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Abstract This paper summarises 123 existing quasi-static shear–compression tests on

stone masonry walls and evaluates the results to provide the input required for the dis-

placement-based assessment of stone masonry buildings. Based on the collected data,

existing criteria for estimating lateral strength and stiffness of stone masonry walls are

reviewed and improvements proposed. The drift capacity of stone masonry walls is

evaluated at six different limit states that characterise the response from the onset of

cracking to the collapse of the wall. To provide input data for probabilistic assessments of

stone masonry buildings, not only median values but also the corresponding coefficients of

variation are determined. In addition, analytical expressions that estimate the ultimate drift

capacity either as a function of masonry typology and failure mode or as a function of

masonry typology, shear span and axial load ratio are proposed. The paper provides also

estimates of the uncertainty related to the natural variability of stone masonry by analysing

repeated tests and investigates the effect of mortar injections and the effect of the loading

history (monotonic vs cyclic) on stiffness, strength and drift capacities. The data set is

made publicly available.
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1 Introduction

Many buildings that are part of the European cultural heritage are stone masonry buildings.

Furthermore, stone masonry construction is still used today in several developing coun-

tries. Due to the low tensile strength of the mortar and the often poor interlock between

stones, stone masonry buildings are among the most vulnerable buildings when subjected

to seismic loading (Grünthal 1998). Buildings with stone masonry walls can fail due to in-

plane loading, out-of-plane loading or a combination of the two failure modes (Fig. 1).

Out-of-plane failure modes are promoted by the large mass of stone masonry walls, the

small restraint provided by timber floors and the poor interlock between the stones

(D’Ayala and Speranza 2003). They are the most frequent cause for the partial or complete

collapse of existing stone masonry buildings during earthquakes and their assessment is

therefore of high importance (e.g. Costa et al. 2015). If out-of-plane failures are prevented

by appropriate structural details such as anchors and ties, the structure can develop a global

response that is governed by the in-plane behaviour of the walls and the diaphragm

stiffness (Penna 2015). In-plane failure modes include the failure of piers and spandrels.

While the failure of spandrels causes local failures and a global decrease in stiffness and

strength, the failure of piers can lead to the collapse of the building (Beyer and Mangalathu

2012). The deformation capacity of the piers is therefore essential when assessing the

ultimate limit state of stone masonry buildings.

Current codes do not distinguish between different masonry typologies when assessing

the drift capacity (for a review of drift capacity models in codes, see Petry and Beyer

2014a). Eurocode 8, Part 3 (EC8-3, CEN 2005a) assigns the drift capacity based on the

failure mode (shear vs flexure) and the shear span ratio H0/L where H0 is the height of zero

moment and L the wall length:

Shear failure: dSD ¼ 0:4% ð1aÞ

Flexural failure: dSD ¼ 0:8% � H0

L
ð1bÞ

Although the current version of EC8-3 is limited to concrete and brick masonry (CEN

2005a), due to the lack of alternative values for other masonry typologies, in engineering

practice these values are often also applied to stone masonry. Equation (1) gives the drift

capacities for the limit state ‘‘Significant Damage’’ (SD). To obtain the drift capacity at

20% strength loss (defined as near collapse limit state, NC), the drift capacities of Eq. (1a)

Fig. 1 Stone masonry buildings after the 2009 L’Aquila earthquake that failed due to an out-of-plane
mechanism (a photo: A. Dazio) and an in-plane mechanisms (b photo: A. Penna)
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are multiplied by a factor 4/3 (CEN 2005a). Recent works investigated the correlation of

these drift capacity models with tests on clay block masonry walls (Pfyl-Lang et al. 2011;

Petry and Beyer 2014a). However, the proposed models cannot be applied directly to stone

masonry since stone masonry differs from block masonry with regard to the material

properties, the shape of the stones, the fabric of the masonry and the number of leaves.

Kržan et al. (2015) provide on the basis of three test series minimum and maximum values

of drift capacity at the SD and NC limit state but do not differentiate between different

types of stone masonry.

The objective of this paper is to provide the input data for the wall limit states that is

required for the probabilistic displacement-based assessment of stone masonry buildings.

While the framework of probabilistic assessment procedures are established (e.g. Dolsek

2009; Vamvatsikos and Fragiadakis 2010), their application to stone masonry buildings is

at the moment limited by the lack of information on the distribution of drift capacities. To

provide this information, this paper evaluates median values and coefficients of variations

of drifts for the following six element limit states:

• Drift at the onset of cracking dcr.

• Drift at yield dy.
• Drift limit ‘‘Significant Damage’’, which is defined as dSD = min(3dcr, dmax).
• Drift at maximum force dmax.

• Drift at ultimate LS (20% strength drop) du.

• Drift at collapse (50% strength drop) dc.

The drift at the onset of cracking is the drift for which first cracks were reported. The

yield drift results from the bilinear approximation of the force–displacement response (see

Sect. 2.1). The drift at maximum force dmax is relevant as it marks the onset of damage

concentration in few cracks (Petry and Beyer 2014b). The definition of the drift limit state

‘‘Significant Damage’’ is a slightly modified criterion from Tomaževič (2007). For the data

set analysed here, the drift limit SD is governed in approximately half of the cases by the

limit 3dcr and in the other half by dmax. The ultimate drift du is defined as the drift at which

the strength has dropped to 80% of the peak strength. This is a common definition of the

ultimate deformation capacity, which is used for many different structural elements and

materials. The definition of collapse, on the other hand, is more subjective. Ideally, it

would be related to the loss of axial load bearing capacity. Since this state was not attained

by most tests, a definition related to the loss in lateral strength was chosen. It is expected

that the drift at axial load bearing collapse is only marginally larger given that the strength

loss is rapid and shear and axial failures strongly coupled.

To determine the probability distributions of these drift capacities and to investigate on

which parameters the drift capacities depend, this paper collects the results of 123 in-situ and

laboratory shear–compression tests on stone masonry walls (Sect. 2) and evaluates for theses

the stiffness, the strength and drift capacities (Sects. 6–8). The analysis of the test data

showed—as it had also been observed for clay block masonry walls (Petry and Beyer 2014a)—

that monotonic tests lead to significantly larger drift capacities than cyclic tests while the load

history has only little influence on stiffness and strength (Sect. 4). Since drift capacities are

typically used for seismic assessments and therefore cyclic loads, monotonic tests are disre-

garded when calculating drift capacities (Sect. 8). All tests are quasi-static tests, i.e., the effect

of strain rates on the response of stone masonry walls are beyond the scope of this study.

The effect of the variability of stone masonry properties on the seismic assessment of

stone masonry buildings can be analysed by means of Monte-Carlo simulations, which

assign each building model a different drift capacity for the stone masonry walls (Rota
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et al. 2014). However, also the walls within a building have different drift capacities due to

the natural variability of the stone masonry. To evaluate this aleatoric uncertainty, tests of

identical wall configurations are analysed with regard to the variability of stiffness,

strength and deformation capacity (Sect. 3). Seismic assessments often also investigate the

effect of strengthening measures on the performance of a building. The database contains

few pairs of strengthened and unstrengthened walls. The strengthening measures aim at

improving the integrity of the stone masonry walls by mortar injections. Section 5 reviews

pairs of unstrengthened and strengthened wall tests and computes ratios for stiffness,

strength and drift capacities of strengthened to unstrengthened walls. The paper closes with

a discussion of the obtained results. Based on these, future research needs are outlined that

aim at improving the understanding of the various parameters that influence the in-plane

properties of stone masonry walls.

2 Database of tests on stone masonry walls

The database contains 123 shear-compression tests on stone masonry walls from 16 test

campaigns (Table 1). Collected were all shear–compression tests on stone masonry walls

that were sufficiently documented in the literature. The database contains both laboratory

and in-situ tests. Tests other than shear–compression tests, such as for example diagonal

compression tests, were not included. All typologies of stone masonry were considered.

However, test units that featured unrepresentatively few stones along the wall length were

excluded (Devaux 2008). Furthermore, panels strengthened with intrusive interventions

that change consistently their structural behaviour (for example, application of fibre

reinforced polymers or jacketing) were not included in the database. For this reason, only

tests on walls that were strengthened by injections with lime grouts were considered.

The database can be downloaded from the web repository 10.5281/zenodo.812146.1 It

comprises:

• A table with:

• characteristic data of the test units (test campaign, type of test, geometry and

masonry typology of test units, material properties, Masonry Quality Index as

defined in Sect. 2.2, failure mode);

• the bilinear approximations of the force–displacement response. The procedure for

determining the bilinear approximation is outlined in Sect. 2.1;

• drift capacities for six different limit states. The limit states were defined in Sect. 1.

• Cyclic force–displacement curves and envelopes are provided as CSV files; these were

available for 110 tests. The data was digitised from the test reports using vector

graphics software. For one test campaign (Magenes et al. 2010), experimental data

were directly provided by the authors.

The masonry typologies of the test units in the database were classified according to the

Italian code (MIT 2009), which distinguishes between five types of stone masonry:

1 This database will be part of the European Masonry Database, which the authors are currently establishing
in collaboration with Matija Gams (University of Ljubljana).
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• Class A: irregular stone masonry, with pebbles, erratic and irregular stone units;

• Class B: uncut stone masonry, with external leaves of limited thickness and infill core

(three-leaf stone masonry).

• Class C: cut stone masonry with good bond.

• Class D: soft stone regular masonry (built with tuff or sandstone blocks).

• Class E: ashlar masonry, built with sufficiently resistant blocks (i.e. blocks with higher

resistance than those of class D). This class was further subdivided into regular squared

block masonry with mortar joints (E) and dry-joint ashlar masonry (E1).

Typical cross-sections of these masonry typologies are shown in Fig. 2.

2.1 Bilinear approximation of the force–displacement curve

In shear–compression tests, the axial force is kept constant while the applied horizontal

displacement is varied. The loading protocols for the horizontal displacement differed

between the various campaigns and included monotonic tests and reversed cyclic tests. For

the monotonic tests (35 tests, for 22 of which the load–displacement curve is available) no

processing was required to obtain the envelope curve. For the reversed cyclic tests with one

or three repeated cycles (24 and 57 tests, respectively), the envelope curves were derived

from the digitised force–displacement hysteretic curves by connecting the points at dis-

placement peaks. When more than one cycle was imposed per displacement amplitude, the

first cycle was considered for constructing the envelope, in order to make results from

different loading protocols as comparable as possible. This approach also accounts for the

Table 1 Database with shear–compression tests on stone masonry walls: list of test campaigns

Series References No. of
units

Masonry
typology

Test type Lab./In-
situ

S1 Vasconcelos (2005), Vasconcelos and
Lourenço (2009)

28 E1, C Cyclic,
monotonic

Laboratory

S2 Silva et al. (2014) 16 B Cyclic Laboratory

S3 Mazzon (2010) 6 B Cyclic Laboratory

S4 Magenes et al. (2010) 5 C Cyclic Laboratory

S5 Almeida et al. (2012) 2 E Cyclic Laboratory

S6 Borri et al. (2001) 3 A Monotonic In-situ

S7 Borri et al. (2012) 10 A Monotonic In-situ

S8 Corradi et al. (2014) 2 A Monotonic In-situ

S9 Marcari et al. (2007) 4 D Monotonic Laboratory

S10 Costa et al. (2011) 1 A Cyclic In-situ

S11 Pinho et al. (2012) 6 A Cyclic,
monotonic

Laboratory

S12 Lourenço et al. (2005) 7 E1 Monotonic Laboratory

S13 Almeida et al. (2014) 12 E1, C Cyclic Laboratory

S14 Kržan et al. (2015) 14 E Cyclic Laboratory

S15 Silva et al. (2012) 1 C Cyclic Laboratory

S16 Faella et al. (1992) 6 D Cyclic Laboratory

Total 123
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finding that masonry piers that are part of a building, which is subjected to a real earth-

quake, are not likely to be subjected to more than one or two cycles at the highest drift

demand (Mergos and Beyer 2014).

The bilinear approximation of the envelope curves was computed as described in Fig. 3.

First, the maximum recorded strength Vmax was identified. The effective stiffness was then

defined as the secant stiffness at 70% Vmax. The ultimate drift du was determined as the

drift at which the strength had dropped to 80% Vmax. If such a large drop was not attained,

the largest drift that was reached during the test was taken as du. The ultimate strength Vu

was defined as the strength that yields for the bilinear approximation the same area below

the curve as the actual envelope up to du. For cyclic tests, bilinear approximations were

computed for the envelopes in the positive and negative loading direction. The final

envelope curve was derived as follows: the final effective stiffness and ultimate strength

correspond to the average of the values for the two directions. For the ultimate drift,

however, the minimum value of the ultimate drift in the positive and negative direction was

taken. When the force drop was only attained in one direction, the corresponding ultimate

drift was considered for the final envelope. This procedure is similar to the one adopted by

Fig. 2 Stone masonry typologies: sketches of typical textures and cross-sections

(a) (b)

Fig. 3 Example of a force–displacement response curve (a) and definition of effective stiffness, strength
and drift capacity based on the envelope of the response (b)
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Frumento et al. (2009); unlike by Frumento et al., the envelope of the first cycles was used

and not the average of envelopes corresponding to repeated cycles.

2.2 Distribution of properties of test units contained within the database

The collected experimental data spans a wide range of test unit configurations (Fig. 4).

Most tests were laboratory tests (111 test units, 90%); in addition, the database contains

also 12 in-situ tests on walls that were isolated in an existing building. Of the laboratory

tests, 87 (78%) were cyclic tests and 24 (22%) monotonic tests while 11 out of the 12 in-

situ tests were monotonic tests and only one was a cyclic test. For nine in-situ tests and four

laboratory tests only the peak force but not the complete force–displacement curve was

reported (in total 13 tests, i.e., 11%). These tests could therefore only be used for the

strength model but not when evaluating the stiffness and deformation capacity of the walls.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4 Database of shear–compression tests on stone masonry walls: distribution with regard to various
parameters. The colours refer to the masonry typology (see plot a). For plots h and i, the size of the marker
relates to the number of test units with the corresponding parameter combination
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Figure 4a shows the number of tests that is available for each masonry typology. It

further shows the portion of monotonic and cyclic tests. The colour code introduced in this

figure with regard to the masonry typology is employed throughout the article. A large

majority of the tests were carried out on relatively small test units with heights between 0.9

and 1.25 m and only very few tests on storey-high units (Fig. 4b). The shear span ratio H0/

L varies between 0.5 and 2.0 (Fig. 4c). Most of the masonry typologies that were tested had

a compressive strength less than 5 MPa while few tests of dry stone masonry (E1) had a

strength larger than 50 MPa (Fig. 4d); note that the latter value was obtained from tests on

masonry prisms rather than masonry walls or wallettes. The compressive strength was in

53% of the tests determined from compression tests on walls or wallettes, in 28% of the

tests from prism tests; in 7% of the tests it was assumed based on code provisions (MIT

2009). In 12% of the tests, there was no information on the compression strength available

and code guidelines could not be applied because a photo of the test unit was missing. The

mortar strength was for all test units, for which this information was available, smaller than

6 MPa (Fig. 4e). The axial stress ratio varies between 0 and 0.6 (Fig. 4f).

To account for the individual mechanical characteristics of the stone masonry, Binda

and co-workers developed a procedure for assessing the quality of the stone masonry and

its compliance to the ‘‘rules of the art’’, which is based on a visual inspection and the

evaluation of local geometric parameters (Binda et al. 2009; Cardani and Binda 2015).

Based on these characteristics, Borri and co-workers developed a quantitative quality index

(Borri and De Maria 2009; Borri et al. 2015), named Masonry Quality Index (MQI), which

has been correlated to the masonry strength (Borri et al. 2011). It accounts for the texture of

the masonry by considering the following criteria: (1) mechanical properties and conser-

vation state of the stone units, (2) the dimensions of the stones, (3) the shape of the stones,

(4) the characteristics of the wall section, including the connection of leaves, (5) the

horizontality of the bed-joints, (6) the staggering of the vertical joints, (7) the quality and

conservation of the mortar joints. These characteristics are evaluated largely qualitatively,

according to criteria specified in Borri et al. (2015). One parameter that can be determined

quantitatively is the interlock of the units, both in the in-plane and out-of-plane directions,

which can be described using the concept of the length of the minimum trace (LMT), as

proposed by Doglioni et al. (2009). It is defined as the minimum length of a line passing

only through mortar joints, between two points that are vertically aligned and at a distance

hv, generally taken equal to 100 cm:

LMT ¼ Min: trace through joints

hv
ð2Þ

For the test units in the database, the length of the minimum trace has been determined

from photos and is tabulated in the database. The MQI assigns to each criterion a value

dependent on whether the criterion is satisfied, partially satisfied or not satisfied. The

resulting MQI value varies between 0 and 10. The method differentiates between the

behaviour under vertical loads, out-of-plane loading and in-plane loading by assigning

different coefficients to the different parameters. The MQI is evaluated for all walls that are

included in the database. Figure 4g shows the distribution of the masonry quality index for

in-plane loading that are obtained for the tests in the database. Masonry walls of very good

quality are somewhat overrepresented in the database due to the large number of tests on

walls that belong to typology E or E1. For masonry strengths smaller than 10 MPa, the

MQI correlates well with the masonry compressive strength (Fig. 4g; note that this cor-

relation does not improve if the vertical MQI is plotted). Figure 4h shows the axial load
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ratio against the MQI for in-plane loading. These two quantities are not directly related.

The figure shows, however, that the test designs resulted in a rather strong correlation

between these two variables, i.e., the higher the MQI, the smaller was in general the

applied axial load ratio. The dataset constitutes itself out of 16 different test programs that

were carried out in different laboratories. As a result, the parameters were not varied in a

systematic manner, which will need to be taken into account when interpreting any trends

in the data. Since all walls were subjected to relatively small axial stresses in a narrow

range (r0 = 0–2 MPa), the axial stress ratio r0/fc essentially depends on fc and therefore

r0/fc varies strongly with MQI. It will therefore be difficult to distinguish between the

influence of MQI and the influence of the axial stress ratio r0/fc.

2.3 Quality control of measured peak strength

The 16 test series were performed by various research groups using different test setups,

which might lead to slightly different boundary conditions. As a quality check of the

applied boundary conditions, the peak strength obtained in the tests was compared to the

theoretical rocking strength of an infinitely strong rigid body with the same dimensions of

the masonry wall:

Vrock ¼
NL

2H0

ð3Þ

where N is the axial force, L the wall length and H0 the shear span. In order to compute an

upper limit of the rocking strength, N is taken as the sum of the applied axial load r0Lt and

an estimate of the self-weight of the test unit. The latter is computed assuming a specific

weight of 20 kN/m3 for all test units. Figure 5a shows for all test units the ratio of the

ultimate strength Vu, which was derived from the bilinearisation of the envelope curves, to

the rocking strength. Theoretically, the peak strength Vpeak of masonry walls let alone the

ultimate strength Vu should not be larger than Vrock. To allow for small imperfections in the

applied boundary conditions, all tests with ultimate strengths less than 1.10 times Vrock are

considered when evaluating stiffness, strength and drifts in the following sections. Eight of

the 123 tests do not pass this quality check and are in the following disregarded. Of the 115

retained tests, about half of the test units failed in flexure and half in shear or a hybrid

mode. The distribution of the failure modes with regard to the masonry typologies are

shown in Fig. 5b. For masonry typologies A and D only shear failures were observed while

(a) (b) (c)

Fig. 5 Quality check of shear–compression tests on stone masonry walls: ratio of maximum shear strength
to rocking strength (a), distribution of all tests that passed the quality check (b), distribution of all tests that
passed the quality check and for which the force–displacement curve is available
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for the other four typologies at least two out of the three failure modes were observed.

Figure 5c shows the tests that passed the quality check and for which the force–dis-

placement curve is available.

3 Aleatoric variability of stiffness, strength and drift limits

Stone masonry is made of the constituents stone and—unless it is dry masonry—mortar.

The properties of both constituents are subject to a certain natural variability and so is the

fabric of stones and mortar that is created by the mason. The properties of stone masonry

walls are therefore associated with an aleatoric uncertainty, which will be estimated in the

following. The data set contains 19 groups of replicate tests, i.e., groups of tests in a test

series that have been conducted with the same set of parameters (Table 2). This section

evaluates for each of these groups of replicate tests the variability of stiffness, strength and

deformation capacity. All but one of these groups are laboratory tests; for in-situ tests only

one group of replicates was available. The number of tests per group varies between 2 and

4. These group sizes are of course rather small for computing coefficients of variations.

The reported values should therefore be taken as a first estimate of the scatter among

replicate tests until results of replicate tests on larger groups are available.

Vasconcelos and Lourenço (2009) tested nine groups of replicates. Figure 6 shows the

force–displacement curves of three groups of replicates from three different masonry

typologies (C, E, E1). The plots show the positive and negative envelopes of each tests,

which confirm that stiffness, strength and deformation capacity vary between the replicate

tests. In the following, all 19 groups are analysed. For the tests shown in Fig. 6, the

strength in the negative direction tends to be slightly larger than the strength in the positive

direction indicating that there might have been a slight asymmetry in the test setup. This

highlights that even replicate tests might not yield an estimate of the aleatoric variability

that is related to the variability of the material properties and the fabric alone but that some

variability might also be related to imprecisions of the test setup.

Table 2 summarises the coefficients of variation (CoVs) for all groups of replicates with

regard to stiffness, strength and five deformation limits (dcr, dy, dmax, du, dc). Figures 7 and

8 visualise the distributions of these CoVs by grouping the values according to failure

mode and masonry typology. Only one group of replicate tests was carried out as in-situ

tests. The obtained values are larger than those obtained from most laboratory tests but not

larger than the maximum values obtained from laboratory tests and therefore laboratory

and in-situ tests will be treated together. The CoVs of each group of replicates are plotted

as a dot. In addition, for each bin the lognormal distribution fitted to these CoVs is plotted.

The scatter of the CoVs is rather large but some trends can be identified. Figure 7a show

the CoVs of stiffness and strength as a function of the failure mode. The CoV of the

strength is slightly larger for walls that fail in shear than for walls that fail in flexure. For

the stiffness, however, both failure types lead to similar CoVs.

The CoVs obtained for the drift limits dmax and du (Fig. 8) tend to be larger than CoVs

for stiffness and strength while dcr leads to a similar CoV. All but two of the replicate

groups stem from masonry typologies that have relatively regularly shaped stones and a

regular bond pattern (C, D, E, E1). For typologies A and B, the stone pattern is more

irregular and therefore one might expect a larger aleatoric variability. The data shows,

however, that the masonry typology does not seem to have a significant influence on the

aleatoric variability of the drift values. The data base for the irregular masonry typologies
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A and B is very scarce (A: two groups of replicate tests, B: none) and therefore the

influence of the masonry typology on the aleatoric variability cannot be conclusively

answered with the available data. If estimates of the aleatoric variability of stiffness,

strength and deformation limits are sought for the computation of fragility curves of a class

of buildings or the probabilistic seismic assessment of a specific building, it is suggested to

use the values given in Table 3. These values are based on the mean values of the CoVs

and rounded to the next 0.10. Note also that no test data is available for characterising the

(a) (b) (c)

Fig. 6 Force–displacement envelopes of repeated tests by Vasconcelos and Lourenço (2009): walls of
masonry typology C (a), E (b) and E1 (c)

(a) (b)

Fig. 7 Coefficients of variation of replicate tests for effective stiffness Keff ultimate strength Vu as a
function of the failure mode (a) and the masonry typology (b)

(a) (b)

Fig. 8 Coefficients of variation of replicate tests for the drift at the onset of cracking dcr, the drift at
maximum strength dmax and the ultimate drift du as a function of the failure mode (a) and the masonry
typology (b)
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aleatoric variability of the drift at collapse since none of the tests was continued up to a

50% drop in strength.

4 Effect of load history on stiffness, strength and drift limits

Among the 115 tests that passed the quality check there is only one pair of monotonic and

cyclic tests (M13 and M17 by Pinho et al. 2012). Figure 9a shows the force–displacement

relationships of these two tests. It shows that test units subjected to cyclic loads tend to be

stiffer and exhibit a smaller drift capacity—trends that were also confirmed by tests on clay

block masonry walls, for which three pairs of monotonic and cyclic tests are reported in the

literature (Petry and Beyer 2014a). For clay block masonry walls, however, the strength of

walls subjected to cyclic loads was similar to that subjected to monotonic loading while for

the stone masonry pair the cyclic test led to a significantly larger strength than the

monotonic test. At present, a systematic study on the influence of the loading history on

unreinforced masonry wall response is missing. Not only a comparison of monotonic and

cyclic response would be of interest, but also the influence of the number of cycles as there

is evidence that most quasi-static cyclic tests on masonry walls were carried out with more

cycles than what would be representative of moderate or even high seismicity (Beyer et al.

2014; Mergos and Beyer 2014).

5 Effect of strengthening interventions on stiffness, strength and drift
limits

The dataset comprises 19 test units that were strengthened. For four of these, a non-

strengthened counterpart was tested applying the same axial load and shear span (Silva

et al. 2012; Silva 2012). All of these four test units were strengthened by injecting a

Table 3 Recommended values for coefficient of variations for effective stiffness, strength and drift limits

Masonry typology and failure
mode

CoV
Keff

CoV
Vu

CoV
dcr

CoV
dy

CoV
dSD

CoV
dmax

CoV
du

CoV
dc

A–E1 0.20 0.10 0.10 0.20 0.30 0.30 0.30 –

(a) (b) (c)

Fig. 9 Comparison of force–displacement relationship of monotonic and cyclic tests (a) and strengthened
and unstrengthened test units (b, c)
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hydraulic lime-based grout into the voids of the wall section, which was a three-leaf wall

with rubble core. The strengthening interventions were performed on the undamaged test

units. Table 4 shows the ratios of properties of the strengthened to the unstrengthened test

units. The number of pairs is too small to draw any statistically significant conclusions and

the results are also expected to vary significantly with the retrofit intervention. The

available results show that retrofitting through grout injections has the largest impact on the

deformation capacity and it is particularly significant if the failure mode changes from

shear to flexure. Note that while the applied axial load was the same for each pair, the axial

load ratio was smaller for the strengthened specimens since their compressive strength was

larger.

6 Stiffness of stone masonry walls

Force-based and displacement-based assessment procedures require as input an estimate of

the horizontal stiffness of structural walls. The stiffness is needed to compute the dynamic

properties of a building as well as its force–displacement response. The initial uncracked

stiffness is only of interest in engineering practice if nonlinear structural models can

account explicitly for the stiffness degradation after cracking of the element. In all other

cases, i.e. for simplified structural models (bilinear models for each structural element) or

force-based assessment procedures, the effective stiffness is of interest. However, in the

absence of better models, current codes suggest to estimate the effective stiffness as a ratio

of the elastic uncracked stiffness (e.g. CEN 2005b) which, therefore, should be determined

with sufficient accuracy.

Table 4 Pairs of strengthened and unstrengthened test units: ratio of properties of strengthened to
unstrengthened test unit

Reference Labels of
unstrengthened
and
strengthened
test units

Typ. Failure mode
of
unstrengthened
and
strengthened
test units

Intervention Ratio of properties of
strengthened to
unstrengthened test unit

Unstr. Str. Unstr. Str. fc Keff Vu dcr dmax du

Silva (2012) C1 C5 B Shear Flex. Injected 1.7 0.8 1.5 3.5 6.3 4.3

Silva (2012) C2 C7 B Shear Flex. Injected 1.7 1.7 2.0 2.6 5.8 6.2

Silva (2012) E2 E6 B Flex. Flex. Injected 2.0 1.5 1.3 1.9 3.5 3.2

Silva (2012) E4 E5 B Flex. Flex. Injected 2.0 1.0 1.4 1.8 2.5 2.6

Mean values Shear Flex. 1.7 1.3 1.8 3.0 6.0 5.3

Mean values Flex. Flex. 2.0 1.3 1.3 1.8 3.0 2.9

Italian code

Ratios for
typology
B (MIT
2009)

Injected 1.7 1.7 1.7 – – –
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This section computes from the force–displacement envelopes the ratio of effective to

uncracked stiffness and compares the obtained values to code estimates (Sect. 6.1). The

remainder of the section evaluates different methods of estimating the E-modulus. First,

the median values and CoVs of the E-modulus are computed for the various masonry

typologies (Sect. 6.2). Second, the E-modulus is computed from results of compression

tests and dynamic identification tests that were carried out as part of the experimental

campaigns (Sect. 6.3). The so obtained E-moduli are applied to compute the horizontal

stiffness of the walls and conclusions are drawn on which kind of tests are suitable for

obtaining estimates of E-moduli. When assessing a masonry building, in-situ tests to

determine the elastic properties, such as flat-jack tests, are often not available and their use

can be questionable for multiple-leaf stone masonry. It can be necessary, hence, to estimate

the E-modulus from the compressive strength of the masonry, which is often the first

material parameter that is determined from tests or assumed based on code values. Sec-

tion 6.4 proposes such an expression, which also accounts for the effect of the axial load

ratio on the effective stiffness. The last section compares the different approaches for

estimating the stiffness with regard to the bias and coefficient of variations (Sect. 6.5).

6.1 Ratio of effective to uncracked stiffness

Current codes estimate the effective stiffness postulating a constant ratio between initial

uncracked stiffness and effective stiffness; EC8-3 recommends a ratio of 0.5 (CEN 2005b)

and the Swiss guidelines SIA D0237 a ratio of 0.3 (Pfyl-Lang et al. 2011). To check the

applicability of these assumptions, the experimental initial uncracked stiffness was cal-

culated from the envelopes as the secant stiffness at 15% of the maximum force; for cyclic

tests, the average of the stiffness derived from the positive and negative envelopes is

considered. Similarly, the effective stiffness was defined as the secant stiffness at 70% of

the maximum force. Figure 10a shows the ratios of effective to elastic stiffness that were

obtained from the wall tests. The variation is rather large for all failure modes and slightly

larger for walls failing in shear or a hybrid mode than for walls failing in flexure. Clear

differences between masonry typologies could not be identified. Table 5 summarises the

experimentally determined ratios; despite the large uncertainty, a value of 0.5, as suggested

by EC8, is close to a mean estimate for all failure modes.

(a) (b) (c)

Fig. 10 Stiffness of walls subjected to horizontal loads: effective to elastic wall stiffness ratios for different
failure types and masonry typologies (a); estimate of the experimental elastic wall stiffness (b) and effective
wall stiffness (c) from different types of tests (CW compression tests on walls; CP compression tests on
prisms; AF stiffness measured when applying the axial force at the beginning of the shear–compression test;
D dynamic identification tests)
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6.2 E-modulus as a function of the masonry typology

For all tests, for which the force–displacement curve was reported, the E-modulus of the

masonry can be back-calculated from the horizontal stiffness of the wall. Generally, the

stiffness of masonry walls is computed by means of Timoshenko beam models, which

account for both flexural and shear deformability with the latter being particularly relevant

for the typical slenderness ratios of masonry piers. Applying the Timoshenko beam theory,

the elastic stiffness Kel of a wall with a rectangular cross section and a height H and shear

span H0 that is subjected to a horizontal force at its top is:

Kel ¼
1

H3

2EI
H0

H
� 1

3

� �
þ 6H

5GLt

ð4Þ

where E and G are the Young modulus and the shear modulus of the masonry, which is

idealised as a homogeneous continuum. For back-calculating the E-modulus from the

measured stiffness, it was necessary to assume a ratio of the G- to E-modulus. Eurocode 6

(CEN 2005b) recommends a ratio G/E of 0.4 for all types of masonry if a better estimate is

not available. Much lower G/E-ratios, in the range 0.06–0.25, are reported in the literature

(e.g. Tomaževič 1999). According to the elasticity theory of homogenous isotropic

materials the maximum Poisson ratio is 0.5 and therefore the minimum G/E-ratio 0.33.

Considering the composite anisotropic nature of the masonry material, smaller G/E-ratios

are, however, possible. The Italian code (MIT 2009) assumes for most stone masonry

typologies a ratio of G/E equal to 0.33 and this ratio was also adopted here. Based on this

assumption, the E-modulus can be computed from the experimental stiffness of the wall:

Eexp ¼ Kexp

6=5H � 1 þ 5 H0=H � 1=3
� �

� G=E � H
L

� �2
h i

G=E � Lt
ð5Þ

Average values of the elastic and the effective stiffness and standard deviations derived

for each masonry typology are reported in Table 6. The effective stiffness values are

compared to the ranges indicated by the Italian code in Fig. 12a. For typologies A, C and D

the reference values proposed in the Italian code provide a reasonable estimate in terms of

mean values, while the error of the predicted stiffness is considerable for the other

typologies. In order to make the code ranges representative of 16th–84th fractiles of a

probability distribution, as suggested in CNR (2013), the variance of the stiffness should be

significantly increased for all stone masonry typologies. However, if one considers the

modification factors proposed in the code for considering various mortar qualities, the code

ranges for stiffness and strength would be enlarged and the variance of the distribution,

therefore, increased. Nonetheless, given that a large part of the tests considered for this

Table 5 Experimental determination of effective to elastic stiffness ratio

Experimental ratio of effective to elastic stiffness Experimental failure mode

Shear Hybrid Flexure

Average K
exp
eff =K

exp
el 0.59 0.50 0.53

CoV 0.51 0.45 0.41
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study are laboratory tests on panels built with good quality mortar, the variability of the

stiffness and strength properties seems to be related to an aleatoric variability rather than to

the quality of the materials.

6.3 Determining the E-modulus from compression tests or dynamic
identification tests

Most test campaigns with shear–compression tests on stone masonry walls also comprised

some material tests from which the elastic properties of the masonry can be estimated.

Different types of tests were carried out for this purpose. Most common are compression

tests on wallets or masonry prisms. The wallets had typically dimensions of approximately

1 m by 1 m while the prisms were much smaller and comprised just a vertical stack of 3–5

stones. In addition to compression tests, some research groups determined the elastic

properties from dynamic identification tests or from the deformation measured when

applying the vertical load to the wall. The G-modulus is more difficult to determine than

the E-modulus, and test reports do often not report estimates for the G-modulus and such

values are therefore also not included in the database.

Figure 10b, c show the distributions of errors in predicting the elastic and effective wall

stiffness when determining the E-modulus from compression tests on wallets (CW),

compression tests on prisms (P), from deformations measured when applying the axial

force at the beginning of the shear–compression tests (AF) and from dynamic identification

tests (D) on the walls that are later used for shear–compression tests. The estimate of the

effective stiffness is in general characterised by a smaller dispersion, compared to the

elastic stiffness. The results show that the elastic properties should not be derived from

compression tests on prisms (Lourenço 1996; Oliveira 2003), but that the compression tests

Table 6 Elastic and effective stiffness ranges for the various masonry typologies

Masonry typology

A B C D E E1

Italian codea, Eel (MPa) 870 1230 1740 1080 2800 2800

CoV 0.21 0.17 0.14 0.17 0.14 0.14

Italian codea, Gel (MPa) 290 410 580 360 860 860

CoV 0.21 0.17 0.14 0.17 0.09 0.09

Number of tests 10 7 18 10 20 22

Elastic stiffness, Eel

Median (MPa) 1110 (3650)b 1900 510 1460 1000

CoV 0.63 (0.39)b 0.69 0.48 0.61 0.43

Effective stiffness, Eeff

Median (MPa) 320 (2240)b 900 430 550 630

CoV 0.49 (0.22)b 0.38 0.42 0.57 0.42

Eeff =fc
� �

ref
400 (700)b 300 250 200 250

a The Italian code (MIT 2009) gives an upper and lower bound value. According to CNR (2013), they can
be interpreted as the 16th and 84th percentile values. The mean value given here is computed as the average

of the upper and lower bound value and the CoV, assuming a lognormal distribution, as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eb

2 � 1
p

, where b
is the logarithmic standard deviation computed as 1=2 lnE84% � lnE16%ð Þ
b The values of stiffness for typology B are derived from a single test campaign
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should be carried out on wallets. Compression tests on prisms tend to overestimate the

E-modulus, most likely because the texture of prisms is typically much more uniform than

that of larger masonry walls.

As presented in more detail in Fig. 11, the test that leads to the smallest bias and

uncertainty is the compression test on masonry wallets and this is therefore the preferred

test for estimating the E-modulus. The stiffness derived from the axial force load stage is

affected by a larger uncertainty than compression tests on masonry wallets, most likely

because the walls are only loaded to relatively small axial load ratios where the stress–

strain relationship can be nonlinear. Dynamic identification tests were used only for few

tests and therefore conclusions on the reliability of the properties obtained from such tests

cannot be derived.

Based on the three more reliable estimates of the elastic properties—compression tests

on walls, axial force load stage, dynamic identification tests—the effective stiffness can be

estimated by assuming a ratio of effective to elastic stiffness and a G/E-ratio. Figure 10

shows the distribution of the errors of predicted effective stiffness if one assumes for all

typologies and failure modes a ratio of effective to elastic stiffness equal to 0.5 and the

ratio of G/E as 0.33. Standard deviations of the errors are in general smaller than for the

elastic stiffness (Table 6); this might be related to the fact that the effective stiffness is a

more robust measure when determined from experimental envelopes than the elastic

stiffness.

6.4 Determining the E-modulus from the compression strength

In engineering practice, compression or dynamic identification tests can often not be

conducted and reference values have to be obtained from the literature or from code

provisions. Many codes only tabulate the compressive strength and estimate the E-modulus

as 1000fc, a value suggested also by Eurocode 6 (CEN 2005b). However, such ratio has

been shown to be highly variable when determined from experimental tests, as pointed out

by Tomaževič (1999), who reported for this ratio values between 200 and 2000. On

average, in the collected sample of tests, the ratio between the experimental effective

stiffness and the compressive strength of masonry tends to increase with the axial load

ratio, as shown in Fig. 12b. An increase of the effective stiffness with applied axial load

had already been reported by a few authors (Vasconcelos 2005; Bosiljkov et al. 2005).

However, not all test campaigns show a clear trend in this regard (for example, Magenes

(a) (b) (c)

Fig. 11 Estimate of the effective stiffness for different experimental test: compression test on walls (a),
stiffness measured during the application of the axial force before the shear–compression test (b), and
dynamic identification tests (c)
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et al. 2010). Assuming that an increase of stiffness is related to the axial load ratio, the

experimental effective stiffness can be estimated through an empirical relation of the type:

Eeff ¼
E

fc

� �

ref

� fc � r0=fc
0:30

ð6Þ

This simple linear formula has limits when applied to axial stresses close to zero.

However, the available data and the significant scatter did not justify a more complex

relationship between stiffness and axial load ratio (Fig. 12b). Reference values of the

expected ratio between effective stiffness and compressive strength refer to an axial load

ratio of 30%. They are derived from the database and are tabulated for the various

typologies in Table 6. The ratio of experimental stiffness to the stiffness predicted by

Eq. (6) is shown in Fig. 12c.

6.5 Comparison of various approaches for estimating the stiffness

The accuracy of the various approaches for estimating the effective stiffness is compared in

Table 7. Estimating the effective stiffness from E-moduli that were determined experi-

mentally from compression tests on walls or prisms, dynamic identification tests or

computed from the shortening of the wall when applying the axial load leads to large

uncertainties (CoV = 0.5–0.7) and considerable bias. Surprisingly none of these results led

to an improved estimate of the horizontal wall stiffness when compared to the Italian code

values.

The use of median values of Eeff obtained from the collected tests reduces obviously the

bias but not much the coefficient of variation. Moreover, it should be considered that in

Fig. 12 and in Table 6 typology B represents solely unstrengthened panels, which are

derived from a single test campaign, hence their use for assessment is not recommended

but a larger number of tests from different campaigns would be required to derive reliable

reference values. Strengthened panels were excluded from the sample relative to typology

B since their elastic properties are significantly affected by the intervention, and they are

therefore not directly comparable to the unstrengthened ones. The formulation in Eq. (6),

with the reference parameters calibrated on the collected sample of tests, can reduce both

the bias and the coefficient of variation of the estimate of the stiffness. In this case

strengthened panels were also included in the analysis, since the ratio between elastic

(a) (b) (c)

Fig. 12 a Comparison between the experimental effective stiffness and the ranges proposed in the Italian
code; b relation between effective stiffness and axial load, normalized to the compressive strength fc;
c prediction of the effective stiffness through Eq. (6)
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modulus and compressive strength, which is the main parameter of the formulation, does

not appear to be strongly affected by the intervention (Fig. 12b).

7 Strength of stone masonry walls

The in-plane shear force capacity of stone masonry walls is typically evaluated from

equations that model the different failure modes of the wall, namely rocking failure with

crushing of the compressed toe and shear failure with diagonal cracking or sliding along

the bed joints (Magenes and Calvi 1997). Expressions to evaluate the strength capacity

relative to these different failure modes are available in the literature and in the codes

(CEN 2005a; MIT 2009).

7.1 Strength equations in Eurocode 8, Part 3

The force capacity of a pier failing in flexure can be evaluated neglecting the tensile

strength given that the tensile strength of masonry is normally very small and that hori-

zontal cracking due to cyclic loading is expected at ultimate limit state. Eurocode 8, Part 3

(EC8-3) computes the flexural strength as follows:

Vfl ¼
L2t

2H0

r0;tot 1 � 1=j
r0;tot

fc

� �
ð7Þ

where r0,tot is the mean vertical stress acting at the base of the pier and fc is the com-

pressive strength of masonry. EC8-sets the factor 1/j equal to 1.15, which corresponds to a

rectangular stress block in which the maximum stress is equal to j fc = 0.87 fc. A linear

stress distribution at the wall toe would lead to a factor 1/j = 1.33, while a value equal to 0

can be assumed if the compressive strength is considered infinite, for which the expression

in Eq. (7) is equivalent to the rocking capacity in Eq. (3). For assessment purposes, EC8-3

suggests to use design values for fc that are multiplied by a confidence factor to account for

the uncertainty, which depends on the knowledge that is available on that particular

structure. However, for the scope of this study, no confidence factor is applied and the

compressive strength derived from compression tests are employed.

Shear failure is modelled by EC8-3 by means of a Mohr–Coulomb criterion to be

applied to the portion of the wall that is subjected to compression stresses. Although EC8-3

refers only to brick or concrete block masonry, the application of the approach was

checked also for stone masonry walls. This criterion is meant to describe failure due to the

interaction of flexural cracking and shear at the base of a masonry pier. The uncracked

length of the wall Lc can be estimated adopting a suitable stress distribution and consid-

ering the axial force acting at the base of the wall. If the tensile strength is disregarded and

a triangular stress distribution is adopted, one can write the Mohr–Coulomb criterion as

follows:

VMC ¼ Lctcþ lLtr0;tot ¼ Lt
3=2cþ lr0;tot

1 þ 3cH0
�
r0;totL

0

@

1

A ð8Þ

where c and l are the cohesion and the friction coefficient of masonry. The parameters

c and l should be interpreted as global strength parameters and should not be derived

directly from interface tests on joint interfaces, in order to account for the non-uniform
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stress distribution along the compression zone. EC8-3 indicates for the friction coefficient a

value equal to 0.4, while reference values for the cohesive contribution in stone masonry

walls should be assumed from the literature. As an additional condition accounting indi-

rectly for tensile cracking in the units, EC8-3 prescribes that the average shear stress in the

uncracked length of the wall should be less than the 6.5% of the compressive strength of

the units. However, this latter criterion is meant to be applied to brick/block masonry to

account for possible shear cracking through the units. In the case of stone masonry piers,

due to the typically high strength of stone units, this condition is seldom the governing

criterion and alternative formulations should be used to consider the possible activation of

shear failures involving sub-diagonal cracking (e.g. Turnšek and Čačovič).

7.2 Application of strength equations to database

The criteria proposed in EC8-3 (CEN 2005a) were applied to the tests collected in the

database and the effectiveness of standard code formulations in predicting correctly the

experimental failure mode and force capacity was evaluated. Mechanical properties doc-

umented in the test reports do not include the shear strength parameters c and l. The

friction coefficient value suggested in EC8-3 is applied (l = 0.4). The cohesion was

estimated assuming a parabolic tension cut-off as c = 2lft, where the tensile strength ft
can be derived from code provisions (MIT 2009). The force capacity is defined as the

ultimate shear capacity derived from the bilinear idealisation of the envelope curves. For

15 tests, the load displacement curve is not available and the maximum force capacity

reported by the authors was used instead. The average ratio of maximum to ultimate force

capacities is 1.04, and it exceeds the value 1.10 in less than 2% of the cases. The failure

mode that was attributed to each test is based on the information provided in test reports,

which assess the failure modes based on the observed damage (diagonal or horizontal

cracking, sliding, crushing at the toe). However, this attribution can be somehow subjec-

tive, and mixed or hybrid failure modes are frequently observed.

EC8-3 predicts the failure mode based on the force capacities computed for flexural and

shear failure: the smaller force capacity is assumed to control the failure mode. Figure 13a

compares the experimentally observed failure mode to the failure mode predicted by EC8-

3. The failure mode is well predicted for walls failing in flexure. For some walls failing in

shear, EC8-3 predicts also a flexural failure. However, this does not necessarily mean that

the prediction of the force capacity is wrong, since also walls developing large shear cracks

might fail due to the crushing of the compressed corner. Moreover, shear and flexural

capacity equations might lead to rather similar results and while the failure mode might be

incorrectly predicted the shear strength might be rather well estimated. An incorrect pre-

diction of the failure mode can have, however, a significant influence on the estimate of the

deformation capacity. Most of today’s codes assign the displacement capacity based on the

failure mode and assume that walls failing in flexure have roughly twice the displacement

capacity of walls failing in shear. The fact that a part of the observed shear and hybrid

failures are predicted to be flexural failures might therefore lead to unconservative esti-

mates of the deformation capacity (see next section).

For flexure-dominated walls the prediction of the force capacity is fairly good

(Fig. 13b), since it depends mainly on geometrical dimensions and loading conditions, and

only to a minor extent on material properties. The ratio of predicted to experimental force

capacity, for flexural walls, has a median of 0.93 and a coefficient of variation (CoV) of

15%. The prediction is less accurate for higher axial load ratios, indicating that the

assumption of a stress block with j = 0.87 at the corner of the wall is probably rather
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conservative. The best prediction of the force capacity, with a mean of 1.00 and a CoV of

12%, is obtained for j = 1.20, which would correspond to a local increase of the com-

pressive strength at the base of the wall. A physical justification of this could be the

presence of relatively large stones in the wall corners, which increase local strength

properties. For brick masonry, also a confinement of the lowest brick row due to the

foundation was observed (Petry and Beyer 2015). However, the refinement of the

assumptions with regard to the stress block does not seem warranted, as the shift of the

predicted force capacity is rather small and the coefficient of variation does not reduce

consistently.

The predicted force capacity of walls showing hybrid or shear failure is affected by a

larger uncertainty, related primarily to the estimation of the mechanical parameters, which

play for these failure modes a significant role. The force capacity is on average overes-

timated, in a more evident manner for walls subjected to high axial load ratios (Fig. 13c).

This can be related to the assumptions on the friction coefficient, for which a value of 0.4 is

adopted in the Eurocode, regardless of the type of masonry. Angelillo et al. (2014) indicate

different reference values for stone masonry, ranging from 0.2 for rubble masonry, 0.3 for

irregular masonry, to 0.4 for dry joints stone masonry.

If a Mohr–Coulomb formulation is adopted for the assessment of the shear capacity,

results are strongly affected by the choice of a suitable value for the friction coefficient. In

this study, the cohesive term was assumed to be dependent on the tensile strength, which

was derived from code provisions. The friction coefficient, and the uncertainty related to its

determination, were hence derived from a linear regression, as shown in Fig. 14c. Only

panels showing shear or hybrid failure modes were considered. Depending on the masonry

typology, the so obtained friction coefficient varies between 0.2 and 0.4 (Table 8).

The mean values and coefficient of variation of the ratio of predicted to experimental

force capacity for the different material properties and models for shear capacity are

summarised in Table 9.

7.3 Turnšek–Čačovič criteria and calibration of the tensile strength

The Mohr–Coulomb criterion in EC8-3 is suitable for cases in which shear failure is

associated with bed joint sliding and the opening of head joints. For irregular masonry

typologies, however, the physical significance of such criterion can be questionable. An

alternative formulation, proposed originally by Turnšek and Čačovič (1971), relates the

(a) (b) (c)

Fig. 13 a Failure mode predicted by Eurocode 8 Part 3; b estimate of the flexural capacity; c estimate of the
shear capacity according to EC8-3 (Mohr–Coulomb criterion on the uncracked length of the section)
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shear force capacity to the onset of diagonal cracking. The opening of a diagonal crack can

be modelled through a tensile criterion, applied to an idealised biaxial stress condition in

the middle of the masonry panel, obtaining the formulation in Eq. (9).

VTC ¼ Lt

b
ft

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ r0;mid

ft

r
ð9Þ

The vertical stress r0,mid is the mean vertical stress at the mid-height of the panel, since

it is assumed that diagonal cracking initiates there. The factor b models the distribution of

shear stresses along a horizontal section of the wall and corresponds to 1.5 if a parabolic

shear stress distribution is assumed. For squat panels, however, this idealisation can be

rather crude and a value of b = HL (1.0 B b B 1.5) was found to be more appropriate

(Benedetti and Tomaževič 1984). The parameter ft represents the tensile strength of

masonry along an inclined plane, and can be determined from diagonal compression tests.

(a) (b) (c)

Fig. 14 a Masonry tensile strength according to Turnšek–Čačovič criterion: comparison with ranges
suggested in the Italian code (MIT 2009); b estimate of the experimental tensile strength from the Masonry
Quality Index; c regression analysis for the estimation of the friction coefficient; the cohesive contribution is

subtracted, assuming c = 2lft. The x-axis is derived from Eq. (8): r
0
0 ¼ r0 þ 3ft � 6VH0ft

�
r0L

2t where

Vu ¼ l � r0

0 � Lt

Table 8 Experimental and code ranges for the tensile strength of masonry ft

Masonry typology

A B C D E-E1

Italian code MIT (2009a)a, fc (MPa) 1.40 2.50 3.20 1.90 7.00

CoV 0.30 0.20 0.19 0.27 0.14

Italian code MIT (2009a)a, ft (MPa) 0.039 0.065 0.098 0.053 0.158

CoV 0.24 0.19 0.14 0.20 0.14

Experimental ft

Median (MPa) 0.047 0.046 0.111 0.052 0.136

CoV 0.79 0.29 0.22 0.32 0.44

Friction coefficient, experimental

Best fit 0.44 0.21 0.24 0.25 0.29

CoV 0.17 0.12 0.17 0.12 0.04

a Mean values and coefficients of variation calculated as in Table 6
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The Italian code, which suggests this equation for irregular masonry or for walls built with

weak units, provides also reference values for ft.

If the failure criterion expressed in Eq. (9) is adopted for all tests with hybrid or shear

failure modes, one experimental value of tensile strength can be derived for each test using

Eq. (10).

ft ¼ � r0

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

2

� 	2

þ b � Vu

Lt

� �2
s

ð10Þ

Figure 14a shows the comparison of ranges proposed in the Italian code for the tensile

strength of masonry for the different typologies, with the values estimated from the collected

tests. The obtained mean values are comparable—though typically slightly higher—than the

values included in the Italian code. It should be noted that typology B refers to unstrengthened

conditions. The values listed in Table 8 derive from a single test campaign and a limited

number of tests, since the majority of collected tests of the same typology was strengthened

through grout injections. Similarly to what was found for the effective stiffness, the code

ranges do not appear currently suitable to represent 16th–84th fractiles of a probability

distribution of the measure. The code ranges shown in Fig. 14a do not include the correction

factors that are proposed by the Italian code to consider that the mortar of the test units tested

in laboratory conditions was most likely good quality mortar, often containing hydraulic lime.

The quality of the mortar present in existing buildings can be considerably lower, since its

composition and conservation state might differ significantly to the ones of mortars tested in

the laboratory. Therefore, depending on the state of the mortar, the adoption of conservative

values for assessment purposes can be advisable. An alternative method for estimating the

tensile strength of an existing stone masonry could make use of the Masonry Quality Index

(MQI). In Fig. 14b the experimental values of tensile strength are related to the MQI esti-

mated for each panel, evaluated for in-plane actions. A regression of experimental values

through a simple equation can be expressed as:

ft ¼ 0:015 þ 0:006 �MQI1:5 ð11Þ

Equivalent expressions that link upper and lower bounds of the tensile strength to the

MQI were developed by Borri et al. (2015). These expressions, although their form is

slightly different, show the same trend and lead to similar estimates of the tensile strength.

Table 9 Estimation of force capacity through different models, for walls showing hybrid and shear failure

EC8-3 l = 0.4,
c from MIT
(2009a)a

EC8-3 l from
Table 9, c from
MIT (2009a)a

Equation (9) ft
from MIT
(2009a)a

Equation (9)
typology
median ft

Equation (9)
ft, from
Eq. (11)

Vpred=Vexp,

median

1.04 0.88 1.04 0.95 0.94

CoV 0.31 0.26 0.22 0.18 0.24

Predicted to
fail in
shearb (%)

72 85 77 80 76

a Table C8A.2.1 in (MIT 2009). Correction coefficients in table C8A.2.2 in (MIT 2009) to account for the
effect of grout injections and quality of mortar
b Ratio of walls predicted to fail in shear to walls that experimentally showed shear failure
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7.4 Comparison of different strength models

A comparison of the different capacity models for the prediction of the lateral strength of

panels showing hybrid or shear failure modes are summarised in Table 9. In general, the

application of a Turnšek–Čačovič failure criterion improves the prediction of the force

capacity when compared to the standard approach prescribed in EC8-3. This applies to

both approaches of estimating ft, i.e., estimating ft from MQI (Eq. 11) and using reference

values for ft by the Italian code, which depend on the masonry typology.

For walls that fail in shear, the Turnšek–Čačovič criterion leads also to a more accurate

prediction of the failure mode than the Mohr–Coulomb criterion with l = 0.4. However, a

similar accuracy can be achieved through the optimisation of the parameters of a Mohr–

Coulomb criterion, such as the one in Eq. (8), among which the friction coefficient is the

more relevant.

8 Drift capacity of stone masonry walls

The deformation capacity of walls is a key input parameter when applying displacement-

based assessment methods to masonry buildings. Current code provisions do not differ-

entiate between brick and stone masonry when specifying the drift capacity of walls (Petry

and Beyer 2014a). EC8-3 (CEN 2005a) limits its application to concrete and brick

masonry, but in engineering practice the values given in EC8-3 are often also applied to

stone masonry. The objective of this section is to derive drift capacities for stone masonry

walls, to identify parameters that influence the drift capacities at different limit states and

to provide the input data that is required for a probabilistic seismic assessment of stone

masonry structures. In addition, two simple drift capacity models for stone masonry are put

forward, which are suitable for implementation in engineering practice.

It was shown in Sect. 4 that monotonic tests lead to significantly larger drift capacities

than cyclic tests. Since drift capacity values are typically used in conjunction with seismic

assessments, only cyclic tests are considered in the following. Disregarded are also tests on

walls that were injected or repaired as well as all tests that did not pass the quality check. In

total, 67 test were considered of which 2 belonged to masonry typology A, 8 to B, 19 to C,

6 to D, 20 to E and 12 to E1 (Fig. 15a). The drift capacities are evaluated for the six

(a) (b) (c)

Fig. 15 Distribution of test units considered for drift capacity studies (a). Ultimate drift capacity du as a
function of the failure mode (b), and the Masonry Quality Index for in-plane loading (c). Solid markers
represent walls failing in shear of a hybrid mode; empty markers walls failing in flexure
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element limit states introduced in Sect. 1: (1) the drift at the onset of cracking dcr, (2), the

drift at yield dy, (3) the drift at maximum force dmax, (4) the drift at the limit state

‘‘Significant Damage’’ dSD = min(3dcr, dmax) (5) the drift at ultimate limit state (20%

strength drop) du, (6) the drift at collapse (50% strength drop) dc. With the exception of the

drift at the onset of cracking, the drift capacities are determined from the force–dis-

placement envelope and its bilinear approximation. The drift at the onset of cracking is

based on observations reported in the reference document but is not available for all tests.

Note that the definition of onset of cracking differed between test campaigns. Some

researchers distinguish between the appearance of flexural and shear cracks (e.g. Kržan and

Bosiljkov 2012; Silva et al. 2014), others consider any type of crack (Vasconcelos 2005).

Also, the minimum crack width that was detected probably differed between test series.

The drift at the onset of cracking is therefore afflicted with an additional uncertainty. A

detailed definition of the individual drift limits based on the envelopes in the positive and

negative loading direction is included in the accompanying database.

8.1 Sensitivity of drift capacities at different limit states

The minimum and the maximum ultimate drift values of the 67 tests differ by more than a

factor of 15 (du,min = 0.22% and du,max = 3.4%). This is a rather significant ratio and the

objective of this section is to identify factors that influence the drift capacity of stone

masonry walls at different limit states. EC8-3 (CEN 2005a) assumes that the ultimate drift

capacity depends on the failure mode. Figure 15b shows the distribution of the drift values

for shear, hybrid and flexural failure. In general, shear and hybrid failures lead to a smaller

drift capacity than flexural failures. Different trends are only observed when the sample

size is very small (shear failure of Type E; hybrid failures Type C). To increase the size of

the groups, the masonry typologies are regrouped as follows: the first group comprises

types A–D and the second group types E and E1. Table 10 summarises for these two

groups the median drift capacities and coefficients of variations for all considered limit

states. Shear and hybrid failure modes lead to similar drift capacities and coefficients of

variations. This finding suggests that it is not necessary to distinguish between shear and

hybrid failure modes and in the remainder of this section drift capacities obtained from

hybrid failure modes are counted towards shear failures.

One might expect that the drift capacity is positively correlated with the Masonry

Quality Index and this is indeed confirmed by Fig. 15c. However, as shown by Fig. 4i, the

axial load ratio also correlates strongly with the Masonry Quality Index (the larger the

Masonry Quality Index, the smaller the axial load ratio that was applied in the test). Based

on the current database it is therefore not possible to identify whether the drift capacity

depends on the Masonry Quality Index or the axial load ratio or both. For other masonry

typologies, it was already shown that the drift capacity decreases with increasing axial load

ratio (e.g. Petry and Beyer 2014a; Rosti et al. 2016). For this reason, we investigate in the

following the influence of the axial load ratio on the drift capacity of stone masonry walls

at different limit states. Note that photos of the test units of typology D (Faella et al. 1992)

were not available and therefore the Masonry Quality Index could not be determined.

Figure 16 shows the influence of the axial load ratio on the drift capacities for the

different limit states. The drift d cr at the onset of cracking is relatively independent of the

axial load ratio and of the masonry typology; for most walls the drift at the onset of

cracking is between 0.1 and 0.3%. Only for some walls of typology E and E1, the drift at

the onset of cracking is significantly larger. Drift capacities of all limit states tend to reduce

with the axial load ratio but this trend is particularly evident for dy, dmax and du.
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Figure 17a, b show the trends of the ultimate drift capacity with axial load ratio, if du is

normalised by H0/L (CEN 2005a) and by H0/H (Pfyl-Lang et al. 2011), respectively. The

clearest trend with axial load ratio is obtained for du L/H0. For brick masonry, it was further

shown that the drift capacity decreases with the wall size (Petry and Beyer 2014a). For

stone masonry walls, as for brick masonry, no test series investigated the effect of size on

the drift capacity systematically. Figure 17c show the drift capacity of the walls contained

Table 10 Median drift capacities and coefficients of variations for different limit states and masonry
typologies

Number of test units per group Drift capacity (%) CoV

Shear failure Flexural failure Shear failure Flexural failure Shear failure Flexural failure

Drift at the onset of cracking dcr

A–D 10 12 0.15b 0.25 0.35 0.20

E, E1 11 21 0.25 0.15 0.55 0.65

All 21 33 0.15 0.15 0.75 0.55

Drift at yield dy

A–D 21 12a 0.10 0.25 0.75 0.60

E, E1 11 21 0.45 0.35 0.55 0.30

All 32 33 0.25 0.30 0.85 0.45

Drift at ‘‘Significant Damage’’ LS dSD

A–D 21 13 0.30 0.55 0.50 0.35

E, E1 11 21 0.65 0.45 0.55 0.65

All 32 34 0.40 0.45 0.80 0.55

Drift at maximum force dmax

A–D 21 13 0.30 0.65 0.75 0.65

E, E1 11 21 1.00 1.95 0.40 0.45

All 32 34 0.45 1.05 0.75 0.65

Drift at ultimate LS (20% drop in force) du

A–D 21 13 0.60 0.85 0.55 0.65

E, E1 11 21 1.50 2.35 0.30 0.35

All 32 34 0.80 1.65 0.55 0.55

Drift at collapse (50% drop in force) dc

A–D 3 4 0.503 0.75c 0.35 0.30

E, E1 0 0 – – – –

All 3 4 0.50c 0.75c 0.35 0.30

Drift capacities and CoVs are rounded to the nearest 0.05; shear failure comprises shear and hybrid failures
a For Test ID = 33 only dmax and du but not the entire force-drift envelope were available. Therefore dy

could not be determined
b The drift at the onset of cracking was only available for 10 out of the 21 tests that failed in shear. The 10
tests led in average to larger yield drifts than the 21 tests and this is why the median value of dcr is larger
than the median value of dy for walls failing in shear. For the 10 tests, for which dcr is known, the median
yield drift was 0.30%, i.e., twice the drift at the onset of a cracking. For a median yield drift of 0.10%, it is
therefore recommended to assume dcr = 0.05%
c The collapse drift was only available for 7 out of the 66 tests, for which du could be determined. The 7
tests led in average to smaller drift capacities than the 66 tests and this is why the median value of dc is
smaller than the median value of du. It is recommended to assume that dc/du = 1.1 (Fig. 18d)
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in this database as a function of the wall height. Although the drift values tend to decrease

with wall height, the trend for a single masonry typology is not clear. One reason why the

size effect might be less important for stone masonry walls than for brick masonry walls is

the fact that the size of the stones can be relatively easily reduced while small-scale brick

wall tests are typically conducted with full-size bricks.

Figure 18a shows the displacement ductility l = du/dy as a function of the axial load

ratio. The displacement ductilities vary between l = 1.5–13.4 for shear and hybrid failures

and between l = 2.0–41.5 for flexural failures. The median displacement ductilities are

l = 4 for shear and hybrid failures and l = 6.5 for flexural failures. The wide ranges

highlight that displacement ductility is not a suitable parameter for characterising the

deformation capacity of masonry walls. The ratio of the drift at the LS ‘‘Significant

Damage’’ to the ultimate drift varies for shear/hybrid and flexural failure modes between

dSD/du = 0.5–1.0 (Fig. 18b). The median value is 0.5 and therefore smaller than what is

assumed in EC8-3 (dSD/du = 3/4). The ratio of 3/4 corresponds, however, rather well to the

median ratios obtained for dmax/du (Fig. 18c), for which a median value of 0.70 was

obtained.

The limit state for which the least amount of data is available is the collapse limit state

(Figs. 16f, 18d). Only seven tests were continued up to collapse; six walls originate from a

single test series conducted by Silva et al. (2014). Out of these six tests, two failed in shear

and four in flexure. The average collapse drift of these six tests is considerably smaller than

the average ultimate drift of all 67 tests (Table 10). In order to increase the data base, the

walls that were strengthened were also considered for the collapse limit state. Of the

(a) (b) (c)

(d) (e) (f)

Fig. 16 Influence of the axial load ratio on the drift capacity at different limit states: a drift at the onset of
cracking dcr; b drift at yield dy; c drift at maximum force dmax; d drift limit ‘‘Significant Damage’’
dSD = min(3 dcr, dmax); e drift at ultimate LS du; f drift at collapse dc. Solid markers represent walls failing
in shear of a hybrid mode; empty markers walls failing in flexure. Note: The scale of the y-axis of plot a and
b is different from those in plots c–f
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strengthened walls, eight walls were tested up to collapse; these tests were conducted by

Silva et al. (2014) and Mazzon (2010). The drift at collapse decreases significantly with

increasing axial load ratio (Fig. 16f). For walls failing in flexure the drift capacities at

collapse are slightly larger than for walls failing in shear but the difference for the tests

(a) (b) (c)

Fig. 17 Ultimate drift capacity du: normalising the drift capacity by L/H0 (a) and H/H0 (b). Influence of the
wall size on the drift capacity (c)

(a) (b)

(d)(c)

Fig. 18 Ratios of drifts at different limit states: a displacement ductility l = du/dy; b ratio of ultimate drift
du to drift at the limit state ‘‘Significant Damage’’; c ratio of collapse drift dc to ultimate drift du;. Solid
markers represent walls failing in shear or a hybrid mode, empty markers walls failing in flexure. The
dashed line represents the median value and the shaded area and the range corresponding to plus/minus one
standard deviation
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reported here is not as large as one might have expected. Figure 18d shows the collapse

drift to ultimate drift ratio for the 15 strengthened and unstrengthened walls that were

tested up to collapse. This ratio seems to be rather independent of the axial load ratio and

failure mode and its median value is dc/du = 1.15.

8.2 Simple drift capacity models for engineering practice

The median drift values and CoVs given in Table 10 can be directly used in probabilistic

assessments of stone masonry buildings. However, simpler models that can be summarised

in fewer equations might often be more practical. The objective of this section is to propose

two of such models. The first relates drift capacities to failure modes and masonry typology

and the second relates drift capacity to axial load ratio, slenderness ratio and masonry

typology. These models are inevitably less exact than the values of Table 10 and their

derivation required some judgment in order to find a good balance between accuracy and

simplicity.

The drift capacities are determined for the ultimate limit state (du). Based on the results

presented in Fig. 18, drifts at all other limit states are expressed as a fraction of the drift at

the ultimate limit state. Equations (12)–(17) summarise these relationships. The equations

on the left represent median values and the equations on the right values that correspond to

plus/minus one standard deviation assuming a lognormal distribution. One exception is the

drift at the onset of cracking, for which a universal value of 0.20% is recommended,

independent of the failure mode and masonry typology. The relationships between du and

the other drift limits apply independently of the chosen model for du. For the yield drift,

two approaches are investigated. In the first approach, the yield drift is computed assuming

a constant displacement ductility value which is assumed either as dependent on the failure

mode or independent of the failure mode. In the second approach, the yield drift is

computed from the predicted shear resistance and the predicted effective stiffness

(Sects. 6, 7).

dcr ¼ 0:20% dcr ¼ 0:1%. . .0:35%½ � ð12Þ

Approach 1: Flexural failure: dy ¼ 1=6:5 � du Flexural failure: dy ¼ 1= 3:0. . .13:5½ � � du
Shear failure: dy ¼ 1=4 � du Shear failure: dy ¼ 1= 2:5. . .6:5½ � � du

All failure modes: dy ¼ 1=5 � du All failure modes: dy ¼ 1= 2:5. . .10:5½ � � du
ð13Þ

Approach 2: dy ¼ VR=Keff ð14Þ

dSD ¼ 0:5 � du dSD ¼ 0:25. . .0:70½ � � du ð15Þ

dmax ¼ 0:7 � du dmax ¼ 0:50. . .0:85½ � � du ð16Þ

dc ¼ 1:15 � du dc ¼ 1:10. . .1:30½ � � du ð17Þ

8.2.1 Model 1: drift capacity at ultimate limit state as a function of failure mode
and masonry typology

In the absence of further test data, the masonry typologies are divided into two groups only

(Group 1: A–D, Group 2: E–E1). The values of Table 11 are simplified so that the drift
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capacity of walls failing in flexure corresponds to 1.5 times the drift capacity of walls

failing in shear:

du;flexure ¼ 1:5 � du;shear ð18Þ

The drift capacity of the more regular masonry typologies (E–E1) is set to 2.5 times the

drift capacity of masonry typologies A–D. The drift capacities at ultimate limit state for

this first model and the corresponding CoVs are summarised in Table 11. The recom-

mended CoVs for probabilistic assessments are 0.6 for masonry typologies A–D and 0.4

for masonry typologies E–E1. These recommended CoVs are approximate values of the

CoVs reported in Table 13.

The drift capacities at the other limit states are computed using Eqs. (12)–(17). For a

deterministic assessment, one typically uses a capacity that corresponds to a lower fractile

value. Strength evaluations are typically based on the 5%-fractile value, which is referred

to as the characteristic value. Current code estimates for drift capacities do not specify to

which fractile value the drift capacity corresponds. If one assumes a lognormal distribution

and the CoVs in Table 11, one obtains the ratios between fractile values and the median

drift capacities as given in Table 12. For failure modes and masonry typologies for which

the drift capacity can be predicted with a CoV of 0.6, the median drift capacity needs to be

multiplied by 0.40 in order to obtain a drift capacity that corresponds to the 5%-fractile

value. For a CoV of 0.4, 0.55 times the median drift capacity corresponds to the 5%-fractile

value.

Figure 19 shows the distribution of the error between predicted and experimentally

determined drift values for all six limit states. Table 13 summarises for the same values the

median ratios of the predicted to experimental drifts and the CoV for the two groups of

masonry typology (Group 1: A–D, Group 2: E–E1) and failure modes (shear/hybrid and

flexure). The comparison assumes that the failure mode can be predicted correctly. One

point was excluded from these plots and tables; this concerns the drift at the onset of

cracking for Test ID 73 (cyclic in-situ test by Costa et al. 2011), which was reported as

0.008% and which is about 25 times smaller than drifts at the onset of cracking that were

reported for other walls (Fig. 19a). As outlined at the beginning of Sect. 8, the drift values

at the onset of cracking are not determined from the envelope curve but are taken from the

test reports and are therefore not evaluated according to uniform criteria.

The displacement ductility values l = du/dy of the walls varied greatly (Sect. 8.1). This

is reflected in the relatively large uncertainties (Table 13) when estimating the yield drift

dy assuming constant ductility capacities for shear and flexural failures (Eq. (13)). How-

ever, due to the large uncertainty associated with the effective stiffness (Sect. 6), even

larger CoVs are obtained when computing the yield drift from estimates of the shear

strength and the effective stiffness (Eq. (14)). The distributions plotted in Fig. 19b show

yield drift estimates that are computed assuming a fixed displacement ductility.

Table 11 Drift capacity model 1: recommended median drift capacities and coefficients of variations for du

Masonry typology Drift capacity (%) CoV

Shear failure Flexural failure Shear failure Flexural failure

A–D 0.60 0.90 0.60 0.60

E, E1 1.50 2.25 0.40 0.40
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With the exception of the CoVs for dcr of masonry typology A-D, for which only a few

data points are available, the CoVs of all limit states are rather similar and it is therefore

recommended to use the CoVs that are given in Table 11 for the drift at the ultimate limit

state as well for all other limit states. In some cases, the simple relationships of Eqs. (12)–

(17) introduce a significant bias for a certain combination of failure mode and masonry

typologies. Such a bias could of course be removed by assigning the coefficients of

(a) (b) (c)

(f)(e)(d)

Fig. 19 Drift capacity model 1: ratios of predicted to experimental drift capacities for the six different limit
states. dcr (a), dy (b), dSD (c), dmax (d), du (e), dc (f)

Table 13 Drift capacity model 1: median ratios and CoV for predicted to experimentally observed drift
ratios (dpred/dexp)

Masonry
typology

A–D E–E1

Shear failure Flexural failure Shear failure Flexural failure

Median
ratio

CoV Median
ratio

CoV Median
ratio

CoV Median
ratio

CoV

dcr 1.40 0.20 0.90 0.30 0.80 0.50 1.35 0.35

dy–const. duct. 1.25 0.60 0.60 0.75 0.85 0.55 1.00 0.35

dy = VR/Keff 0.75 1.15 0.65 1.45 0.80 0.90 1.55 0.40

dSD 1.05 0.45 0.80 0.40 1.20 0.45 2.55 0.35

dmax 1.50 0.55 0.95 0.50 1.05 0.45 0.80 0.65

du 1.00 0.55 1.10 0.45 1.00 0.40 0.95 0.45

dc 1.40 0.40 1.40 0.25 – – – –

Mean ratios capacities and CoVs are rounded to the nearest 0.05; shear failure comprises shear and hybrid
failures
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Eqs. (12)–(17) on a case-to-case basis. However, for the sake of simplicity and considering

the imperfect data base, a drift capacity model of such complexity does not seem justified.

8.2.2 Model 2: drift capacity at ultimate limit state as a function of axial load ratio,
shear span and masonry typology

The second drift capacity model links the ultimate drift capacity to the axial load ratio and

the shear span, which is normalised by the height. It follows therefore the drift form

introduced by Pfyl-Lang et al. (2011) and applied in Petry and Beyer (2014a). Figure 20

plots the ultimate drift capacity that was normalised by min (H, L)/H0 against the axial

load ratio. The trendlines included in the figures represent median values of drifts that were

obtained for bins of axial load ratio (bin width: 0.1). Equations (19) and (20) aim at

approximating these trend lines. This method was used in order to account for the fact that

the number of tests per bin varies significantly and tends to decrease with increasing axial

load ratio. Therefore, the higher axial load ratios would be underrepresented if a simple

linear fit was performed. For masonry typologies A–D, the following equation for the

ultimate drift is proposed:

du ¼ max 1:5%� 4% � r0;tot

fc
; 0:3%

� �
� H0

min H; Lð Þ ð19Þ

The equations are applicable for r0,tot/fc B 0.6 (Fig. 20b). For masonry typologies E

and E1, the drift capacity is assumed to be 50% larger:

du ¼ max 2:25%� 6% � r0;tot

fc
; 0:45%

� �
� H0

min H; Lð Þ ð20Þ

Note that for masonry typologies E and E1, only the first branch of the equation could

be validated since walls of such typologies were not tested for large axial load ratios.

For both groups and failure modes, the CoVs for the ultimate drifts lie for this second

model between 0.40 and 0.60 (Table 14). The CoV are with this model even somewhat

smaller for masonry typologies A–D than for masonry typologies E–E1. For the sake of

simplicity and because clear trends are not recognisable, it is recommended to use a CoV

for all masonry typologies and failure modes, if this second drift capacity model is applied.

It is suggested to use CoV = 0.4 for du and CoV = 0.6 for all other limit states. The

(a) (b) (c)

Fig. 20 Drift capacity model 2: comparison of predicted and observed ultimate drift capacities for a all
masonry typologies, b only masonry typology A–D, c only masonry typologies E–E1
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distribution of the error between the predicted and experimentally determined drift values

for the second model is shown in Fig. 21.

8.2.3 Comparison of different drift capacity models

The two models yield rather similar CoVs for the ultimate drift capacity (Model 1:

0.40–0.55; Model 2: 0.40–0.60). The error of Model 1 is expected to increase, if the

Table 14 Drift capacity model 2: median ratio and CoV for predicted to experimentally observed drift
ratios (dpred/dexp)

Masonry
typology

A–D E–E1

Shear failure Flexural failure Shear failure Flexural failure

Median
ratio

CoV Median
ratio

CoV Median
ratio

CoV Median
ratio

CoV

dcr
a 1.40 0.20 0.90 0.30 0.80 0.50 1.35 0.35

dy–const. duct. 0.90 0.80 0.85 1.05 0.45 0.70 1.55 0.45

dy = VR/Keff
a 0.75 1.15 0.65 1.45 0.80 0.90 1.55 0.40

dSD 1.10 0.45 0.75 0.55 0.85 0.65 3.1 0.40

dmax 1.35 0.55 0.85 0.45 0.70 0.50 0.85 0.65

du 1.10 0.40 0.85 0.40 0.75 0.60 1.1 0.50

dc 0.95 0.40 0.80 0.15 – – – –

Median ratios capacities and CoVs are rounded to the nearest 0.05; shear failure comprises shear and hybrid
failures
a Same values as for Model 1

(a) (b) (c)

(d) (e) (f)

Fig. 21 Drift capacity model 2: ratios of predicted to experimental drift capacities for the six different limit
states. dcr (a), dy (b), dSD (c), dmax (d), du (e), dc (f)
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predicted rather than the observed failure is used. The CoVs related to the ultimate

deformation capacities of 0.40–0.60 might seem rather large. However, these CoVs are in

fact similar to CoVs obtained for deformation capacities of reinforced concrete elements.

Grammatikou et al. (2015) reported for reinforced concrete walls CoVs of 0.30 for the

yield drift and between 0.30 and 0.50 for the ultimate drift, depending on the model used

and the cross section of the wall. For reinforced concrete walls, the smallest CoVs were

obtained with empirical models fitted to the data set and the largest CoVs with plastic

hinge models (Grammatikou et al. 2015). More advanced analytical models for shear-

critical reinforced concrete walls predict the ultimate drift capacity, however, with CoVs of

less than 0.20 (e.g. Mihaylov et al. 2016). Similar CoVs for ultimate drift capacities are,

however, also reached for clay brick masonry walls failing in shear or flexure if the drift

capacity is predicted by an advanced analytical model (Petry and Beyer 2015; Wilding and

Beyer 2017). Analytical models have therefore the potential to reduce the uncertainty

related to the prediction of drift capacities and it is recommended to pursue in the future the

development of such models for stone masonry walls. The reduction of the uncertainty is of

course limited by the aleatoric variability, which—based on the limited data available—

can be estimated to result in a CoV of 0.30 for the ultimate drift capacity (Table 3).

9 Summary and conclusions

The application of displacement-based assessment procedures requires robust estimates of

the deformation capacity of every structural element. Eurocode 8, Part 3 [EC8-3, CEN

(2005a)] as well as many other codes worldwide do not provide drift capacities specific to

stone masonry walls. The objective of this project was to fill this gap and investigate

specifically the drift capacity of stone masonry walls. In addition, the work aimed at

providing input not only for the assessment of the ultimate limit state but for a large range

of limit states ranging from the onset of cracking to the collapse of the wall. In view of

probabilistic assessments, it was further the objective to provide next to median estimates

also a measure of the confidence with which this quantity can be predicted. For this

purpose, coefficients of variation (CoVs) were determined.

The work is based on a database of 123 shear–compression tests on stone masonry

walls, which have been collected from 16 test campaigns documented in the literature; the

database is made publically available. Based on these tests, stiffness, strength and defor-

mation capacity were evaluated. The experimentally obtained values were compared to

existing estimates and new or improved expressions proposed when this was indicated.

More specifically, expressions for the following quantities as well as the corresponding

CoVs were put forward (see summary in Table 15):

• Stiffness New expression for the effective E-modulus for the use in conjunction with a

Timoshenko beam element model. Two types of expressions are proposed: (1) Median

values and CoVs for the effective E-modulus for each masonry typology. (2) A more

refined expression that accounts for the masonry typology, the compressive strength

and the axial load ratio.

• Strength New values for the friction coefficient (Mohr–Coulomb criterion) and the

tensile strength (Turnšek–Čačovič criterion). The values account for differences in

stone masonry typologies.

• Drift capacity values for six limit states Two simple drift capacity models for the

ultimate limit state and relationships between other limit state and du. The drift capacity
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models distinguish between two groups of stone masonry typologies (Group 1: A–D,

Group 2: E–E1).

• Aleatoric variability Aleatoric variabilities of stiffness, strength and drift limits for

stone masonry.

• Effect of load history and light retrofit interventions Factors accounting for the effect of

load history (monotonic vs cyclic) and light retrofit interventions (mortar injections) on

stiffness, strength and drift limits.

The following paragraphs discuss the main findings of this work and identify future

research needs.

Table 15 Summary of proposed median values and coefficients of variations for stone masonry assessment

MASONRY TYPOLOGIES
A B C D E E1
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Typology:

• Following the classification in the Italian code, five typologies of stone masonry were

distinguished, which account for the shape of the stones, the number of leaves and their

connectivity as well as the stone properties. For regular dressed stone masonry

(typology E), a sub-class E1 was introduced that comprises stone masonry walls of

typology E with regular shape (ashlar) and dry joints. It was found that ashlar masonry

with dry joints shows an increase in stiffness but have little influence on strength and

deformation capacity.

• The current database is rather scarce with regard to tests on walls of masonry typology

A and D. Due to its wide distribution in existing masonry buildings, further tests would

be desirable, in particular, on walls of typology A.

Shear strength of stone masonry walls:

• From the three quantities needed to describe the bi-linear response curve of stone

masonry walls (effective stiffness, strength and drift capacity), the strength of the

masonry walls can be predicted with the largest confidence. However, the strength

equations of the form given in EC8-3 do not predict the failure mode well. For about a

quarter of the walls failing in shear, a flexural failure is predicted. To err with regard to

the failure mode does often not result in a very large error with regard to the force

estimate since shear and flexural capacity can be rather similar. However, it might lead

to a considerable error in the drift capacity, if models are used that link the drift

capacity to the failure mode (such as the one in EC8-3).

• EC8-3, which application is limited to concrete and brick masonry but in engineering

practice often also applied to other masonry typologies, predicts the shear strength of

masonry walls by a Mohr–Coulomb criterion assuming a friction coefficient of

l = 0.4. The latter appears to be too large when applied to stone masonry and the shear

strength is therefore often overestimated. Using regression analysis on the experimen-

tally determined wall strengths, best estimates of friction coefficients are calculated for

each masonry typology.

• Slightly smaller coefficients of variations are obtained if not a Mohr–Coulomb but a

Turnšek–Čačovič criterion is used for predicting the shear strength. This criterion needs

as input a tensile strength of the masonry. The Italian code (NTC 2008; MIT 2009)

provides reference values, which predicted the shear strength of the walls in the

database very well. However, the CoV which could be taken from the Italian code,

assuming that the given range limits correspond to 16th and 84th percentiles, seems to

be too low by a factor of approximately 2. Borri et al. (2015) proposed an expression

for the tensile strength which includes the Masonry Quality Index. Regression analysis

on the shear strength and Masonry Quality Index of the walls included in the database

confirm the expression proposed by Borri et al. (2015).

Effective stiffness of stone masonry walls:

• Estimating the effective stiffness of stone masonry walls is considerably more

challenging than estimating their strength and the CoVs of predicted to experimentally

determined stiffness is for all masonry typologies approximately 2–3 times larger than

the CoVs for the strength. The effective stiffness can, however, be predicted with a

slightly better confidence than the elastic wall stiffness. The ratio of effective to elastic

stiffness varies greatly but the median ratio is close to 0.5, which corresponds to the

value recommended in EC8-3.
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• Available experimental results suggest that shear deformations contribute significantly

to the flexibility of the walls but direct evaluations of the effective shear stiffness from

experimental results are scarce. If one assumes a ratio of the shear to the elastic

modulus and applies a Timoshenko beam element model, one can back-calculate the

effective E-modulus from the wall stiffness. It was found that this effective stiffness

depends on the masonry typology, the compression strength and the axial load ratio,

i.e., the larger the axial load ratio, the larger the stiffness. The effect of the axial load

ratio on the stiffness is not accounted for by modelling recommendations in current

codes such as EC8-3, which connect the E-modulus solely to the compression strength,

but it has already been identified by other research groups (Vasconcelos 2005;

Bosiljkov et al. 2005). A new analytical expression for the effective E-modulus, which

accounts for masonry typology, compression strength and axial load ratio, is proposed.

• It was further investigated if results from material tests lead to an improved estimate of

the wall stiffness. The considered material tests were compression tests and dynamic

identification tests. Surprisingly none of these results led to an improved estimate of the

horizontal wall stiffness. One reason could be that the material tests addressed the

E-modulus (i.e. flexural deformations) while shear deformations might contribute

significantly to the wall flexibility. Another reason could be that the applied

Timoshenko beam model is not appropriate to describe the wall kinematics and

therefore the E-moduli that yields the best prediction is not related to a mechanical

property of the material.

Drift capacity of stone masonry walls

• For the analysis of the drift capacities, only the cyclic tests were considered.

Comparing the results of a monotonic and a cyclic test that were carried out within one

test series suggests that the deformation capacity of cyclic tests is approximately only

half of the deformation capacity under monotonic loading; this ratio was also observed

for brick masonry walls (Beyer et al. 2014). The available data set did not allow more

advanced analyses of the effect of the load history on the drift capacity as the

parameters describing the cyclic loading protocol (number of cycles, drift intervals,

mean value, …) were not varied in any of the test campaigns.

• Six different drift limit states were considered; these are (1) the drift at the onset of

cracking dcr, (2), the drift at yield dy, (3) the drift at maximum force dmax, (4) the drift

at the limit state ‘‘Significant Damage’’ dSD = min(3dcr, dmax), (5) the drift at ultimate

limit state (20% strength drop) du, (6) the drift at collapse (50% strength drop) dc. With

the exception of the drift at the onset of cracking, all drift limits were determined from

the envelope of the force–drift relationship or its bilinear approximation. The drift at

the onset of cracking was, if available, taken from test reports. The drift for which the

least information was available is the drift at collapse. Only a very few tests were

continued up to collapse and any estimates derived for this limit state need to be

considered with great caution. To research this drift limit state further, additional

experimental data is needed.

• For analysing the drift capacities, the tests were divided into two groups; the first group

comprised walls of typologies A–D and the second walls of typologies E–E1. Given the

rather large variability of the drift capacities and the limited number of tests available, a

finer analysis did not seem warranted. Next to median values and CoVs for each group

and failure mode, also two simple models for the ultimate drift capacity were proposed.

The first connects the drift capacity to failure mode and masonry typology and follows

therefore the approach of EC8-3 and many other current codes. The second one links
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the drift capacity to masonry typology, axial load ratio and the factor H0/min(H,L)

where H0 is the shear span and H and L the wall height and length, respectively. The

two models lead to very similar CoVs. With the exception of the limit state at the onset

of cracking, the drift capacities at the other limit states were expressed as a function of

du. The drift at the onset of cracking was assigned a constant value (dcr = 0.20%).

• The current drift capacity model as well as the models proposed in this paper are

empirical drift capacity models. In future tests, it would be desirable to also develop

mechanical drift capacity models, which for brick masonry walls have already led to a

considerable improvement in the drift capacity prediction (Sect. 8.2.3). For this

purpose, wall tests with detailed measurements of the displacement fields are

necessary. This would also allow to identify better the contributions of shear and

flexural deformations to the total deformations and therefore pave the way for

improved stiffness estimates. Furthermore, the effect of the stone pattern on the wall

response should be investigated and first studies in this regard are currently underway.

Aleatoric variability

• The database contains 18 groups of replicate tests, which were used to estimate the

aleatoric variability of stiffness, strength and drift capacities at different limit states.

The strength varies in general the least (CoV = 0.1). Stiffness and drift capacities vary

more (CoV = 0.2–0.3). Only the drift at the onset of cracking seems to lead to a

smaller CoV (CoV = 0.1). None of the replicate tests was continued up to collapse and

therefore the aleatoric variability could not be determined for dc. From the available

data, it was not possible to identify the effect of the masonry typology on the aleatoric

variability. Also, all but one group of replicate tests were laboratory tests, which might

not necessarily reproduce the aleatoric variability in real buildings. From the available

data no significant difference between laboratory and in-situ tests could be identified. In

future studies it would therefore be interesting to investigate the variation of aleatoric

variability with masonry typology and to conduct further replicate in-situ tests.

Effect of retrofit interventions on drift capacity

• Also included in the database are tests with minor retrofit intervention (mortar

injections or reinforcement through the wall thickness to improve the connection

between the leaves). By comparing walls with mortar injections to their unstrengthened

counterparts, the effect of the retrofit interventions could be identified. For stiffness and

strength, such factors are already available in the Italian code (MIT 2009) and these

were confirmed by the results obtained here. As a novelty, factors for the drift capacity

were derived. The results showed that the ultimate drift capacity can increase by a

factor of 3–6; the increase is particularly significant if the failure mode changes from

shear to flexure. The experimental data on the effect of retrofit interventions is,

however, still rather scarce and more data necessary. Mechanical drift capacity models,

once they are available, might allow to predict the effect of retrofit interventions

without testing all possible configurations.
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Borri A, De Maria A (2009) L’indice di qualità muraria (IQM): evoluzione e applicazione nell’ambito delle
Norme Tecniche per le Costruzioni del 2008. In: Proceedings of the conference ‘‘Anidis 2009’’. Italy,
Bologna, pp 1–27

Borri A, Corradi M, Vignoli A (2001) Il problema della valutazione della resistenza a taglio della muratura
mediante prove sperimentali. In: Proceedings of the conference ‘‘Anidis 2001’’. Potenza–Matera, Italy,
pp 1–11

Borri A, Paci G, De Maria A (2011) Resistenza a taglio delle murature: prove diagonali e correlazione con
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