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Abstract The problem of non-classical dynamic analysis of structures resting on flexible

bases is studied in this paper. Because of presence of the underlying soil in the dynamic

model of structure that acts like an energy sink, the damping matrix is not proportional to

structural mass and stiffness and theoretically a non-classical approach should be followed

in modal analysis. Considering one to twenty-story buildings, two types of soils, and

several suits of ground motions each containing ten earthquake records specifically

selected for each building, the seismic responses are calculated using a time history modal

analysis in this paper. Three cases are considered: fixed-base buildings with classical

analysis, flexible-base buildings with classical and non-classical analysis. It is shown that

the code-based soil-structure interaction (SSI) analysis for the fundamental mode is not

always safe. Also, on each soil type, instances of importance of accounting for the non-

classical nature of the SSI system are clarified. Cases for which the base flexibility should

be considered for the higher modes too are distinguished. Finally, simple correction factors

are derived for converting the fixed-base responses of moment frames, resting on surface

foundations on medium and soft soils, to the responses including soil-structure interaction

effects.

Keywords Nonclassical � Time history � Spectrum � Soil-structure interaction

1 Introduction

Modeling of the soil-structure interaction (SSI) is meant to be a more accurate and realistic

approach to a structural analysis problem; then, a more detailed modeling of the damping

phenomenon in the system is warranted in this case. This task is performed by putting aside
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the convenient assumption that damping is proportional to mass and stiffness, i.e., by doing

a nonclassical dynamic analysis. In an SSI system a considerable part of damping, called

the radiation damping, is contributed by the totally different medium of soil by letting the

structural vibration energy propagate toward infinity from the soil-structure interface, or

the foundation. This is unlike the fixed-base systems in which the source of vibration

damping is more or less uniquely attributed to the structural system and is hence almost

uniform. Therefore, when the flexibility of soil is accounted for in the seismic analysis of

structures resting on such a medium, the system damping matrix is no longer taken to be

proportional to structure’s mass and stiffness matrices. The damping matrix of such a

complex system is a non-uniform combination of structure and soil damping values and

therefore is not classical.

On the other hand, when only the maxima of seismic responses are sought (which is the

prevailing case), the spectrum analysis can help attain a relatively rapid yet accurate

enough design in most problems. A basic assumption in such an analysis is the damping

being classical. This makes definition of the damping matrix very easily possible as a

combination of mass and stiffness matrices. When there is a doubt on validity of this basic

assumption, like in SSI problems as discussed above, availability of a spectrum analysis

methodology corrected for nonclassical damping while retaining its simplicity will be very

helpful.

Many attempts have been made by different researchers to develop dynamic analysis

methods for systems with a nonclassical damping. The first solution for dynamic response

of such systems was derived by Foss (1958). His method is known as the extended modal

analysis (EMA). While being robust, the complexity of the above method detracted the

attention of practical engineers. The work of Veletsos and Ventura (1986) was an

important step forward in this regard. They simplified the EMA through giving insight to

the physical meaning of different terms of the formulation and converted the complex-

valued equations to their real counterparts. They derived equations for determining natural

periods and mode shapes of nonclassical systems resulting in free vibration responses and a

Duhamel integral formulation for computing the dynamic response.

The response spectrum analysis consists of two steps: computing the maxima in each

mode, and, combining the modal maximum responses via a suitable rule like SRSS or

CQC. Ziaeifar and Tavousi (2005) developed formulas for calculating the modal values

of the response maxima based on the work of Veletsos and Ventura (1986). They applied

their formulation to mass-isolated structural systems and studied the conditions requiring

such nonclassical analysis. Zhou and Yu (2008) derived formulas for combining the

maximum modal responses of non-classically damped linear systems. They used the

random vibration theory and accounted for the correlation between the modal displace-

ment and velocity responses of structure. Based on a general modal response history

analysis formulation for nonclassical and over-damped systems developed by Song et al.

(2008), they derived a response spectrum analysis approach and proposed a general

modal combination rule.

To gain attractiveness in practical earthquake engineering, a nonclassical SSI problem

should be solved within the frame work of a conventional design spectrum. In the code-

based procedures (American Society of Civil Engineers 2010), it is prescribed that for

spectral analysis of SSI systems, the fixed-base design spectrum of the code is still used but

with the fundamental period and equivalent damping of the SSI system, which are usually

larger than those of the fixed-base system. This prescribed analysis is only for the fun-

damental mode and the effect of SSI on the higher modes is allowed to be ignored.
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In the current study, first the SSI base shear and displacements are compared with their

fixed-base counterparts using both classical and nonclassical analysis. Then, it is recog-

nized for which cases the higher mode SSI effects are important and in what instances

performing the non-classical SSI analysis is necessary. One to 20-story buildings are

considered and for each building, two suits of ground motion each containing 10 records,

one being recorded at the near field and the other at the far field, selected through a special

procedure specifically for each structure are used. Two types of medium and soft soils are

also considered.

In the following, first the theory of non-classical spectral analysis of SSI systems is

described and then the building-earthquakes cases are identified and the analysis results are

presented.

2 Modal analysis of soil-structure systems

In this section the equations of motion of structures resting on flexible soils are derived and

decomposed into its modal components as an extension of (Veletsos and Ventura 1986) to

soil-structure systems. To this end, a multistory structure on flexible soil subjected to a

horizontal ground motion is considered as shown in Fig. 1.

Without curbing generality, the system is assumed to be a shear building having a single

horizontal degree of freedom (DOF) at each floor to retain simplicity. In addition, it is

supposed that the supporting medium possesses a horizontal as well as a rotational DOF,

and the input motion in the presence of structure is assumed to be identical to the free-field

motion.

The equations of motion of the system of Fig. 1 can be written as follows:

M½ � €U
� �

þ C½ � _U
� �

þ K½ �fUg ¼ pðtÞ ð1Þ
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Fig. 1 The multistory structure on flexible soil under lateral movement
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in which:
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and the mass, damping and stiffness matrices are shown with M½ �; C½ � and K½ �, respectively,
introduced in Eqs. (24–28) in the Appendix. As seen with the vector of degrees of freedom

in Eq. (2), the additional two last rows refer to the extra deformations at the base. This in

turn results in the fact that the two last rows and columns of the damping matrix pertain to

the soil dampings. This property makes the total system damping matrix to be in essence

nonclassical, i.e., non-proportional to mass and stiffness matrices. Of course, it can be

assumed to be proportional just as an approximate presumption.

As shown in Appendices 2 and 3, the dynamic response including non-proportionality

of the damping matrix can be derived as:

fUg ¼
XN

j¼1

avj

n o
Vj tð Þ þ fbvj g _DjðtÞ

h i
ð4Þ

in which VjðtÞ and _DjðtÞ are the pseudo-velocity and the relative velocity of the jth mode

equivalent SDF system with natural frequency pj and damping ratio fj (see Eq. 33), N is

the total number of degrees of freedom, and avj

n o
and fbvj g are as defined in Eqs. (50) and

(45), respectively. VjðtÞ and _DjðtÞ are defined as follows:

Vj tð Þ ¼ pjDj tð Þ ¼ �pj

Z t

0

€ug sð Þhjðt � sÞds ð5Þ

_Dj tð Þ ¼ �
Z t

0

€ug sð Þ _hjðt� sÞds

The base shear is computed as described in Appendix 4 as the summation of lateral

story forces resulting in the following equation:

Vb tð Þ ¼
XN

j¼1

max
j

� �
pjVj tð Þ þ m

bc
j

� �
pj _Dj tð Þ

h i
ð6Þ

in which:

max
j ¼ aMv

j þ xMv
j

m
bc
j ¼ bMv

j þ cMv
j ð7Þ

and 1Nh i ¼ 1. . .1
zffl}|ffl{n

0 0nþ2

* +

, and the quantities on the right side of Eq. (7) are as defined in

Eq. (58).

934 Bull Earthquake Eng (2017) 15:931–965

123



3 The spectrum analysis

In order to calculate the maximum displacements or base shear from Eqs. (4) or (6),

respectively, maximum values of VjðtÞ and _DjðtÞ are needed noting that these maxima need

not to occur simultaneously. One may use the SRSS rule to combine these maxima as:

Uf gjmax
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

avj
n o

Vjmax

� �2

þ bvj

n o
_Djmax

� �2
r

Vb
jmax

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max
j

� �
pjVjmax

� �2

þ m
bc
j

� �
pj _Djmax

� �2
r

ð8Þ

in which, an index max shows the maximum value in the jth mode. The following relation

can be assumed to exist between the maximum values of VjðtÞ and _DjðtÞ:

_Djmax
¼ gjVjmax

ð9Þ

There have been different proposals for the conversion factor gj in the above equation.

Sinha and Igusa (1995) used an gj = 1 assumption. Zhou and Yu (2008) used the theory of

random vibrations to calculate the correlation factors of displacement and velocity func-

tions in each mode. Sadek et al. (2000) proposed the following relation using the period Tj

and damping factor nj of the j-th mode:

gj ¼ avjT
bvj
j ; avj ¼ 1:095þ 0:647nj � 0:382n2j

bvj ¼ 0:193þ 0:838nj � 0:621n2j ð10Þ

Ziaeifar and Tavousi (2005) based on a work by Pekcan et al. (1999) suggested that:

gj ¼ f Tj; nj

 �

¼ 0:8� 0:6nj þ 0:17Tj þ 0:4njTj ð11Þ

The above equation is on the basis of the random vibration analysis of an earthquake

ground motion assumed to be a stationary function, and is used in this study.

Substituting (9) in (8) results in:

Uf gjmax
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

avj
n o2

þ g2j bvj

n o2
r

Vjmax
ð12Þ

Vb
jmax

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max
j

� �2

þ g2j m
bc
j

� �2
r

pjVjmax

Equation (12) can be simplified to give the maximum base shear of the jth mode as:

Vb
jmax

¼ MjpjSpvj pj; nj

 �

¼ MjSpaj pj; nj

 �

ð13Þ

in which:

Mj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max
j

� �2

þ g2j m
bc
j

� �2
r

ð14Þ

where Spv and Spa are the spectral values of the jth mode pseudo-velocity and pseudo-

acceleration, respectively.
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Equation (13) for computing the maximum base shear of a nonclassical SSI system

differs from that of the classical (conventional) systems in two ways. First, the pseudo-

acceleration Spa should be calculated using the jth mode period and damping ratio of the

nonclassical system, and second, a different modal mass Mj calculated by Eq. (14) is

utilized.

4 Numerical modeling

4.1 Design assumptions

For the purposes of this study, special steel moment frame structures being 1, 2, 4, 6,…, 18

and 20 story building are designed. The frames have three bays both ways each spanning

5 m. The floor to floor heights are 3 m. The residential buildings are designed according to

ASCE 7-10 (American Society of Civil Engineers 2010) and AISC-ASD (American

Institute of Steel Construction 2005). The seismicity of the region is considered to be very

high with the effective peak acceleration at the ground surface to be 0.35 g. Two types of

underlying soils are considered: a soft soil [soil type D (American Society of Civil

Engineers 2010)] and a very soft soil (soil type E). Their characteristics are given in

Table 1.

Eleven buildings with the mentioned number of stories are designed with fixed bases for

each soils type. Therefore, totally 22 buildings are considered in this study. The design

spectra are shown in Fig. 2 for each soil type (American Society of Civil Engineers 2010).

Natural periods of the buildings in their first three modes of lateral displacement are

shown in Table 2.

As seen in Table 2, since the same building is designed using a different spectrum on

each soil type, two different buildings with the same height but different periods are

resulted. For 1 to 4-story buildings single footings and for 6 to 20-story structures strip

foundations are designed. The foundation dimensions are shown in Table 3.

4.2 The earthquake records

After design of fixed-base buildings, they will be analyzed under seismic ground motions

for calculating their dynamic responses. For time-history analysis of the buildings under

study, earthquake records with the following characteristics are selected out of the PEER

NGA database (http://peer.berkeley.edu/peer_ground_motion_database): 6.5 B Magni-

tude B 7.5, soil type is whether D or E. Two groups of earthquakes are selected for each

building on each soil type regarding the epicentral distance, R. Group one, the near-field

earthquakes with R B 20 km, and group two, the far-field earthquakes with

Table 1 Characteristics of the soil types

Soil type Shear wave velocity
Vs (m/s)

Unit mass q
(kg/m3)

Poisson’s
ratio m

Bearing capacity
(kgf/cm2)

D 250 1800 0.4 2

E 125 1700 0.45 1.5
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20\R B 50 km. Then the records are scaled according to ASCE7-10 (American Society

of Civil Engineers 2010), such that their response spectra does not fall below the design

spectrum of Fig. 2 between 0.2T and 1.5T, where T is the fundamental period of the fixed-

base buildings. Then 10 records in each distance group with scale factors closer to unity

(hence with more similarity to the design spectrum) are retained for dynamic analysis of

the same building. Table 4 shows the records selected for each building. Also, for instance,

Table 5 shows the records selected for the 10-story building along with their scale factors.

Characteristics of the selected records of Table 4 are given in the Appendix.

4.3 Modeling of soil-structure interaction

For the purposes of this study it is necessary to analyze four different models. Model 1 and

Model 2 are two-dimensional (2D) frames representing an interior frame of each of the

above buildings developed in SAP2000 (Computers and Structures, Inc. 2014). Model 1 is
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Fig. 2 The design spectra for the
soil types D and E

Table 2 First three natural periods of the fixed-base buildings in lateral motion (s)

Soil type Type D Type E

No. of stories Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3

1 0.555 – – 0.555 – –

2 0.768 0.315 – 0.768 0.315 –

4 0.971 0.399 0.257 0.971 0.399 0.257

6 1.19 0.490 0.313 1.19 0.490 0.313

8 1.42 0.567 0.352 1.36 0.548 0.347

10 1.72 0.699 0.438 1.52 0.603 0.385

12 1.93 0.770 0.481 1.74 0.688 0.428

14 2.06 0.840 0.529 1.94 0.777 0.485

16 2.34 0.939 0.578 2.12 0.828 0.515

18 2.56 1.02 0.627 2.35 0.980 0.620

20 2.81 1.10 0.682 2.49 0.972 0.600
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Table 3 Dimensions of the foundations (m)

Number
of stories

Foundation type Soil type D Soil type E

1 Footing Exterior: 0.9 9 0.9 9 0.5
Interior: 1.1 9 1.1 9 0.5

Exterior: 1 9 190.5
Interior: 1.1 9 1.1 9 0.5

2 Footing Exterior: 1.1 9 1.1 9 0.5
Interior: 1.3 9 1.3 9 0.5

Exterior: 1.2 9 1.2 9 0.6
Interior: 1.5 9 1.5 9 0.6

4 Footing Exterior: 1.3 9 1.3 9 1
Interior: 1.8 9 1.8 9 1

Exterior: 1.7 9 1.7 9 1
Interior: 2.1 9 2.1 9 1

6 Strip 15.5 9 190.7 15.5 9 1.4 9 1

8 Strip 15.5 9 1.4 9 0.7 15.5 9 1.7 9 1

10 Strip 15.5 9 1.7 9 1 16 9 2.3 9 1

12 Strip 15.5 9 2.1 9 1 16.5 9 2.7 9 1

14 Strip 16 9 2.5 9 1 17 9 2.8 9 1

16 Strip 16.5 9 2.6 9 1.2 18 9 391.2

18 Strip 17 9 2.8 9 1.2 18.5 9 3.2 9 1.2

20 Strip 17 9 3.1 9 1.2 19 9 3.5 9 1.2

Table 4 The selected records

Soil type D Soil type E

Near field Far field Near field Far field

NGA number PGA (g) NGA number PGA (g) NGA number PGA (g) NGA number PGA (g)

953 0.55 169 0.28 178 0.26 726 0.13

1044 0.70 777 0.23 1038 0.15 732 0.08

1063 0.63 778 0.26 1111 0.49 1107 0.27

1085 0.65 786 0.21 1113 0.08 1180 0.13

1087 0.99 806 0.21 1116 0.23 1183 0.12

1197 0.79 987 0.25 1119 0.71 1196 0.06

1492 0.35 995 0.37 1120 0.65 1199 0.09

1503 0.66 996 0.34 1194 0.15 1204 0.11

1504 0.41 1001 0.27 1496 0.14 1205 0.46

1507 0.62 1003 0.45 1536 0.18 1228 0.08

1508 0.40 1186 0.24 1541 0.17 1233 0.07

1509 0.45 1187 0.16 – – 1238 0.10

1529 0.24 1201 0.30 – – 1240 0.06

1602 0.77 1203 0.26 – – 1246 0.18

1605 0.43 1236 0.18 – – 1483 0.13

– – 1478 0.18 – – 1537 0.11

– – 1484 0.21 – – 1538 0.08

– – – – – – 1542 0.13

– – – – – – 1553 0.09
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fixed at base but Model 2 is a flexible base structure. Flexibility of the base in Model 2 is

incorporated by adding the body of foundations to the structural model while resting on

certain springs. Calculation of the stiffness of the soil springs is described in the next

section.

Moreover, an equivalent damping accounting for combination of the dampings of the

structure and the soil is determined, as explained in Sect. 4.3.2, and assigned to the

flexible-base model. The structural part of the damping is assumed to be of Rayleigh type

with a damping ratio of 5 % in all models. Models 3 and 4 are stick models of the same

flexible-base 2D frames as above and are developed in Matlab. Models 1–3 are analyzed

using the classical modal analysis and Model 4 using the nonclassical procedure described

in Sects. 2 and 3. The reason for Model 3 is utilizing it as a basis for comparison, within

the needs of this study, with responses determined using the more accurate 2D frame

analysis (Model 2) in SAP. This is needed because certain simplifying assumptions are

necessary to reduce a 2D model to a stick model. Model 4 is necessary for nonclassical

analysis because such an analysis is not possible in commercial engineering softwares. In

both models 3 and 4, the flexible base is modeled using a rigid foundation being in

dimensions equivalent to the actual foundations of the 2D frames. For strip foundations (in

6 to 20-story buildings), the same dimensions are used. For single footings (in 1 to 4-story

buildings), length of the foundation element in Models 3 and 4 is taken to be equal to sum

of the single foundation lengths in the corresponding 2D frames. Width of the foundation

in this case is mean of the foundation widths in the corresponding frame. The above

assumptions are easily validated by doing the same seismic analysis for the Models 2 and

3. It will be shown that the mentioned assumptions are appropriate for the responses

targeted in this study.

The base of the Models 3 and 4 rests on springs and dampers along the two degrees of

freedom in plane as shown in Fig. 3. Characteristics of the springs and dampers are given

in the following sections.

Table 5 The selected records and their scale factors for the 10 story building

Soil type D Soil type E

Near field Far field Near field Far field

NGA
number

Scale
factor

NGA
number

Scale
factor

NGA
number

Scale
factor

NGA
number

Scale
factor

953 0.4759 169 0.7058 178 1.3794 732 0.870

1044 0.473 777 0.612 1111 0.582 1107 1.104

1087 0.577 778 0.880 1113 2.353 1180 1.265

1197 0.501 806 1.226 1116 1.239 1199 1.548

1504 0.406 1187 0.923 1119 0.409 1204 1.402

1507 0.698 1201 0.645 1120 0.255 1238 1.348

1508 0.602 1203 0.729 1194 1.030 1246 1.085

1529 0.435 1236 0.832 1496 1.360 1537 1.324

1602 0.791 1478 1.178 1536 0.609 1542 0.802

1605 0.614 1484 1.211 1541 0.992 1553 1.317
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4.3.1 Stiffness of the soil springs

The stiffness of soil springs is a function of the dynamic shear modulus of soil, G. The

dynamic shear modulus can be much smaller than the soil shear modulus at small strains,

G0, because of the large strains that develop in soil during an earthquake. G0 is given by

Eq. (15):

G0 ¼
cV2

s

g
¼ qV2

s ð15Þ

in which c is the unit weight of soil, Vs is the shear wave velocity in soil at small strains,

and g is the acceleration of gravity. The ratio G=G0 depends on the soil type and the soil’s

shear strain during earthquake. Since the shear strain is somewhat correlated with the peak

ground acceleration and the latter with the spectral acceleration, the ratio G=G0 has

appeared in the codes as a function also of the effective peak ground acceleration at the

ground surface (SDS) for simplicity. SDS is equal to the spectral acceleration at short

periods divided by 2.5 (American Society of Civil Engineers 2010). Values of G=G0 for

the two soil types are given in Table 6 according to ASCE 7-10 (American Society of Civil

Engineers 2010).

Since different ground motions have been selected for different structures, the average

SDS of each group of earthquakes mentioned in Table 4 is used for calculation of G=G0 on

each soil type.

According to ASCE41-13 (American Society of Civil Engineers 2013), before deter-

mining the spring stiffnesses, condition of the foundation being flexible or rigid with regard

to the underlying soil, must be determined. Then, if the inequalities (16) and (17) hold, the

single/mat and strip foundations, respectively, are rigid:

Fig. 3 Configuration of the stick
models (Models 3 and 4)
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where Ef and mf are respectively the modulus of elasticity and the Poisson’s ratio of

foundation material (concrete); B, L and t are width, length, and thickness of foundation, m
and G are the Poisson’s ratio and (dynamic) shear modulus of soil, ksv is the vertical

stiffness of soil (or the modulus of soil reaction) and If and l are moment of inertia of the

strip foundation’s section and its length shared by one column, respectively.

The above criteria result in all of the foundations of this study resting on the soil type E

to be rigid. For the soil type D, only foundations of 1, 2 and 4-story buildings prove to be

rigid. This is expected because of the small dimensions of the footings for the shorter

buildings and softness of the soil types. In the plane of a 2D frame, introducing the

horizontal x and the vertical z translational and the y-axis rocking degrees of freedom at

each foundation component suffice. Following the linear procedure of ASCE41-13

(American Society of Civil Engineers 2013), for each foundation, a single horizontal

spring is assigned in the x direction. For flexible foundations, a uniformly distributed

vertical spring with the stiffness ksv given in Eq. (16) is utilized.

For rigid foundations, coupling of vertical and rocking degrees of freedom is taken into

account using a nonuniform distribution of vertical springs. For this purpose, each foun-

dation is divided to interior and exterior zones. The exterior zones are two rectangles, one

at each end of the foundation, with a length of B=6 and a width equal to that of the

foundation.

The vertical stiffness of the distributed springs at the middle and end zones, kmid and

kend respectively, are as follows (American Society of Civil Engineers 2013):

Table 6 Values of G/G
0 Soil type Type D Type E

No. of stories Near field Far field Near field Far field

1 0.393 0.682 0.210 0.357

2 0.389 0.726 0.225 0.375

4 0.408 0.679 0.225 0.458

6 0.258 0.703 0.225 0.531

8 0.353 0.708 0.225 0.538

10 0.252 0.721 0.225 0.472

12 0.277 0.738 0.225 0.552

14 0.376 0.738 0.225 0.552

16 0.264 0.715 0.225 0.567

18 0.339 0.711 0.225 0.558

20 0.250 0.732 0.225 0.558
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kend ¼
6:83G

1� m
ð18Þ

kmid ¼
0:73G

1� m

The distance between the vertical springs is taken to be about 20 cm on average.

4.3.2 Damping

As mentioned at the beginning of Sect. 4.3, an equivalent damping ratio accounting for the

effects of base flexibility is used with Model 2. It is calculated using Eq. (19) (American

Society of Civil Engineers 2010):

�b ¼ b0 þ
b

T
T

� �3
ð19Þ

in which �b is the equivalent SSI damping ratio of structure, b0 is the damping ratio

supplied by foundation and soil as being a function of �T=T and aspect ratio of structure

(American Society of Civil Engineers 2010), b is the damping ratio of the fixed-base

structure (assumed to be equal to 0.05), �T is the fundamental period of structure including

SSI, and T is the fundamental period of the fixed-base building. Use of Eq. (19) results in �b
values to be as listed in Table 7. According to Sect. 4.3.1, stiffness properties of soil and

therefore values of �T are functions of G, itself being a function of SDS as of Table 6 and its

descriptions. Therefore, �b values are different when analyzing the 2D frames of this study

under near and far field earthquakes. Values of �T=T are given in Sect. 5.2.

Design spectra as shown in Fig. 2 are given for a damping ratio of 0.05, as common. For

SSI applications, the spectral values will be needed for other damping ratios, as given in

Table 7, too. This is usually done using a spectral reduction factor RF. Many versions are

Table 7 Values of the equivalent damping ratios of structures including SSI, �b

Soil type Type D Type E

No. of stories Near field (%) Far field (%) Near field (%) Far field (%)

1 9.8 10 8.7 9.2

2 10.4 10.5 10.1 10.5

4 11.3 11.4 11.6 11.7

6 11.9 12.1 12.1 12.6

8 12.6 12.7 12 12.7

10 12.8 13 12.6 13.3

12 13.1 13.4 12.7 13.7

14 13.7 13.9 13 13.9

16 13.5 14 13.2 14.1

18 14 14.3 13.4 14.4

20 14 14.6 13.6 14.6
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available for RF as proposed by different researchers, such as those of Newmark and Hall

(1982), Ashour (1987), Wu and Hanson (1989), Ramirez et al. (2002), Lin and Chang

(2003) and Bommer and Mendis (2005). The equation given by Bommer and Mendis has

been endorsed by several building codes like Eurocode 8 (2003) and is used in this study

for spectrum modification. It is given in Eq. (20):

RF ¼ 1� 1� gð Þ
�T

Tb
0� �T\Tb

g �T �Tb

; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10

5þ 100�b

s

� 0:55

8
<

:
ð20Þ

in which Tb is the period at which the constant acceleration branch begins in the Newmark

spectrum, being equal to 1
8
s. According to Fig. 3, for Models 3 and 4 explicit represen-

tation of dampers has been adopted. The damping coefficients in the horizontal and rocking

degrees of freedom have been given as (Gazetas 1991):

Cuu ¼ pVsAb ð21Þ

Cww ¼ pVlaIby~cry

where p is the unit mass of soil, Ab is the area of foundation in plan, Iby is the moment of

inertia of the foundation in plan about the transverse axis, Vla is a wave velocity equal to
3:4Vs

pð1�mÞ with Vs being the shear wave velocity, and ~cry is a coefficient beginning from zero for

the static case and tending to unity for very large excitation frequencies.

5 The analysis results

In this section, after a comparison between the analytical models, first the natural periods

and damping ratios are calculated for the SSI systems. Then, the maxima of base shear and

lateral displacement of roof of each building are determined for the all four models of

Sect. 4.3. For this purpose, a linear dynamic time history analysis is utilized and the results

of each response parameter are averaged between the earthquakes corresponding to each

building. Then the responses are shown against the fixed-base natural period.

5.1 Comparison of the flexible-base 2D and stick models responses

As mentioned in Sect. 4.3, two different models, called Models 2 and 3, are used for

representing the seismic responses of the flexible base systems, using the classical pro-

cedure. Model 2 is a planar frame in SAP including beams, columns, and the single footing

of each column or the whole strip footing resting on the vertical springs described in

Sect. 4.3.1. Model 3 is a stick model displayed in Fig. 3 with stiffness and damping

properties described in Sects. 4.3.1 and 4.3.2. Since the same stick model will be used for

the nonclassical analysis procedure too (Model 4, because nonclassical analysis is not

possible in SAP), Model 3 is meant to act as a basis of comparison for Model 4. Therefore,

Model 3 needs to be justified first with a more accurate system like Model 2.

Figure 4 shows values of the base shear calculated using Model 2 in SAP and Model 3

in Matlab, normalized to the weight of each building. The results are presented separately

for the near-field and far-field earthquakes and for different soil types. Average of the

maximum response in linear time history analysis of each building is shown for each

building on each soil type under near and far field earthquakes by finding its fixed-base
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natural period on the horizontal axis. Similarly, values of the maximum lateral displace-

ment normalized to the height of each building are shown in Fig. 5.

As observed, the base shear values calculated by Models 2 and 3 are practically the

same. For the maximum roof displacement again a very good similarity is observed, with

the relative difference being larger for the taller buildings and reaching a value of about

6 % for the tallest frame. Along the period axis, the displacements are always overesti-

mated by the stick model. Therefore, Model 4 is an appropriate model for nonclassical

analysis and Model 3, being almost equivalent to Model 2 and having a similar configu-

ration to Model 4, is a suitable reference for comparison with Model 4.

5.2 The natural periods and damping ratios

Figure 6 shows the values of the first to the third natural periods of the flexible-base

systems normalized to the corresponding values of the same systems but fixed at base. The

latter values are given in Table 2. Periods of the flexible-base systems have been calculated

using Models 3 and 4. Therefore, in each part of the figure results of analysis of classical

and nonclassical systems are given together for ease of comparison. Because system
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Fig. 4 Values of the base shear for the classical flexible-base 2D and stick models normalized to the
building weight, versis the fixed-base period T. a Soil type D, near field earthquakes. b Soil type D, far field
earthquakes. c Soil type E, near field earthquakes. d Soil type E, far field earthquakes
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stiffness changes also with G=G0 (Table 5), values are averaged between the systems

corresponding to the near and far field earthquakes. It is observed that period shifting due

to SSI is larger for the first mode, the softer soil and the taller buildings and reaches up to

20 %. It decreases sharply as the mode number increases and is negligible for the higher

modes. Also, difference of the corresponding periods of the same system but calculated by

classical and nonclassical procedures is negligible.

Table 8 shows the damping ratios of the first three modes calculated for the nonclassical

flexible-base Model 4 using Eq. (33).

It is interesting to compare the damping ratios collected in Tables 7 and 8. Values of the

code-based damping ratios of Table 7 are essentially for the first mode. They begin from

about 10 and 9 % for the 1-story building on the soil types D and E, respectively, and

uniformly increase to about 14 % for the 20-story building. On the other hand, the first-

mode damping ratios calculated using the equations of non-classical dynamical systems

and reported in Table 8, vary from about 10 and 11–6 % for the same cases. There are two

important differences here. First, the trend of variation of the damping ratio proves to be

descending with the rigorous procedure in contrast to the one predicted by the code.

Second, the rigorous damping ratio shows an asymptotic behavior such that from about the

10-story building, it does not change notably. Variation of the code-based ratio is not
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Fig. 5 Values of the maximum roof displacement for the classical flexible-base 2D and stick models
normalized to the building height, versis the fixed-base period T. a Soil type D, near field earthquakes. b Soil
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Table 8 Damping ratios of the first three modes of the nonclassical SSI systems

Soil type Type D Type E

No. of stories Mode 1 (%) Mode 2 (%) Mode 3 (%) Mode 1 (%) Mode 2 (%) Mode 3 (%)

1 9.5 – – 10.6 – –

2 9 11.2 – 10.1 12.6 –

4 7.8 9. 8 12.1 8.5 11 14.7

6 7.1 9.3 11.2 7.5 10.2 13.1

8 6.6 8.8 10.7 7 9.4 11.7

10 6.6 8.6 10.6 6.6 8.9 11

12 6.2 8.5 10.5 6.5 8.9 11.3

14 6.0 8.2 10.4 6.3 8.7 11

16 6.1 8.2 10.5 6.2 8.5 10.8

18 6 8.3 10.5 6 8.3 10.5

20 6 8.2 10.4 6.2 8.5 10.8
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similar. Although values of damping ratios of the higher modes are larger than those of the

first mode, as of Table 8, they show the same trend of variation.

5.3 Responses in the fundamental mode

A modal time history analysis is accomplished in the section. Only response of the first

mode is included. Model 1 (see Sect. 4.3) is used for the fixed-base analysis and Models 3

and 4 for the flexible-base classical and nonclassical analysis, respectively. All of the

response parameters are shown versus the fixed-base period of each building. Figure 7

shows the averaged maximum lateral displacement of roof normalized to the height of each

building. In nonclassical analysis, it is calculated using Eq. (4). The results are presented

for each soil type and each earthquake category.

According to Fig. 7, from a period of about 1 s, lateral displacements of the flexible-

base models overtake those of the fixed-base model considerably, for both categories of

earthquakes. The relative difference of displacements between models increases with

height such that for the soil types D and E it reaches to about 33 and 56 %, respectively, for

larger periods. For periods larger than 1 s, difference between the classical and nonclas-

sical approaches for estimating the displacement response can be ignored. It should be

noted that in the dynamic analysis of Model 3 the damping matrix is assumed to be
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Fig. 7 The averaged maximum lateral displacement of roof normalized to the height of each building.
a Soil type D, near field earthquakes. b Soil type D, far field earthquakes. c Soil type E, near field
earthquakes. d Soil type E, far field earthquakes
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proportional to the mass and stiffness matrices and only an equivalent modal damping ratio

of 5 % is utilized. On the other hand, in the dynamic analysis of Model 4 that is non-

classical, the damping matrix is explicitly used and the modal damping ratios are calcu-

lated to be as reported in Table 8. According to this table, the nonclassical damping ratios

of the first mode are about 6 % on both soil types for the periods above 1 s. Therefore, the

maximum nonclassically calculated displacements should be slightly smaller than their

classical counterparts in this period range, as they are.

For periods smaller than 1 s, difference between the displacements calculated by all of

the three models is small and effect of SSI on displacements is negligible. It is interesting

that in the same period range, the nonclassical analysis results in displacements smaller than

those of the fixed-base and classical flexible-base models. Referring to Table 8, it seems that

the damping augmented due to SSI in the nonclassical model is responsible for the smaller

displacements in the shorter models. On the other hand, an increased contribution of the

rocking motion in taller models overcomes the increased damping effect and results in

larger displacements due to SSI. There is no conflict between the classical and nonclassical

analysis in the latter case. As Fig. 2 shows, amplification of the structural response due to

the soil properties occurs up to a maximum period of 1 s for the softer soil. Therefore larger

SSI displacements of Fig. 7 after the 1 s period cannot be attributed to resonance.

The averaged maximum base shear of each system normalized to its weight is shown in

Fig. 8. For the nonclassical analysis, it is calculated using Eq. (6).

Figure 8 shows that SSI decreases the base shear on both soil types. The reduction is

important from the same 1 s period mentioned in displacement analysis. The more rigorous

nonclassical analysis procedure is similar in results to the fixed-base case for periods

smaller than 1 s and to the classical procedure for larger periods. The base shear reduction

is up to 23 and 38 % for taller buildings.

Comparing Figs. 7 and 8, an important fact emerges. For periods smaller than 1 s, soil-

structure interaction may not be taken into account for seismic analysis of structures

similar to the ones of this study, i.e., moment frame structures resting on surface foun-

dations. This is because use of the more accurate nonclassical SSI analysis results in

response values similar to the fixed-base ones. Therefore, accounting for SSI with classical

analysis underestimates the responses in this period range.

Figure 8 actually displays the first-mode spectral accelerations (normalized to g) of the

studied buildings because in this figure the base shear is normalized to the building weight.

The sample building code ASCE7-10 (American Society of Civil Engineers 2010) in its

chapter on soil-structure interaction requires that the spectral acceleration including SSI is

calculated using the fixed-base design spectrum but with flexible-base period of the first

mode. The resulting value must be modified using the equivalent damping ratio of structure

including SSI. Then the modified base shear due to SSI is calculated using Eq. (22):

�V ¼ V � DV ð22Þ

in which V and �V are the base shears without and with considering SSI, respectively, and

DV is portion of the base shear deducted when accounting for SSI. DV is calculated using

Eq. (23):

DV ¼ Cs � �Cs

0:05
�b

� �0:4
" #

�W � 0:3V ð23Þ

where Cs and �Cs are the seismic coefficients determined using the fundamental periods of

the fixed-base and flexible-base systems, respectively, and �b is damping ratio of the SSI
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system calculated using Eq. (19). With the damping ratios calculated in Sect. 4.3.2 (see

Table 7) and the natural periods mentioned in Sect. 5.2, it is now possible to construct a

code-based first-mode spectrum including SSI using the fixed-base spectrum of Fig. 8. For

this purpose, the spectral ordinate at the fundamental SSI period of each building is taken

from the fixed-base spectrum of Fig. 8 and is corrected using the damping ratio of the SSI

system (Table 7) by the correction factor of Sect. 4.3.2. The resulting values are depicted

against the fixed-base fundamental period of each building and called the SSI-code

spectrum. It is illustrated in Fig. 9 after being normalized to the fixed-base responses of the

code. The nonclassical spectra of the flexible-base buildings, extracted from Fig. 8 after

normalizing to the fixed-base responses in the same figure, are also illustrated for com-

parison. For the ease of reference, the latter values are averaged between the near and far

field earthquakes.

Figure 9 reveals the important fact that how the code-based formula (Eqs. 22 and 23)

underestimate the seismic response of an SSI system. While the spectral acceleration ratio

using the rigorous method varies between 1 and 0.83 for the soil type D and between 1 and

0.71 for the soil type E as the period increases to about 3 s, similar code-based ratios are

between 0.88 and 0.75, and, 0.86 and 0.73, respectively.
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Fig. 8 Averaged maximum base shear normalized to the building weight. a Soil type D, near field
earthquakes. b Soil type D, far field earthquakes. c Soil type E, near field earthquakes. d Soil type E, far field
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5.4 Responses in the higher modes

In Sect. 5.3 only the part of the total response corresponding to the first mode was pre-

sented. In the current section sum of the response corresponding to all other modes (called

the higher modes) is illustrated. The averaged maximum values of roof displacement and

base shear normalized to the building height and building weight, are shown in Figs. 10

and 11, respectively, for the three analysis cases. The values have been also averaged

between near and far field earthquakes.

Based on Figs. 10 and 11, it can be said that response in the higher modes can equally

be calculated using classical or nonclassical analysis. Therefore, use of nonclassical

analysis is not necessary for the higher modes. On the other hand, for the building-soil

systems studied and alike, accounting for SSI in the higher modes is important for systems

with fixed-base fundamental periods larger than 2.5 s when calculating displacements and
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larger than 2 s when deriving the base shear. In such ranges, higher mode displacements

increase and base shears decrease considerably due to SSI.

5.5 Nonclassical spectral analysis

The nonclassical procedure of spectral analysis developed in Sect. 3 is used in this section

to calculate the maximum roof displacement and base shear, using Eq. (12), in comparison

with the results of the nonclassical time history analysis, using Eqs. (4) and (6), presented

in Sects. 5.3 and 5.4. For spectral analysis, average of the response spectra of the earth-

quakes associated with each building (Table 4) are used. The spectral ordinates are cor-

rected using the reduction factor introduced in Eq. (20). The CQC rule is used to combine

the spectral responses of different modes. Therefore, the nonclassical spectral analysis of

this study is approximate with respect to the nonclassical time history analysis, in several

aspects: (1) Use of the SRSS rule to combine the maxima of the two terms on the right

sides of Eqs. (4) and (6) to calculate the maximum responses presented in Eq. (8); (2) Use

of the CQC rule to combine the maximum responses of different modes; (3) Use of an

approximate relation between the pseudo-velocity and the relative velocity of the jth mode

(Eq. 9); (4) Use of an approximate equation for correcting the spectral values due to a

modified damping with SSI (Eq. 20). The response results of this section show the effects

of above approximations.

The maximum roof displacement and base shear are illustrated in Figs. 12 and 13,

respectively.

The maximum relative differences of associated time-history and spectral responses in

Figs. 12 and 13 are 12 and 8 % for displacement and base shear, respectively. Therefore,

the assumptions made to develop the equations of the nonclassical spectral analysis are

justified within the SSI systems studied.

5.6 Correction factors for internal forces and lateral displacements due to SSI

Results of the averaged maximum displacements and base shears of the studied structures

presented in Sect. 5.3 suggest that the frame structures can be analyzed as usual on a fixed
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base and then their lateral displacements and base shears can be increased and decreased,

respectively, due to SSI using simple correction factors. Since the spectra of Sect. 5.3 have

been plotted using the fixed-base fundamental period of the buildings, the effect of period

lengthening has been already included and the correction factors only contain the effect of

augmented damping where applicable. On the other hand, the factors are functions of the

fixed-base fundamental period of a moment frame structure resting on surface foundations

on the soil types D and E. Sections 5.3 and 5.4 present the fundamental and higher mode

responses, respectively. Similarly, the total responses could be shown. Then, the correction

factors have been calculated both for the fundamental mode responses and the total

responses including all modes. According to Sect. 5.4, for the buildings of the type

investigated in this study, difference between the two groups of correction factors is

considerable only from a period of about 2 s upward. The correction factors are calculated

by curve fitting of the fixed-base results of Sect. 5.3 to the more accurate nonclassical

responses of the same section in order to have a best fit.

Tables 9 and 10 illustrate equations of the correction factors. They have been deter-

mined by averaging between the results of the near and far-field earthquakes and are only

necessary to be used for the period range of T � 1s. Out of the mentioned range SSI has

minimal effects for the cases studied and may not be taken into account, based on Sect. 5.3.

The correction factors can be equally applied to the design spectrum or to the results of
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Fig. 12 Averaged maximum roof displacement normalized to the building height, using nonclassical time
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Fig. 13 Averaged maximum base shear normalized to the building weight using nonclassical time history
and spectral analysis. a Soil type D, near field earthquakes. b Soil type D, far field earthquakes. c Soil type
E, near field earthquakes. d Soil type E, far field earthquakes

Table 9 Correction factors for
the base shear or internal forces,
a
V

Soil type D

Total response aV = -0.088T ? 1.069

First mode response aV = -0.103T ? 1.091

Soil type E

Total response aV = -0.147T ? 1.076

First mode response aV = -0.168T ? 1.100

Table 10 Correction factors for
the lateral displacements and
rotations, a

U

Soil type D

Total response aU = ? 0.164T ? 0.782

First mode response aU = ? 0.185T ? 0.747

Soil type E

Total response aU = ? 0.277T ? 0.735

First mode response aU = ? 0.313T ? 0.689
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spectral analysis including internal forces and deformations of fixed-base moment frame

structures, as follows:

SSI response ¼ fixed-base response� correction factor:

Figures 14 and 15 show the results of correction of the fixed-base total responses, using

Tables 9 and 10, in comparison to the nonclassical SSI results of Sect. 5.3. The fig-

ures describe the accuracy of the correction process.

6 Conclusions

In this study the theory of the modal analysis of nonclassical systems was illustrated for

systems resting on flexible bases, representative of soil-structure interaction problems.

Several structures having one to twenty stories resting on two types of soils, being medium

and soft, were analyzed each one under two suits of ten consistent and scaled earthquake
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Fig. 14 Correction of fixed-base base shear (normalized to the building weight) due to SSI. a Soil type D.
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motions specific to that structure recorded at near and far distances. Modal time history and

spectrum analysis were accomplished in their classical and non-classical versions.

The important results of the study, for the buildings and the soils considered, can be

summarized as follows:

1. Period shifting due to SSI is larger for the fundamental mode, the softer soil and the

taller buildings and reaches up to 20 %. It decreases gradually as the mode number

increases. Periods of flexible-base systems can be almost equally calculated by

classical and nonclassical procedures.

2. The first-mode code-based damping ratios begin from about 10 and 9 % for the 1-story

building on the soil types D and E, respectively, and uniformly increase to about 14 %

for the 20-story building. On the other hand, the first-mode damping ratios calculated

using the equations of non-classical dynamical systems, vary from about 10 and

11–6 % for the same cases. Therefore, variation of the damping ratio is descending

with the rigorous procedure and ascending according to the code. Also, dissimilar to

the code, the rigorous damping ratio shows an asymptotic behavior such that from

about the 10-story building, it does not change notably. Values of damping ratios of

the higher modes are larger than those of the first mode, and show a trend of variation

similar to the first mode.

3. The relative difference of displacements between the associated fixed-base and

flexible-base models becomes important from a period of about 1 s and increases with

height, and is larger for the softer soil. For periods smaller than 1 s, the nonclassical

analysis results in displacements somewhat smaller than those of the fixed-base model.

4. SSI decreases the base shear on both soil types. The reduction is important again from

a period of 1 s. Results of SSI analysis with the nonclassical procedure are similar to

the fixed-base case for periods smaller than 1 s and to the classical SSI procedure for

larger periods. The base shear reduction is up to 23 and 38 % for taller buildings on the

soil types D and E, respectively.

5. For periods smaller than 1 s, soil-structure interaction may not be taken into account

for seismic analysis of moment frame structures resting on surface foundations.

6. The code-prescribed process of inclusion of SSI underestimates the base shear in the

whole period range studied. Underestimation is more critical for the soil type D.

7. Use of nonclassical SSI analysis is not necessary for the higher modes. Accounting for

SSI in the higher modes is important for systems with fixed-base fundamental periods

larger than 2.5 s when calculating (increased) displacements and larger than 2 s when

deriving the (decreased) base shear.

8. The simplifying assumptions for the nonclassical SSI spectral analysis are justified for

the SSI systems studied.

9. Maxima of the lateral displacements and base shear can be calculated using

conventional spectral analysis of fixed-base structures and converted to the responses

including SSI using the simple correction factors presented in this study.

Finally, it should be noted that the mentioned conclusions are only applicable to the

cases studied, namely, buildings consisting of moment frames resting on surface founda-

tions. Regarding the soil medium, a uniform halfspace with characteristics representative

of soft soils was considered. For the exceptional case of a soft surface layer resting on a

very stiff soil the radiation damping of the oscillating structure might diminish. The above

limitations should be taken into account when using the results of this study.
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Appendix 1: Equations of motion

The equations of motion of the system of Fig. 1 can be written as follows:

M½ �
f€ug
€ub
€w

8
<

:

9
=

;
þ C½ �

f _ug
_ub
_w

8
<

:

9
=

;
þ K½ �

fug
ub
w

8
<

:

9
=

;
¼ �

mf g
mb þ

Pn

1

mi

Pn

1

mihi

8
>>>><

>>>>:

9
>>>>=

>>>>;

€ug tð Þ ¼ fpðtÞg ð24Þ

in which:

M½ � ¼

½m� fmg fmhg
fmgT mb þ

Pn
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1
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fmhgT
Pn

1

mihi I þ
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3
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½c� f0g f0g

f0gT cuu 0
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5
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and:

mf g ¼ m1 m2 � � � mn½ �T ð27Þ

mhf g ¼ m1h1 m2h2 . . . mnhn½ �T

uf g ¼ u1 u2 � � � un½ �T

I ¼ Ib þ
Xn

i¼1

Ii

In the above equations, mi and mb i ¼ 1; 2; . . .; n; n ¼ number of storiesð Þ are mass of

the ith floor and the foundation, respectively, hi is the height of the ith floor from the base,

Ii and Ib are respectively the mass moments of inertia of the ith story and the foundation, ci
and ki are the damping coefficient and the lateral relative stiffness of the ith story,

respectively, cjj and kjj with j ¼ u or w are respectively the damping and stiffness impe-

dances of the supporting medium in translational and rotational directions, ui, ub and ug are

the horizontal displacements of the ith story, the foundation, and ground with respect to a

fixed reference, respectively, w is the rotational component of motion of foundation, and a

dot represents derivation with respect to time.

Appendix 2: The free vibration response characteristics

The homogeneous solution of Eq. (24) can be written as:

fUg ¼ fwgert ð28Þ

in which r and wf g are the characteristic value and vector, respectively, and fUg is defined
in Eq. (2). Substitution of (28) in (24) with p(t) = 0 gives:

r2 M½ � þ r C½ � þ K½ �

 �

wf g ¼ f0g ð29Þ

Foss (1958) showed that the characteristic Eq. (29) can be reduced to:

r A½ � þ B½ �ð Þ Zf g ¼ f0g ð30Þ

in which:

Zf g ¼ rfwg
fwg

� �
ð31Þ

A½ � ¼ ½0� ½M�
½M� ½C�

� �

2N�2N

B½ � ¼ �½M� ½0�
½0� ½K�

� �

2N�2N

The dimension of Eq. (30) is 2 N where N = n ? 2 with the additional two DOF’s of

the foundation included. Its solution results in N complex conjugates for r and w. If rj and
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�rj are a pair of characteristic values and fwg and f �wg a pair of characteristic vectors where

the over bar denotes complex conjugate, then the following relations are introduced:

rj
�rj

�
¼ �qj � ~pj ð32Þ

fwjg
f �wjg

�
¼ f/jg � ifvjg

in which i ¼
ffiffiffiffiffiffiffi
�1

p
, qj and ~pj are real constants, and, f/jg and fvjg are N-component real

vectors. Then the new parameters pj and nj are defined as follows:

pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2j þ ~p2j

q
ð33Þ

nj ¼
qj

pj

Then:

rj
�rj

�
¼ �njpj � i~pj ð34Þ

~pj ¼ pj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2j

q

Substituting Eq. (32) in (28) results in:

Uj

� �
¼ e�njpjt f/jg � ifvjg


 �
e�~pj t ð35Þ

The displacement response in Eq. (35) consists of two parts: the damped amplitude and

the oscillation function, which are as follows:

Displacement amplitude ¼ e�njpjtðf/jg � ifvjgÞ ð36Þ

Oscillation function ¼ e�~pj t ¼ cosð~pjtÞ � i sinð~pjtÞ ð37Þ

Equation (36) shows that nj is the damping ratio of the jth mode while pj and ~pj show

the undamped and damped frequencies of the jth mode, respectively, all being positive

values.

The total response in the jth mode (j = 1, 2, …, N) can be calculated combining

contributions from both complex conjugates as:

fUjg ¼ Cjfwjgerjt þ �Cjf �wjge�rjt ð38Þ

in which Cj is a complex constant. Equation (38) can be simplified as:

Uj

� �
¼ 2Re½Cjfwjgerjt� ð39Þ

in which Re denotes real value. Summing the combinations of all modes, the total response

at each degree of freedom can be written as:
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Uf g ¼ 2
XN

j¼1

Re Cjfwjgerjt
h i

ð40Þ

Using modal orthogonality conditions, it can be shown that (Veletsos and Ventura

1986):

Cj ¼
rjfwjg

T
M½ � Uð0Þf g þ fwjg

T
C½ � Uð0Þf g þ fwjg

T
M½ � _U 0ð Þ

� �

2rjfwjg
T
M½ �fwjg þ fwjg

T
C½ �fwjg

ð41Þ

in which Uð0Þf g and _U 0ð Þ
� �

are the vectors of initial displacement and initial velocity of

the system.

Appendix 3: The displacement response to base acceleration

Response of the system of Fig. (1) to a base acceleration that is equivalent to a constant

initial velocity at all horizontal degrees of freedom, can be calculated from Eqs. (40) and

(41) with the following initial values:

U 0ð Þf g ¼ f0g; _U 0ð Þ
� �

¼

1

..

.

1
1

0

8
>>>>><

>>>>>:

9
>>>>>=

>>>>>;

v0 ð42Þ

in which m0 is the value of the initial velocity. Substituting Eq. (42) in (41) results in:

Bj ¼
fwjg

T
M½ � 1 . . . 1 1 0h iTnþ2

2rjfwjg
T
M½ �fwjg þ fwjg

T
C½ �fwjg

ð43Þ

in which Bj ¼ Cj=m0. Now, Eq. (43) is substituted in (40) to result in:

Uf g ¼ 2
XN

j¼1

Re½Bjfwjgv0erjt�: ð44Þ

To write the response in the real form, the amplitude in (44) is decomposed as follows:

2Bjfwjg ¼ bvj

n o
þ ifcvj g ð45Þ

in which bmj

n o
and cmj

n o
are real and imaginary parts of the term on the left. Substituting

(45) in (44) gives:

fUg ¼
XN

j¼1

e�njpjt bvj

n o
cos ~pjt


 �
� fcvj g sin ~pjt


 �h i
v0 ð46Þ
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The unit impulse response function for the system is introduced as:

hjðtÞ ¼
1

~pj
e�njpjt sin ~pjt

� �
ð47Þ

The derivative of Eq. (47) is:

_hjðtÞ ¼ e�njpjt cos ~pjt
� �

�
njffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2j

q sin ~pjt
� �

2

64

3

75 ð48Þ

Replacing (47) and (48) in (46) results in:

fUg ¼
XN

j¼1

avj

n o
pjhjðtÞ � fbvj g _hj tð Þ

h i
v0 ð49Þ

in which:

avj

n o
¼ nj bvj

n o
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2j Þ

q
fcvj g ð50Þ

For calculating the response at t0 ¼ s to a base acceleration €ugðtÞ, the velocity mðsÞ is
computed as:

v tð Þ ¼ �€ug sð Þds ð51Þ

If Eq. (51) is substituted in (49) and integrated to the arbitrary time t, the dynamic

response will be resulted as Eq. (4).

Appendix 4: The base shear

To calculate the base shear due to ground motion, first the vector of lateral story forces is

computed using (24) as:

ff g ¼ M½ �f €Ugtotal ¼ �ð K½ � Uf g þ ½C�f _UgÞ ð52Þ

_U
� �

and Uf g are determined from (44) and replaced in (52) to give:

f ðtÞf g ¼ 2
XN

j¼1

Re K½ � wj

n o
þ rj½C� wj

n oh i
Bjv0e

rjt
n o

ð53Þ

Using the homogenous form of (24) with (28) in (53), f tð Þ is written as:

f ðtÞf g ¼ �2
XN

j¼1

Re r2j M½ �fwjgBjv0e
rjt

n o
ð54Þ

Using Eqs. (45), (47), and (48) in (54) and integrating, give the vector of lateral forces

as follows:
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f ðtÞf g ¼
XN

j¼1

e�njpjt M½ � p2j � 2n2j p
2
j

� �
bvj

n o
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in which:

xv
j

n o
¼ nj cvj

n o
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2j

q
bvj

n o
ð56Þ

Equation (55) can also be written as:

f ðtÞf g ¼
XN

j¼1

aMv
j

n o
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XN
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bMv
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n o
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n o
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where:

aMv
j

n o
¼ pj þ 2n2j pj

� �
M½ � avj

n o

bMv
j

n o
¼ pj þ 2n2j pj

� �
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xMv
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cMv
j
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2
j
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n o

Then the base shear is computed as the summation of lateral story forces resulting in

Eq. (6).

Appendix 5: Characteristics of the selected records

The earthquake records selected with the criteria of this study are described in the fol-

lowing table.

Order NGA
no.

EQ. name Date Station Soil
type

Distance
(km)

Max Acc.
(g)

1 169 Imperial Valley-
06

10/15/
79

DELTA D 22.0 0.28

2 178 Imperial Valley-
06

10/15/
79

El Centro Array #3 E 12.85 0.26

3 726 Superstition
Hills-02

11/24/
87

Salton Sea Wildlife
Refuge

E 25.88 0.13

4 732 Loma Prieta 10/18/
89

APEEL 2—Redwood
City

E 43.23 0.08
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Order NGA
no.

EQ. name Date Station Soil
type

Distance
(km)

Max Acc.
(g)

5 777 Loma Prieta 10/15/
79

HOLLISTER CITY
HALL

D 27.6 0.23

6 778 Loma Prieta 10/18/
89

Hollister Differential
Array

D 24.8 0.26

7 786 Loma Prieta 10/18/
89

Palo Alto—1900
Embarc

D 30.81 0.21

8 806 Loma Prieta 10/18/
89

Sunnyvale Colton
Ave

D 24.23 0.21

9 953 Northridge-01 01/17/
94

Beverly Hills—14145
Mulhol

D 17.15 0.55

10 987 Northridge-01 1/17/
94

LA—Centinela St D 28.3 0.25

11 995 Northridge-01 01/17/
94

LA—Hollywood Stor
FF

D 24.03 0.37

12 996 Northridge-01 01/17/
94

LA—FARING RD D 20.81 0.34

13 1001 Northridge-01 01/17/
94

LA—S Grand Ave D 33.99 0.27

14 1003 Northridge-01 01/17/
94

LA—Saturn St D 27.01 0.45

15 1038 Northridge-01 1/17/
94

Montebello Bluff E 45.03 0.15

16 1044 Northridge-01 01/17/
94

Newhall—Fire Sta D 5.92 0.70

17 1063 Northridge-01 1/17/
94

Rinaldi Receiving Sta D 6.5 0.63

18 1085 Northridge-01 01/17/
94

SYLMAR-
CONVERTER
STA-EAST

D 5.19 0.65

19 1087 Northridge-01 01/17/
94

Tarzana—Cedar Hill
A

D 15.6 0.99

20 1107 Kobe, Japan 01/16/
95

Kakogawa D 22.5 0.35

21 1111 Kobe, Japan 01/16/
95

Nishi—Akashi E 7.08 0.49

22 1113 Kobe, Japan 01/16/
95

Osaj E 21.35 0.08

23 1116 Kobe, Japan 01/16/
95

Shin—Osaka E 19.15 0.23

24 1119 Kobe, Japan 01/16/
95

Takarazu E 0.27 0.71

25 1120 Kobe, Japan 01/16/
95

Takatori E 1.47 0.65

26 1180 Chi–Chi,
Taiwan

09/20/
99

CHY002 E 24.96 0.13

27 1183 Chi–Chi,
Taiwan

09/20/
99

CHY008 E 40.43 0.12

28 1186 Chi–Chi,
Taiwan

09/20/
99

CHY014 D 34.18 0.24
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Order NGA
no.

EQ. name Date Station Soil
type

Distance
(km)

Max Acc.
(g)

29 1187 Chi–Chi,
Taiwan

09/20/
99

CHY015 D 38.13 0.16

30 1194 Chi–Chi,
Taiwan

09/20/
99

CHY025 E 19.07 0.15

31 1196 Chi–Chi,
Taiwan

09/20/
99

CHY027 E 41.99 0.06

32 1197 Chi–Chi,
Taiwan

09/20/
99

CHY028 D 3.12 0.79

33 1199 Chi–Chi,
Taiwan

09/20/
99

CHY032 E 35.43 0.09

34 1201 Chi–Chi,
Taiwan

09/20/
99

CHY034 D 14.82 0.30

35 1203 Chi–Chi,
Taiwan

09/20/
99

CHY036 D 16.04 0.26

36 1204 Chi–Chi,
Taiwan

09/20/
99

CHY039 E 31.87 0.11

37 1205 Chi–Chi,
Taiwan

09/20/
99

CHY041 E 19.83 0.46

38 1228 Chi–Chi,
Taiwan

09/20/
99

CHY076 E 42.15 0.08

39 1233 Chi–Chi,
Taiwan

09/20/
99

CHY082 E 36.09 0.07

40 1236 Chi–Chi,
Taiwan

09/20/
99

CHY088 D 37.48 0.18

41 1238 Chi–Chi,
Taiwan

09/20/
99

CHY092 E 22.69 0.10

42 1240 Chi–Chi,
Taiwan

09/20/
99

CHY094 E 37.1 0.06

43 1246 Chi–Chi,
Taiwan

09/20/
99

CHY104 E 18.02 0.18

44 1478 Chi–Chi,
Taiwan

09/20/
99

TCU033 D 40.88 0.18

45 1483 Chi–Chi,
Taiwan

09/20/
99

TCU040 E 22.06 0.13

46 1484 Chi–Chi,
Taiwan

09/20/
99

TCU042 D 26.31 0.21

47 1492 Chi–Chi,
Taiwan

09/20/
99

TCU052 D 0.66 0.35

48 1496 Chi–Chi,
Taiwan

09/20/
99

TCU056 E 10.48 0.14

49 1503 Chi–Chi,
Taiwan

09/20/
99

TCU065 D 0.57 0.66

50 1504 Chi–Chi,
Taiwan

09/20/
99

TCU067 D 0.62 0.41

51 1507 Chi–Chi,
Taiwan

09/20/
99

TCU071 D 5.8 0.62

52 1508 Chi–Chi,
Taiwan

09/20/
99

TCU072 D 7.08 0.40
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Order NGA
no.

EQ. name Date Station Soil
type

Distance
(km)

Max Acc.
(g)

53 1509 Chi–Chi,
Taiwan

09/20/
99

TCU074 D 13.46 0.45

54 1529 Chi–Chi,
Taiwan

09/20/
99

TCU102 D 1.49 0.24

55 1536 Chi–Chi,
Taiwan

09/20/
99

TCU110 E 11.58 0.18

56 1537 Chi–Chi,
Taiwan

09/20/
99

TCU111 E 22.12 0.11

57 1538 Chi–Chi,
Taiwan

09/20/
99

TCU112 E 27.48 0.08

58 1541 Chi–Chi,
Taiwan

09/20/
99

TCU116 E 12.38 0.17

59 1542 Chi–Chi,
Taiwan

09/20/
99

TCU117 E 25.42 0.13

60 1553 Chi–Chi,
Taiwan

09/20/
99

TCU141 E 24.19 0.09

61 1602 DUZCE, Turkey 11/12/
99

BOLU D 12.04 0.77

62 1605 DUZCE, Turkey 11/12/
99

DUZCE D 6.58 0.43
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