FP Imperial Valley-06 1979 El Centro Array #3 6.53 SS 0.370

178-FN Imperial Valley-06 1979 El Centro Array #3 6.53 SS 0.359

180-FP Imperial Valley-06 1979 El Centro Array #5 6.53 SS 0.484

180-FN Imperial Valley-06 1979 El Centro Array #5 6.53 SS 0.359

181-FP Imperial Valley-06 1979 El Centro Array #6 6.53 SS 0.519

181-FN Imperial Valley-06 1979 El Centro Array #6 6.53 SS 0.379

183-FN Imperial Valley-06 1979 El Centro Array #8 6.53 SS 0.329

184-FP Imperial Valley-06 1979 El Centro Differential Array 6.53 SS 0.435

184-FN Imperial Valley-06 1979 El Centro Differential Array 6.53 SS 0.586

185-FP Imperial Valley-06 1979 Holtville Post Office 6.53 SS 0.351

185-FN Imperial Valley-06 1979 Holtville Post Office 6.53 SS 0.478

728-FP Superstition Hills-
02

1987 Westmorland Fire Sta 6.54 SS 0.446

728-FN Superstition Hills-
02

1987 Westmorland Fire Sta 6.54 SS 0.300

801-FP Loma Prieta 1989 San Jose—Santa Teresa Hills 6.93 RV-OBL 0.151

801-FN Loma Prieta 1989 San Jose—Santa Teresa Hills 6.93 RV-OBL 0.461

803-FP Loma Prieta 1989 Saratoga—W Valley Coll. 6.93 RV-OBL 0.966

803-FN Loma Prieta 1989 Saratoga—W Valley Coll. 6.93 RV-OBL 0.559

879-FP Landers 1992 Lucerne 7.28 SS 0.501

879-FN Landers 1992 Lucerne 7.28 SS 0.324

949-FP Northridge-01 1994 ArletavNordhoff Fire Sta 6.69 RV 0.654

949-FN Northridge-01 1994 Arleta—Nordhoff Fire Sta 6.69 RV 0.491

1044-FP Northridge-01 1994 Newhall—Fire Sta 6.69 RV 0.569

1044-
FN

Northridge-01 1994 Newhall—Fire Sta 6.69 RV 1.001

1063-FP Northridge-01 1994 Rinaldi Receiving Sta 6.69 RV 0.825

1063-
FN

Northridge-01 1994 Rinaldi Receiving Sta 6.69 RV 0.475
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sensitivity analysis of structures (Fan et al. 2014). Moreover, x1 and x2 are described with

unit circle model while x3 is described with interval model since it is not correlated with

the other two variables. Detailed uncertainties are illustrated in Table 6 and 16 sample

points are shown in Table 7.

Based on above mentioned sample points, 16 response sample points are treated as

training set to conduct the regression analysis. For instance, when the El Centro ground

motion (Imperial Valley-06, 1979, PGA = 0.4 g) is selected, the regression coefficients

are listed in Table 8.

Quadratic polynomial response surface function of LRBs can be expressed as Eq. (19)

�Sðd IM ¼ 0:4 gj Þ ¼ 0:109376� 0:00322d1 � 0:0052d2 � 0:00775d3

� 0:00412d21 � 0:00322d1d2 � 0:00751d1d3

þ0:001345d22 þ 0:00913d2d3 þ 0:002761d23

ð19Þ

Table 6 Bound values of uncertain variables

Uncertain variables Minimum
value

Mean
value

Maximum
value

Deviation

Yield force of LRB500 Q (kN) x1 52.16 65.2 78.24 0.2

Post-yield stiffness of LRB500 K2 (kN/m) x2 1.1304 1.413 1.6956 0.2

Yield strength of steel bar fy (N/mm2) x3 252 300 348 0.16

Table 7 Calculation values of sample points of uncertain variables

Sample point Uncertain variables

x1 Q (kN) x2 K2 (kN/m) x3 fy (N/mm2)

1 0.4725 71.3614 -0.0109 1.560772 0.8768 411.0975

2 0.1237 66.81305 0.5229 1.487069 0.5604 357.664

3 -0.6316 56.96394 0.2621 1.181211 -0.3248 390.2903

4 0.1944 67.73498 -0.8202 1.176096 0.2157 406.3952

5 -0.4001 59.9827 -0.8383 1.569702 0.4825 329.5589

6 -0.7318 55.65733 0.5545 1.641991 -0.7904 332.3477

7 -0.5748 57.70461 0.8103 1.432076 -0.7442 383.252

8 0.7899 75.5003 0.0675 1.597142 0.0991 424.4137

9 -0.515 58.4844 0.6516 1.321494 0.781 413.3612

10 -0.8925 53.5618 -0.3238 1.296541 0.5979 405.5622

11 -0.1166 63.67954 -0.4121 1.507897 0.4687 413.2887

12 -0.8133 54.59457 0.3358 1.47147 0.5967 430.7518

13 -0.3853 60.17569 0.2069 1.427752 0.886 399.4474

14 -0.0879 64.05378 0.0522 1.542826 0.3674 332.8548

15 -0.7967 54.81103 0.4594 1.572047 -0.7358 330.229

16 -0.3358 60.82117 0.5628 1.293178 -0.7793 331.0922
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Similarly, quadratic polynomial response surface function of piers can be written as

Eq. (20)

�Sðd IM ¼ 0:4gj Þ ¼ 0:001726þ9:34� 10�5d1þ0:000135d2þ0:000183d3

þ 2:78� 10�5d21þ7:8� 10�5d1d2þ0:000167d1d3

� 4:8E� 10�5d22 � 0:00025d2d3 � 8:1� 10�5d23

ð20Þ

Using maximum relative deviation Q to assess and analyze the obtained response

surface (Duan and Zhao 2009). And Q is the maximum ratio of sample fitting value to

calculation value, Q can be defined as Eq. (21)

Q ¼ max
Yi �Mi

Yi

� 	

; i ¼ 1; . . .; n ð21Þ

where Yi represents observation values of response variables (i.e., calculation values), Mi

represents the fitting values of response variables.

The comparisons of absolute and relative deviation of displacement of lead rubber

bearings and curvature of bridge piers are presented in Table 9.

The maximum relative deviations are almost less than 5% in Table 8. Extreme values

can be found by conducting optimization search in the whole random variable space after

acquiring response surface function �S. It should be noticed that origin function values need

to be negative using function ‘fmincon’ in MATLAB to solve maximum values, while the

calculation results needs to be absolute due to function ‘fmincon’ means seeking for the

minimum value of functions. For example, the optimization results of isolated continuous

girder bridge subjected to El Centro earthquake exciation (Record number: 184-FN,

PGA = 0.4 g) are shown in Table 10.

From Table 10 it can be observed that the maximum value and minimum value of

response surface function contain the real response values. The response surface function

value is more inclusive and safer by the optimization search.

4.4 Fragility curves of bridge piers and LRBs

As described above, each earthquake ground motion records with different PGA can be

used to calculate Smax and Smin. In other words, N values of Smax and Smin will be obtained

under each different PGA. Then, fragility curves of bridge components can be derived

according to the frequency method. Equation (11) is used to solve the upper bound Pf,max

and lower bound Pf,min of fragility curves of LRBs and bridge piers subjected to earthquake

excitations (PGA = 0.2 g, 0.4 g, 0.8 g, 1.0 g). The fragility curves of Pf,max and Pf,min of

LRBs and bridge piers are illustrated in Figs. 10, 11, 12, 13, respectively.

Figure 14 shows the comparison diagrams of seismic fragility curves of the LRB under

four limit states, Pf,max and Pf,min represent the upper bound and lower bound failure

Table 8 Regression coefficients under El Centro ground motion (PGA = 0.4 g)

Regression
coefficients

a b1 b2 b3 c11 c12 c13 c22 c23 c33

LRBs (�10�3) 109.376 -3.22 -5.2 -7.75 -4.12 -3.22 -7.51 1.345 9.13 2.761

Piers (�10�5) 172.6 9.34 13.5 18.3 2.78 7.8 16.7 -4.8 -25 -8.1
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probability, and Pf (d = 0) denotes the failure probability without considering uncertain-

ties of structure parameters, respectively. It can be observed that Pf (d = 0) is located

between Pf,max and Pf,min under the same given PGA, and uncertainty of the LRB will make

a great effect on the fragility curves of the LRB.

Figure 15 shows the comparison diagrams of fragility curves of the bridge pier under

four limit states. The Pf,min fragility curves are very close to Pf (d = 0) curves, whereas the

Pf,max fragility curves are much greater than Pf (d = 0) curves. It is indicated that the lower

bound of uncertain variables are not sensitive to the fragility curves of bridge piers.

Figure 14, 15 show that Pf,max seismic fragility curves are totally greater than Pf,min, and

the failure probability of LRB are greater than that of bridge piers, especially when PGAs

range from 0.1 g to 0.4 g. Taking slight damage state of LRB as an example, as illustrated

in Fig. 14, the Pf,max fragility curve of LRB gets close to 0.8 (PGA = 0.4 g), while it starts

from PGA = 0.6 g in Pf,min fragility curve, and the fragility curve Pf (d = 0) without

considering uncertainties of structure parameters locates between Pf,max and Pf,min.

Table 9 Comparisons of absolute and relative deviation of bridge components

Displacement
of LRBs

Fitting
values

Absolute
deviation

Relative
deviation
(%)

Curvature of
bridge piers

Fitting
values

Absolute
deviation

Relative
deviation
(%)

0.1078700 0.10938 0.00151 1.396 0.0017537 0.00173 0.00003 1.558

0.1018160 0.09914 0.00268 2.629 0.0018773 0.00194 0.00007 -0.614

0.1054510 0.10503 0.00042 0.398 0.0018094 0.00182 0.00001 0.001

0.1157940 0.10952 0.00627 5.416 0.0015257 0.00168 0.00016 0.061

0.1144750 0.11081 0.00367 3.202 0.0015944 0.00168 0.00008 -0.010

0.1045710 0.10889 0.00432 4.133 0.0018032 0.00171 0.00009 -0.011

0.1038740 0.10787 0.00400 3.849 0.0018295 0.00171 0.00012 0.0216

0.1086590 0.10662 0.00204 1.881 0.0017062 0.00176 0.00006 0.007

0.1003230 0.10248 0.00215 2.147 0.0019091 0.00186 0.00005 0.074

0.1114540 0.11150 0.00005 0.043 0.0016350 0.00163 0.00001 0.001

0.1128470 0.10846 0.00439 3.890 0.0015852 0.00168 0.00009 -0.029

0.1056340 0.10754 0.00190 1.800 0.0018086 0.00176 0.00005 -0.011

0.1079510 0.11039 0.00244 2.258 0.0016874 0.00164 0.00005 0.015

0.1081970 0.10878 0.00058 0.540 0.0017152 0.00171 0.00000 0.002

0.1053620 0.10732 0.00196 1.856 0.0018367 0.00177 0.00007 0.126

0.1053860 0.10811 0.00273 2.588 0.0017465 0.00169 0.00005 0.011

0.1120150 0.10985 0.00217 1.935 0.0016514 0.00170 0.00005 0.009

Table 10 Real response values and optimization values of LRBs and bridge piers

Structural response Maximum value Smax (m) Minimum value Smin (m)

LRBs Bridge piers LRBs Bridge piers

Real response values 0.1157940 0.1115020 0.1003230 0.0991390

Optimization values 0.1366321 0.1366321 0.0895304 0.0895304
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Therefore, failure probability Pf would be underestimated when uncertainties of structure

parameters are ignored. In view of safety, Pf,max fragility curves of LRB and bridge piers

had better be advised to employ in designing new bridges and prioritization of retrofitting

strategies of existing bridges.
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Though the probabilistic distribution functions of LRBs are rarely mentioned in the

recent research, national standard for rubber bearings provides the bound values of these

parameters (such as allowable deviation of shear property of bearings type S-B is within

±20% (GB/T 20688.1-2007 2007). Therefore, the uncertainty of LRB design parameters

can be properly taken account into using the convex model approach, whereas that is not

considered in cloud method. Figures 16 and 17 present the fragility of the lead rubber

bearing(LRB) used in the bridge system under four limit states. Figure 16 displays that the

failure probability Pf,max using convex model is greater than that using cloud method for

the given limit state. However, the failure probability Pf,min using convex model is less than

that using cloud method for the given limit state in Fig. 17. It is indicated that the fragility

curves of LRB using cloud method is distributed between Pf,min and Pf,max. Consequently, if

the the uncertainty of LRB design parameters is not properly considered, the seismic

fragility of LRB will be underestimated. The median value of PGA, which corresponds to

failure probability Pf = 50%, is determined for the LRB at each damage level. That

comparison is presented in Table 11. From this table it can be observed that the maximum

percent difference of median values of PGA is -25.00% between the cloud method and

convex model-Pf,max at the collapse level, while the minimum percent difference is 9.84%

between the could method and convex model-Pf,min at the extensive level.

In view of structural safety in designing new bridges and prioritization of retrofitting

strategies of old bridges, the failure probability Pf,max had better be served as the seismic
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fragility curves, which are referred as robust seismic fragility curves. In addition, similar

trends can also be observed in the seismic fragility curves for the bridge pier in Figs. 18

and 19.

The numerical results as depicted in Figs. 16, 17, 18 and 19 illustrate the relative

likelihood of reaching/exceeding certain limit state at a given PGA input for bridge

components (isolation bearing and bridge pier), which indicates that the damage of LRB is

prior to that of the bridge pier. Because of the energy dissipation of isolation bearings, the

earthquake action of bridge piers is greatly decreased and seismic safety of bridge piers are

assured.

4.5 Seismic fragility curve of bridge system

The seismic fragility curve of a bridge system can be subsequently obtained by the seismic

fragility curves of bridge components (bridge piers and isolation bearings). This can be

carried out by the Monte Carlo simulation, but this method is extremely time-consuming.
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Therefore, the first order reliability theory (Eq. 12) is adopted to construct the seismic

fragility curve of bridge system. In view of the structural seismic safety, the upper bound of

the fragility curve of the bridge system is assigned.

Table 11 Median value of PGA for LRB with respect to Pf = 50%

Damage state Slight Moderate Extensive Collapse

Cloud method 0.36 g 0.49 g 0.61 g 0.72 g

Convex model-Pf,max (percent difference) 0.31 g
(-13.89%)

0.39 g
(-20.41%)

0.50 g
(-18.03%)

0.54 g
(-25.00%)

Convex model-Pf,min (percent difference) 0.44 g
(22.22%)

0.58 g
(18.37%)

0.67 g
(9.84%)

0.87 g
(20.83%)

The percent difference of median value of PGA is defined as the ration: (convex model—cloud meth-
od)/cloud method. Values in parentheses denote the percent difference of median valued of PGA
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The fragility curves of the LRB and bridge pier are obtained using the convex model

approach (according to the upper bound Pf,max), and then the fragility curves of the bridge

system can be constructed using the first order reliability theory. Figure 20a–d present the

robust seismic fragility curves of the bridge system, LRB and bridge pier under four limit

states, respectively. It can be observed that the robust seismic fragility curve of the bridge

system is closer to the robust seismic fragility curve of LRB at each limit state, whereas it

is much greater than fragility curve of the bridge pier. The results indicate that the seismic

fragility of the bridge system is largely dictated by the fragility of LRB.

4.6 Probabilistic seismic performance evaluation of the bridge system

The seismic fragility curves of the bridge system have been derived under four limit states

using cloud method and convex model approach, respectively. Exceeding probability

curves of bridge system in 50 years can be calculated to conduct the probabilistic seismic

performance evaluation of the bridge using structural seismic risk estimate method.

According to Chinese Code: Guidelines for seismic design of highway bridge (JTG/T

B02-01-2008 2008), the two seismic fortification criterion (Table 12) and two stages

design are adopted for the seismic design of the isolated continuous girder. Through the

calculation of the bridge, k0 ¼ 2:14563, k ¼ 0:0000254.
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Under the earthquake action E1 and E2, the exceeding probability curves of the iso-

lation bearing and bridge pier in 50 years are calculated using the cloud method and

convex model, respectively (Figs. 21, 22). it can be observed that the exceeding probability

of LRB is 4.49% (convex model) and 2.05% (cloud method), while that of the bridge pier

is 1.21% (convex model) and 0.86% (cloud method) when the bridge is subjected to the

earthquake action E1. Under the earthquake action E2, the exceeding probability of LRB is

1.56% (convex model) and 0.67% (cloud method), while that of bridge pier is 0.39%

(convex model) and 0.04% (cloud method). It is indicated that exceeding probability of

bridge components using the convex model are greater than that using the cloud method. If

the uncertainty of LRB design parameters can not be properly considered, the exceeding

probability of isolation bearing will be underestimated. Therefore, It is suggested that

calculation results based on the convex model are served as the important reference to the

probabilistic seismic evaluation of bridge components in view of the structural seismic

safety.

Under the earthquake action E1 and E2, the exceeding probabilities of the bridge

components and bridge system in 50 years are presented in Table 13 using the convex

model approach, respectively.

Table 12 Seismic fortification criterion of highway bridge

Performance
level

Earthquake action E1 Earthquake action E2

Damage state
description

Slight damage of bridge components and system
will not happen, which is defined as ‘‘intact
state’’. The recurrence interval of earthquake is
475 years

Extensive damage or collapse of
bridge components and system will
not happen, which is defined as
‘‘moderate state’’. The recurrence
interval of earthquake is 2000 years

Exceeding
probability in
50 years

P50 = 10% P50 = 2.47%
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Fig. 21 Exceeding probability
of LRB
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From Table 12 it can be observed that seismic performance of the isolated continuous

girder bridge fully meets the demand of two seismic fortification criterion (JTG/T B02-01-

2008 2008). The exceeding probability of the bridge system is 5.65% when the bridge is

subjected to the earthquake action E1. It is shown that the bridge system possess more

seismic safety capacity. However, The exceeding probability of the bridge system is 1.94%

under the earthquake action E2, and that is closer to 2.47%. Thus, seismic safety capacity

of the bridge system is less. In addition, the exceeding probability of LRB is greater than

that of the bridge pier under the same seismic fortification criterion. It is indicated that the

damage of LRB is prior to that of bridge piers. The earthquake action of the bridge pier is

greatly decreased through the energy dissipation of LRB. Finally, the bridge piers is

preserved.

5 Conclusion

The seismic fragility curves of a five-span isolated continuous girder bridge with lead

rubber bearings are derived using convex model approach and cloud method, respectively.

The uncertainty of structure parameters is taken into account. The fragility curves of the

bridge components and the bridge system can be potentially used to evaluate the proba-

bilistic seismic performance of the bridge, retrofitting prioritization and post-earthquake

rehabilitation decision making. The concluding remarks are summarized as follows:
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Fig. 22 Exceeding probability
of bridge pier

Table 13 Exceeding probabilities of the bridge components and bridge system

Performance level LRB Bridge pier Bridge system

E1 (P50 = 10%) P50 d[ 0:075mð Þ
¼ 4:49%

P50 u[ 0:0034ð Þ
¼ 1:21%

P50 d[ 0:075m [ u[ 0:0034ð Þ
¼ 5:65%

E2 (P50 = 2.47%) P50 d[ 0:150mð Þ
¼ 1:56%

P50 u[ 0:0136ð Þ
¼ 0:39%

P50 d[ 0:150m [ u[ 0:0136ð Þ
¼ 1:94%

d and / denote the shear deformation of LRB and curvature of bridge pier, respectively
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• There are only a few studies on the probability distribution function of mechanical

parameters of rubber bearings. However, national standard for rubber bearings (GB/T

20688.1-2007 2007) provides the bound values of design parameters. Convex model

approach can be successfully introduced into the seismic fragility analysis of isolated

bridges, and it is feasible and reliable for no need to assume the probability distribution

of rubber bearing parameters.

• The numerical results indicate that the failure probabilities Pf of the bridge components

and the bridge system using cloud method are distributed between Pf,min and Pf,max. If

the the uncertainty of structural parameters is not properly considered, the seismic

fragility of the bridge components and the bridge system will be underestimated. In

view of structural safety in designing new bridges and prioritization of retrofitting

strategies of old bridges, the failure probability Pf,max obtained from the convex model

approach had better be served as the seismic fragility curves.

• Through the comparisons of the relative likelihood of reaching/exceeding certain limit

state at a given PGA input for the bridge components, the damage of LRB is prior to

that of the bridge pier. Because of the energy dissipation of isolation bearings, the

earthquake action of bridge piers is greatly decreased and seismic safety of bridge piers

are assured.

• The convex model-based robust seismic fragility curves of the bridge can be potentially

used to the probabilistic seismic performance. The calculation results show that seismic

performance of the isolated continuous girder bridge fully meets the demand of two

seismic fortification criterion in 50 years. (Chinese Code: JTG/T B02-01-2008).

In summary, convex model approach can provide a new way to derive robust fragility

curves of isolated bridges when double uncertainties of structural parameters and earth-

quake ground motions are taken into account. Future study should include the effect of

abutments and the foundation on the seismic fragility analysis.
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