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Abstract The use of fiber-reinforced polymers (FRP) for structural strengthening has

become increasingly popular in recent years. Several applications of FRP have been

proposed and applied, depending on the target of the technique, kind and/or material of the

structural member. In particular, because of their great tensile strength, FRP materials are

commonly used to enhance the out-of-plane behaviour of masonry walls, allowing to

increase their strength, ductility and improving safety against overturning. For these rea-

sons, FRP laminates are often applied in vulnerable ancient buildings in seismic areas to

reinforce façades and walls with poor structural features. However, some issues arise when

adopting composites in historical constructions, the most related to the aesthetical impact

of laminates and compatibility between FRP and masonry. Consequently, a correct eval-

uation of the reinforcement percentages for strength and ductility purposes is crucial, as

well as the effective increase of structural performances. This paper presents a numerical-

analytical approach able to reproduce the flexural behaviour of out-of-plane loaded

masonry walls. The model is based on a simplified representation of the member, the latter

modeled as a cantilever beam. Mechanical non-linearity is introduced by means of

moment–curvature relationships, deduced with proper constitutive laws of masonry and by

taking into account the ultimate debonding strain of FRP. Second order effects are con-

sidered by adopting an iterative step-by-step procedure. Comparisons are made in terms of

moment–curvature and load–displacement curves with experimental data available in the

literature and with non-linear finite element analyses, showing both good agreement.

Finally, parametric considerations on the reinforcement percentages are made in terms of

strength and ductility.
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1 Introduction

The preservation of the built environment and heritage represents a very topical subject for

the scientific community all over the world. Several studies in the literature are addressed

to the development of effective procedures for the assessment and mitigation of the seismic

risk, modeling of masonry buildings in old urban centers or also the set-up of nonlinear

static and dynamic analyses able to take into account the real behavior of materials.

Particularly, in the last decades, the interest toward the restoration of ancient masonry

buildings and historic structures is increasing with particular regard to the use of innovative

materials and techniques for enhancing the structural performances under both normal and

severe load conditions. To this scope, fiber-reinforced polymers (FRP) are increasingly in

use for the structural strengthening as well as for improving ductility and safety against

overturning failure mechanism. Several applications have been proposed and applied and

specific prescriptions are contained within the reference codes.

The main advantages in the use of FRP are high mechanical properties, contained

weight and thickness, absence of corrosion, easy installation with the possibility of

maintaining the serviceability of the structure during the process, reversibility of the

intervention. Actually, also a series of disadvantages should be mentioned, such as high

costs, reduced heat resistance and elastic-fragile behaviour of the material.

The increasingly large use of FRP led to the development of specific guidelines for the

design procedures: CNR-DT 200 R1/2013 represents the reference Italian code, while ACI

Committee 440 (2010) and ISIS Design Manual No. 4 (2008) are the American and

Canadian ones. Finally, FIB Bulletin (2001, 2007) represents the international reference

guideline.

Particularly, with regard to masonry, prescriptions are provided on the verification of

the flexural behaviour of out-of-plane loaded walls, which is one of the most common local

failure mechanism generally occurring in such elements. The mechanism can be attributed

to several causes including seismic forces, the thrust of arches and vaults, defects of

verticality of the panels.

It can usually occur in various forms and mainly for simple overturning (Fig. 1a) as well

as for vertical or horizontal flexure (Fig. 1b, c). In the first case, the mechanism consists of

the overturning of the wall around a cylindrical hinge on its basis, mainly due to the limited

tensile strength of masonry. A typical intervention is realized by means of FRP sheets

collocated on the top of the wall and refolded on the orthogonal ones (Fig. 1a).

In the second case, although being well constrained both on the top and on the bottom,

the wall can collapse due to out of plane flexural forces which cause the establishment of

three hinges, one on the top, one on the bottom and the other in an intermediate position

(Fig. 1b). In those cases, usually, FRP sheets with vertical fibers can be collocated on the

masonry panel with adequate anchors in order to obtain a ‘‘reinforced masonry’’ in which

the compressions are absorbed by masonry while the tensile stresses by the FRP

reinforcement.

Finally, the third mechanism can occur when masonry panels well anchored to the

lateral walls are not superiorly constrained by the presence of curbs or rigid floors, causing

the collapse of a portion of wall as shown in Fig. 1c. Also in these cases, the application of

FRP composites on the upper bound of the wall allows enhancing its flexural capacity as in

reinforced masonry elements.
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It has to be noted that when a masonry wall is subjected to an out-of-plane action, the

effective response could be considered as intermediate between that above discussed with

reference to a rigid body mechanism, or that corresponding to a flexible member.

Several research works were carried out in the past to study the effectiveness of FRP

reinforcement on the out-of-plane behaviour of masonry members. Gilstrap and Dolan

(1998) provide one of the first overview on the use of FRP reinforcement in masonry

members, and examined the state-of-the-art research being conducted for retrofit and repair

of these structures. Hamoush et al. (2002) evaluated the influence of externally bonded

FRP composites on the out-of-plane shear strength of masonry wall systems by testing

eighteen masonry panels under static loading. From obtained results, they concluded that

strengthening of unreinforced masonry walls by externally bonded composite overlays

Fig. 1 Principal failure
mechanisms of masonry walls
due to: a simple overturning;
b vertical flexure; c horizontal
flexure
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contributes to the flexural performance of the walls, but there appeared to be no significant

effect of the reinforcement fiber area on the shear strength of the wall assembly.

From an analytical point of view, Hamed and Rabinovitch (2007) developed a

sophisticated analytical model to predict the out-of-plane behavior of FRP reinforced

masonry walls. They modeled masonry units and the mortar joints as Timoshenko’s beams,

while lamination and first-order shear deformation theories were assumed for the FRP

strips and the solution was achieved with a complex algorithm. Papanicolaou et al. (2008)

tested masonry walls strengthened on both sides with textile-reinforced mortars or with

FRP under out-of-plane cyclic loading. Additional comparisons were also made with

respect to Near Surface Mounted (NSM) reinforcement. They investigated on the effect of

mortar-based and resin-based matrix materials, the number of layers, the orientation of the

moment vector with respect to the bed joints and the performance of textile reinforced

mortar (TRM) or FRP jackets in comparison to NSM strips. It was concluded that TRM

jacketing provides substantial increase in strength and deformability. Hamed and Rabi-

novitch (2010) refined their previous work by a combined experimental-theoretical char-

acterization of the behavior of the FRP strengthened walls. In particular, they investigated

on the behaviour of realistically supported strengthened walls under conditions that restrict

the elongation and allow the development of the arching action. More recently, Gattesco

and Boem (2014, 2015) presented the results of a numerical investigation on the out-of-

plane bending behaviour of cobblestone masonry walls. Researchers carried out numerical

simulations utilising a two-dimensional nonlinear model, and evaluated the efficiency of

GFRP reinforced mortar coatings.

Within this framework, in the present paper a simplified numerical-analytical approach

for the assessment of the flexural behaviour of out-of-plane loaded masonry walls is

presented. The model is based on a simplified representation of the member, the latter

modeled as a cantilever beam. Mechanical non-linearity is introduced by means of

moment–curvature relationships, deduced with proper constitutive laws of masonry and by

taking into account the ultimate debonding strain of FRP. Second order effects are con-

sidered by adopting an iterative step-by-step procedure. Comparisons are made in terms of

moment–curvature and load–displacement curves with experimental data available in the

literature and with non-linear finite element analyses, showing both good agreement.

Finally, parametric considerations on the reinforcement percentages are made in terms of

strength and ductility.

1.1 Analytical investigation

A numerical/analytical model was developed able to predict the lateral load–deflection

curves of out-of-plane loaded masonry walls. The model was based on a continuum dis-

cretization of the wall, considered as a uniaxial member (beam) and loaded with a generic

load profile.

Preliminarily, constitutive law of masonry in compression was calibrated based on some

experimental data available in the literature, and adopted for the sectional analysis.

1.1.1 Constitutive laws of constituent materials

The compressive behaviour of calcarenite masonry was modeled by means of the axial

stress–strain law proposed by Sargin (1971) and modified by Cavaleri et al. (2005).
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~r ¼ A � ~eþ ðD� 1Þ � ~e2

1þ A� 2ð Þ � ~eþ D � ~e2
ð1Þ

where r0 and e0 were the peak stress and strain respectively, and ultimate compressive

strain was assumed as eu = 2e0.
The parameters A and D defined the shape of the curve. In particular, the value imposed

to A could be considered as the ratio between the tangent and the secant modulus, while D

regulated the shape of the descending branch. More in detail, the higher D the more

horizontal will be the trend of the post-peak response. Conversely, a brittle behaviour was

associated to low values of D—i.e. the slope of the softening branch increases. As an

example, Fig. 2 plots the constitutive law expressed by Eq. (1). Values shown in Fig. 2

refer to the experimental data of Accardi et al.(2007a), that are adopted in the following

sections for numerical applications.

The tensile behaviour of FRP was modelled with a classic linear relationship, being the

tensile strength of the composite defined in the following form

ft ¼ Ef � efu ð2Þ

where Ef and efu are the elastic modulus and ultimate strain of FRP respectively.

It should be noted that particular care has to be addressed on the evaluation of the

ultimate strain. This last should be defined not only with reference to the ultimate tensile

stress but mainly referring to the ultimate debonding strain edu. This value could be

expressed as a function of the fracture energy Gf, as proposed by Täljsten (1996), and the

ultimate pull-out load could be expressed by

Fu ¼ bf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � Ef � tf � Gf

1þ a

r

ð3Þ

where bf and tf were the width and the thickness of the FRP strip respectively, while a was

the axial stiffness ratio between the two adjacent materials

a ¼ Ef � Af

E � A ð4Þ

Fig. 2 Stress-strain model of Sargin (1971) adapted for masonry
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being Af the nominal area of the FRP strip, E the Young modulus of the material bonded to

the composite and A the area of the transverse section of the member.

The evaluation of fracture energy is a quite difficult task, especially for actual appli-

cations and particularly for existing structural members. For this reason, several technical

codes provided formulations able to relate the fracture energy to the mechanical properties

of the base material—i.e. American code ACI 440/2010, international instructions FIB

2001 for concrete, Italian guidelines CNR-DT 200/2013 for masonry. As an example, the

fracture energy could be determined experimentally, by expressing Gf from Eq. (3) and

neglecting the value of a

Gf ¼
F2u

2 � b2f � Ef � tf
ð5Þ

and Fu is measured experimentally.

Equation (5) allowed evaluating the fracture energy experimentally, and expressing this

as a function of the mechanical properties of the base material. As an example, Accardi

et al. (2007a) expressed the fracture energy as a function of the compressive strength for

calcarenite stone masonry, finding an analytical expression, which fits the experimental

values obtained by pull-out tests

Gf ¼ 0:06
ffiffiffiffi

fb
p

ð6Þ

Figure 3 shows the trend of Eq. (6) and related experimental data obtained in Accardi

et al. (2007a). Substituting Eq. (6) in Eq. (3) the following expression of the ultimate

debonding load hold

Fu ¼ bf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:12 � Ef � tf �
ffiffiffiffi

fb
p

q

ð7Þ

Finally, the ultimate debonding strain of FRP was obtained as

edu ¼
Fu

Ef � Af

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:12 �
ffiffiffiffi

fb
p

tf � Ef

s

ð8Þ

The resultant constitutive law of FRP in tension was defined by a linear stress–strain

relationship shown in Fig. 4. Also in this case, values refer to the experimental
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Fig. 3 Experimental correlation
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investigation of Accardi et al. (2007a). It is worth to note that the debonding strain value is

substantially lower than ultimate tensile strain at failure.

1.1.2 Sectional analysis

The sectional analysis of the masonry wall was undertaken with the target of calculating

proper moment–curvature curves. Calculation was made with reference to rectangular

sections under the assumptions of plane sections until failure, perfect bond between

masonry and FRP, and masonry with proper compressive and tensile stress–strain rela-

tionships (discussed above).

The definition of moment–curvature curves was achieved by direct integration of

equilibrium equations, the latter related to sections with uniaxial bending moment and an

axial load (Fig. 5), the latter to be considered constant.

If the hypothesis of full reacting section and referring to symbols reported in Fig. 5,

meaning maximum tensile strain less than peak, equilibrium equations could be written in

the following form

R� Ft � T ¼ N ð9Þ

R cþ tþ tf

2
� xc

� �h i

þ T d� tþ tf

2
� xc

� �h i

¼ Mþ N
t

2
þ tf

2

� �

ð10Þ

where R and T are the resultant forces of internal compressive and tensile stresses in the

masonry section, while Ft is the tensile force in the FRP strip and N is the external axial

force.

As it is well-known, Eqs. (9, 10) could be expressed as a function of the unknown

curvature and by expressing explicitly the internal forces of the section

Z ec

0

b

u
� r eð Þ � de� Af � Ef � edu �

Z u�t�ecð Þ

0

Et � b � e
u

� de ¼ N ð11Þ

Fig. 4 Stress–strain relationship for FRP in tension
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Z ec

0

b

u2
� r eð Þ � eþ t þ tf

2
� ec

u

� �� �

� deþ
Z u�t�ecð Þ

0

Et � b � e2
u2

� e� t þ tf

2
� ec

u

� �� �

� de

¼ M þ N
t

2
þ tf

2

� �

ð12Þ

with et\ect and ect ¼ rt

Et
.

Differently, when et [ ect, equilibrium equations of the section were written as
Z ec

0

b

u
� r eð Þ � de� AFRP � Ef � edu �

Z ect

0

Et � b � e
u

� de ¼ N ð13Þ

Z ec

0

b

u2
� r eð Þ � eþ tþ tf

2
� ec

u

� �� �

� deþ
Z ect

0

Et � b � e2
u2

� e� tþ tf

2
� ec

u

� �� �

� de

¼ Mþ N
t

2
þ tf

2

� �

ð14Þ

Equations (11–14) allowed calculating the values of curvature u and the corresponding

moment M for known geometry of the section and for a fixed value of ec. The procedure

was repeated until reaching the ultimate value of masonry compressive strain or the

debonding strain in the FRP strip.

Comparisons were made between the experimental data of Accardi et al. (2007b)

(Fig. 6) and the analytical predictions made with the above described procedure.

Experimental data refers to masonry walls having thickness of 210 mm, width equal to

740 mm and height of 2100 mm. In particular, masonry constituting the panels was made

by calcarenite blocks with sizes 360 9 210 9 160 mm and mortar joints with thickness

equal to 10 mm. The unreinforced URM specimen referred to unreinforced control

specimen, while FRP-W4 referred to a panel reinforced with four CFRP strips having

width of 50 mm and thickness of 0.13 mm. Panels were tested under flexure with a

constant axial load of 80 kN.

Regarding the analytical assumptions, the above described constitutive law were

adopted. The test results obtained in Accardi et al. (2007a) were considered to choose

compressive strength, peak strain and to calibrate the above mentioned A and D parameters

of the compressive stress–strain relationship. In particular, Accardi et al. (2007b) per-

formed monotonic compressive tests on calcarenite masonry samples with three unit

courses and normal-grade mortar layers with thickness equal to 10 mm. Average peak

stress was r0 = 4 MPa, peak strain e0 = 1.3 mm/m, while from best fitting of experi-

mental curves the deduced shape parameters were D = 1.5 and A = 2.8. Finally, the

uniaxial constitutive law of calcarenite masonry was completed by assuming a linear

N

R xc
c

Fl

εc

εtAf

b

t

tf

x
T d

M

Fig. 5 Transverse cross section of the wall with strain and stress distribution
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stress–strain relationship for masonry in tension, by assuming also tensile strength

rt = 0.35 MPa and elastic modulus Et = Ec/2 = 2000 MPa.

Considering the FRP strip, data provided by the producer considered the tensile strength

equal to 3450 MPa, ultimate strain efu = 1.5%, which corresponded to a Young modulus

equal to Ef = 230,000 MPa. Epoxy resin was adopted to apply the reinforcement; prop-

erties declared by the producer were tensile strength equal to 30 MPa.

With reference to the calculation of debonding stress and strain, the latter was assumed

equal to edu = 2.71 mm/m, having set fb = 3.37 MPa as discussed in Accardi et al.

(2007a), and finally the debonding tensile stress of FRP was calculated as

ftb ¼ Ef � edu ¼ 624:29MPa.

As it could be observed from Fig. 7, the analysis provided a little overestimation of the

stiffness in both cases. This fact was probably due to the flexibility of the base restrain,

which cannot be included in the sectional analysis. First cracking and ultimate moment

were quite well predicted for the URM wall while an underestimation hold for FRP

reinforced specimen.

1.1.3 Proposed model

After defining the sectional response in terms of moment–curvature diagram, a numerical-

analytical procedure was adopted able to find the overall flexural behaviour of the wall in

terms of lateral force F versus lateral displacement d curves.

The main hypothesis was related to the beam approximation of the wall. This consid-

eration should be considered valid when the lateral joints of studied panel with walls in

orthogonal direction are poor or when the studied panel has a great value of the width-to-

height ratio. This means that lateral constraints are far enough such that a middle strip of

the wall with unit width can be studied to represent the flexural behaviour of the central

part of the member.

Fig. 6 Test set-up adopted in
Accardi et al.(2007b)
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With these assumptions, the panel is here represented by a cantilever beam, loaded with

an horizontal force Fj, an axial force P and a bending moment Mj at the top (Fig. 8a). The

lateral force Fj represents the out-of-plane seismic load, the axial load P idealizes the effect

of the gravity loads, while the bending moment Mj is related to the possibility that a

restraining condition should be provided in the panel (e.g. a wall with restrained rotation at

the ends). As it is well-known, for a general calculation including second order effects, Fj,

P and Mj should be unknown, each depending on the actual value of the lateral dis-

placement. However, aiming to propose a simplified model for easy parametric calcula-

tions and according to experimental results (Accardi et al. 2007a) the following

assumptions are made: the axial force P is considered constant during the loading process;

the bending moment at the top Mj is assumed as a function of the lateral force Fj. On the

basis of this last assumption, Mj is evaluated as Mj = FjfL, where f is a coefficient

depending on the effective restraining level at the top. In particular, the product fL defines

the distance between the top of the member and the section with zero internal bending

moment according to first order theory (e.g. f = 0 for cantilever beam, f = 0.5 for beam

with fixed rotation at both ends).

The cantilever beam is subdivided in n parts with equal length D (Fig. 8a), and a control

point coincident with each middle section is defined. Defining the coordinate vector of

each control point as

x ¼
x1

..

.

xn

2

6

4

3

7

5

ð15Þ

0 0.5 1 1.5 2 2.5
ϕ [105/mm]

0

4

8

12

M
 [k

N
m

]

URM (Experimental)

URM (Analytical)

FRP-W4 (Experimental)

FRP-W4 (Analytical)

Fig. 7 Comparison between experimental and analytical moment–curvature curves (Experimental data of
Accardi et al. 2007a)
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the first order moment in each point is defined by the vector

MI ¼
MI;1

..

.

MI;n

2

6

4

3

7

5

¼ FjL f� 1ð Þ þ Fjx ð16Þ

while the second order moment is calculated as

MII ¼
MII;1

..

.

MII;n

2

6

4

3

7

5

¼ �P wn � wð Þ ð17Þ

being wn the top displacement of the beam and w the vector of displacements in each

control point. The total bending moment is obviously calculated as the sum of Eqs. (16)

and (17) in the form

M ¼
M1

..

.

Mn

2

6

4

3

7

5

¼ MI þMII ¼ FjL f� 1ð Þ þ Fjx� P wn � wð Þ ð18Þ

After knowing the bending moment, the effective displacement can be calculated by

adopting the Mohr’s analogy (Fig. 8b) and assuming the curvature as constant in each

beam’s piece. In the Mohr’s model, the fictitious force on each portion is calculated as

?

xi

Fj

P

Mj=FζL

1

2

i

n

1

2

i

n

T1*

T2*

Ti*

Tn*

ACTUAL MODEL FICTICIOUS MODEL

(a) (b)

Fig. 8 Model for calculation of the flexural response; a geometry and load path; b Mohr’s scheme for
displacement calculation
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T� ¼
T�
1

..

.

T�
n

2

6

4

3

7

5

¼ U � D ð19Þ

being U the vector of curvatures in each control point, defined as a function of the bending

moment expressed by Eq. (18)

U ¼
/1 M1ð Þ

..

.

/n Mnð Þ

2

6

4

3

7

5

ð20Þ

On the basis of the patch shown in Fig. 8b, the displacement of the i-th control point is

finally obtained in the form

wi ¼ �
X

i

k¼1

T�
k xi � xkð Þ ð21Þ

that can be generalised for each control point by the following expression

w ¼
w1

..

.

wn

2

6

4

3

7

5

¼ �

0 0 0 0 0

x2 � x1 0 0 0 0

..

. ..
.

0 0 0

xi � x1 xi � x2 xi � xi�1 0 0

xn � x1 xn � x2 � � � xn � xn�1 0

2

6

6

6

6

6

4

3

7

7

7

7

7

5

�
T�
1

..

.

T�
n

2

6

4

3

7

5

¼ �D � T�

ð22Þ

The n-th equation provided by the system (22) allows calculating the top displacement

in the form

wn ¼ �T� xn � xð Þ ð23Þ

The solution can be achieved with an iterative procedure. The geometrical features are

assigned and the axial load P is assumed to be known and constant during the analysis. The

moment–curvature diagram is preliminary calculated by means of the procedure described

in the previous section for assumed axial load P. (1) A value is assigned to the lateral force

Fj at the j-th step; (2) the first order moments are calculated by Eq. (16) and second order

moments are assumed to be zero at the first iteration (M
ð1Þ
II ¼ 0); (3) the corresponding

curvature vector Uð1Þ can be evaluated by means of Eq. (20), and fictitious loads T�ð1Þ by

means of Eq. (19); (4) lateral displacements at first iteration wð1Þ are therefore calculated

with Eq. (22); (5) obtained displacements wð1Þ are subsequently adopted to evaluate second

order moments at the successive iteration M
ð2Þ
II ¼ �P w

ð1Þ
n � wð1Þ

� �

; (6) the updated value

of total moment is calculated as Mð2Þ ¼ MI þM
ð2Þ
II and points (3) and (4) are repeated,

calculating the new values of lateral displacements wð2Þ. The final values are obtained

when the balanced difference between the deflection at the k ? 1-th and k-th iteration was

less than a fixed tolerance
wkþ1

n �wk
n

wk
n

\0:01 .
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In this way a value of displacement at each control point was calculated for a fixed

lateral force Fj. The overall force–displacement curve was therefore obtained by assigning

a new value to the lateral force Fj?1 and repeating the above mentioned procedure.

Figure 9 shows the results given by the application of the above mentioned procedure

for an out-of-plane loaded masonry panel with the same data described in the previous

section, referring to the experimental work of Accardi et al. (2007b). In particular, the

lateral load–deflection curves have shown that increases of ultimate lateral force and

deflection were expected with an increase of the reinforcement ratio. Second order effects

were neglected in order to stress the achievable increase of lateral load capacity. As it was

expected, the theoretical effect of adding external CFRP strips did not affect the initial

stiffness, but it should enhance strength and ductility. The response of the unreinforced

wall was characterized only by a non-linear branch with an ascending trend until brittle

failure. Conversely, the effect of adding external flexural reinforcement gave to the curves

a second ascending branch with a reduced slope, which means that the walls continued to

sustain the external load also after cracking.

It should be noted that for each case, failure was reached due to compressive crushing of

masonry.

1.2 Numerical and experimental validation

A numerical investigation was also performed to validate the results obtained with the

proposed model.

The finite element method (FEM) was adopted to model the behaviour of panels, as

shown in La Mendola et al. (2009), by using the code LUSAS Release. Plane stress

elements QPM8 were considered to model blocks and mortar (Fig. 10). These were regular

quadrilateral elements with eight nodes, using quadratic integration and the Gauss 3 9 3

numerical scheme. Both block units and mortar elements were characterized by a linear

constitutive law.

6 strips
5 strips

4 strips

2 strips

Fig. 9 Analytical lateral force–deflection curves: effect of the reinforcement amount
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It should be noted that linear constitutive laws were considered since the non-linearity

of the overall behaviour was given by the connections by interface elements. This

assumption allows to reduce the computational effort. The connection between the block

and the mortar layer was achieved by means of IPN6 elements. This was a six node

interface element between two lines, having no thickness and quadratic interpolation. This

element proved to be suitable to model interlayer failure and crack propagation. Contact

zones were considered block-mortar and FRP-masonry and modelled with a bi-linear

interface law. Interface elements were characterized by a damage model for delamination,

allowing the failure mode for opening and/or sliding. The interface model required three

parameters: initial failure strength fmax, corresponding opening uo and fracture energy Gf.

The ratio between the initial failure strength, fmax, and the limit displacement uo gives the

interface elastic stiffness kI. Several analyses were carried out for calibrating interface

parameters. In particular, URM specimens were modeled and the values assumed for fmax,

kI and Gf were changed until good accordance was recorded between the experimental and

numerical lateral load versus deflection curves. Finally, the following parameters were

assumed fmax = 0.055 N/mm2; kI = 34.78 N/mm3, Gf = 0.0025 N/mm, which were also

adopted for FRP reinforced walls.

The model included geometric non-linearity on the basis of 2nd order theory.

Equilibrium conditions were created in nodes of the calculation model, considering the

deformed shape. Stiffness matrix was updated for each load step of iteration and equi-

librium equations are solved by the Arc-length method.

Displacement-controlled static analysis were performed by imposing a deflection of

0.5 mm/step. Reaction force was measured by means of monitoring points placed at joints

of the base constraint.

Figure 11 shows the comparisons between the results obtained theoretically and the

experimental data. Analytical and numerical predictions were plotted together with

(a) (b)

Calcarenite/FRP 
Interface 

mortar

calcarenite

calcarenite

Calcarenite/Mortar 
Interface

mortar

calcarenite

calcarenite

FRP

Fig. 10 Numerical model in
LUSAS
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experimental results. A good accordance could be observed between the three curves,

showing as the proposed model could represent a simplified assessment tool for prelimi-

nary evaluation of a strengthening design. Particularly, strength and stiffness were better

predicted by the proposed model for URM specimen (Fig. 11a).

Good predictions were also obtained for reinforced specimens; the analytical prediction

was in good accordance with the FE analysis for FRP-W2 specimen with a little under-

estimation of the overall response—i.e. difference of about 12% for the peak load.

The theoretical prediction provided by the proposed model was also in good agreement

with the experimental curve of specimen FRP-W4. A slight underestimation of about 13%

of peak load was calculated, while the FE analysis provided a little overestimation of about

12%.

1.3 Parametric analysis

The adopted sectional analysis allowed to make some considerations about designing

strengthening techniques by means of FRP reinforcement.

Experim.
Analytical
Numerical (FE)

URM

Experim.
Analytical
Numerical (FE)

FRP-W2

Experim.
Analytical
Numerical (FE)

FRP-W4

(a) (b)

(c)

Fig. 11 Comparison between experimental data and theoretical results (experimental data of Accardi et al.
(2007a))
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Figure 12 shows the patch of the cross section of the wall together with a range of

possible strain profiles at failure. Reinforcement in the compression zone was neglected

due to the fact that FRP was considered reacting only in tension.

It was clear that failure could be addressed to FRP delamination or to masonry com-

pressive crushing. In the first case, delamination was achieved when debonding strain edu
was reached on the FRP-masonry fiber (range 1), while in the second case failure of

masonry occurred due to the reaching of maximum compressive strain of masonry emu

(range 2). The ultimate curvature increased with the increase of the neutral axis depth

among range 1, and differently it decreased for range 2. As a consequence, the greater

value of ultimate curvature was obtained in correspondence of balanced failure, meaning

theoretical contemporary failure of masonry and FRP. In this way, balanced failure could

be considered as an optimal configuration for design purposes, due it allowed obtaining the

greater ductility of the wall.

The first equilibrium equation of the section at failure could be expressed in the fol-

lowing normalised form

S1 emuð Þ
uu � h

� cf � xf ¼ n ð24Þ

where

Z emu

0

r eð Þ
fb

� de ¼ S1 emuð Þ

n ¼ N

b � h � fb
; xf ¼

Af � ftb
b � h � fb

and cf ¼
rf

ftb

Equation (15) should be particularized for range 1 considering cf = 1. With the same

assumptions of symbols, the equilibrium equation could be specified for balanced failure

S1 emuð Þ
uu1�2 � h

� xf ¼ n1�2 ð25Þ

Equation (25) proved that the normalised axial force n1–2 corresponding to the change

from debonding to crushing failure depended by the ultimate compressive failure of

masonry emu and by the mechanical ratio of FRP reinforcement xf.

Figure 13a shows the trend of n1–2 as a function of the emu and for three different values

of xf. Results are reported for three different kinds of composite, namely Carbon, Aramid

and Glass FRP. Moreover, the value of ultimate strain 0.0026 adopted for the previously

discussed analyses was highlighted. It could be observed that n1–2 mainly depended by

N

xc

εmu

εduAf

b

h
M 1

2

Fig. 12 Transverse section and possible strain profiles at failure
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ultimate compressive strain of masonry, increasing for higher values of emu. This fact

reflected the theoretically expected evidence that flexural ductility increased when the base

material have a more extended post-peak branch. Furthermore, it could be noted that the

balanced failure axial load decreased with an increase of the amount of FRP ratio

(Fig. 13b).

A reasonable design procedure should be related not only to a prescribed value of FRP

amount for strength purposes, but also ensuring the higher value of ultimate curvature. In

this manner, an amount of FRP could be chosen by means of Fig. 13a, by selecting the

ultimate compressive strain of existing masonry and imposing n1–2 = nd, where nd is the

design normalised axial load. Finally, the ultimate lateral load should be checked for the

selected reinforcement ratio.

Figure 14 shows the enhancement of ultimate lateral force with the increase of FRP

mechanical ratio and for the fixed parameters adopted for above presented analyses

(n = 0.15, emu = 0.0026). In this way the strength increase could be checked and com-

pared with lateral force demand imposed by code requirements.
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Fig. 13 Variation of the
normalised balanced axial load
a as a function of the ultimate
compressive strain of masonry;
b as a function of the mechanical
ratio of FRP
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2 Conclusions

This paper presented a theoretical analysis about the flexural behaviour of out-of-plane

loaded masonry walls reinforced with FRP strips. A simple model was proposed, based on

a sectional analysis which included the effective non-linear constitutive law of masonry in

compression, the tensile strength of masonry, and the effect of debonding at masonry-FRP

interface. A fiber model allowed to reproduce easily test configurations of masonry walls

with a lateral force. Second order effects were also included by means of an iterative

procedure. Results obtained by the proposed model were compared with experimental data

available in the literature and with numerical FE simulations. From obtained results the

following conclusions could be drawn:

• the inclusion of second order effects and ultimate debonding strain is crucial to obtain a

realistic response of the wall;

• failure could occur due to crushing of masonry or debonding of FRP. An optimal

design configuration should be addressed to the contemporary achievement of both

mechanisms;

• the normalised axial force corresponding to the balanced failure proved to be a function

of the ultimate compressive strain of masonry and of the mechanical ratio of FRP.
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