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Abstract It is well recognised that the dynamic interaction between structure, foundation

and supporting soil can affect significantly the seismic behaviour of buildings. Among

other effects, embedded and deep foundations can filter the seismic excitation, causing the

foundation input motion (FIM) to differ substantially from the free-field motion. This paper

presents a theoretical and numerical investigation on the filtering effect induced by rigid

massless embedded foundations. Based on the results of dimensional analysis and

numerical simulations, it is shown that the problem can be reasonably described by two

sole dimensionless groups, namely: (1) xH/VS, relating the wave length of the signal to the

embedment depth of the foundation, and (2) the aspect ratio of the foundation, B/H, where

B is the foundation width in the polarization plane. New simplified and physically sound

expressions are derived for the kinematic interaction factors, Iu ¼ uFIM=uff0 and

Ih ¼ hFIMH=uff0, which are frequency-dependent transfer functions relating the harmonic

steady-state motion experienced by the foundation to the amplitude of the corresponding

free-field surface motion. Standard methods for using these functions in the evaluation of

the FIM are critically reviewed, with reference to both static and dynamic procedures for

the seismic design of structures.
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1 Introduction

The seismic performance of structures is usually evaluated under a fixed-base assumption

by applying a base slab input motion equal to the free-field motion, i.e. neglecting the

dynamic interaction between the structure, the foundation and the supporting soil soil–

structure interaction (SSI). Nevertheless, the presence of a deformable soil–foundation

system affects the dynamic behaviour of buildings in at least three different ways, making

the seismic response of the flexibly-supported structure possibly different from that of the

rigidly-supported counterpart (Bielak 1975; Mylonakis and Gazetas 2000): (1) it lengthens

the fundamental period of the structure; (2) it allows additional dissipation of energy into

the soil by radiation and hysteresis; (3) it filters the signal transmitted to the structure by

incident waves, as a results of both base slab averaging (Veletsos et al. 1997) and

embedment effects (Elsabee and Morray 1977).

SSI can be thought conveniently, both from a conceptual and computational point of

view, as the contribution of two concurrent phenomena (Mylonakis et al. 2006): (1)

kinematic interaction, in which a massless foundation modifies the motion of the sur-

rounding soil by means of its sole stiffness and (2) inertial interaction, in which the motion

of the foundation itself is further modified by the D’Alembert forces acting in the structure-

foundation system. The distinction between kinematic and inertial effects, which also

underlies the substructure method, provides a powerful key to interpretation of SSI

problems, as observed in experimental works (Rayhani and El Naggar 2008), numerical

works (Mahsuli and Ghannad 2009; Politopoulos 2010; Vega et al. 2013) and field mea-

surements (Stewart 2000; Kim and Stewart 2003), where many factors can affect the

overall dynamic response of the structure.

By focusing on the filtering effect, kinematic interaction has been recognised to play a

significant role in the case of both embedded (Avilés et al. 2002; Politopoulos 2010) and

deep foundations (Di Laora and de Sanctis 2013), for which the foundation input motion

(FIM) can differ substantially from the free-field motion recorded at ground surface. Under

the assumption of vertically propagating plane shear waves, base slab averaging cannot

occur and filtering effect is physically related to the inability of the foundation elements to

follow soil deformations induced by travelling waves.

In the case of rigid embedded foundations, scattering effects reduce the horizontal

displacement of the base slab, uFIM, with respect to the free-field case, uff0, but can

introduce a rotational component, hFIM. This phenomenon can be described by two

kinematic response factors, namely Iu ¼ uFIM=uff0 and Ih ¼ hFIMH=uff0, which are fre-

quency-dependent transfer functions relating the harmonic steady-state motion experienced

by the foundation to the amplitude of the corresponding free-field surface motion (see

Fig. 1).

Many works in the literature have been devoted to the problem of filtering effects

induced by rigid embedded foundations, using different numerical techniques, most of

them considering the case of a massless rigid foundation—with cylindrical or rectangular

shape—embedded in a uniform elastic or viscoelastic half-space (Elsabee and Morray

1977; Day 1978; Dominguez 1978; Karabalis and Beskos 1986; Luco and Wong 1987;

Mita and Luco 1989). More recently, Brandenberg et al. (2015) have proposed a Winkler-

type simplified model, relating the kinematic response factors to the translational and

rotational impendence functions for the soil.

Further studies, taking into account both the soil–foundation system and the super-

structure (complete SSI), have shown that the filtering effect is usually beneficial for squat
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structures while it may increase the ductility demand in the case of slender buildings with

deeply embedded foundations or basements (Mahsuli and Ghannad 2009). Moreover, in

the case of base isolated structures, such as nuclear plants, where standard devices have

isolation capacity only in the horizontal plane, the dynamic response of non-isolated modes

can be significantly amplified by rocking oscillations of the foundation (Politopoulos 2010;

Politopoulos et al. 2015).

The filtering effect induced by embedded foundations is usually described using the

formulas proposed by Elsabee and Morray (1977):

Iu ¼
uFIM
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where B is the foundation width, x is the angular frequency of the excitation and VS is the

shear wave velocity of the supporting soil (FEMA 440 2005; Mylonakis et al. 2006).

As shown in Fig. 2, despite their simplicity these equations provide a quite crude

approximation of the actual physical phenomenon, essentially relating the motion of the

rigid foundation to the translation of the free-field at the foundation level [Eq. (1)] and to

the so-called free-field ‘‘pseudo-rotation’’, resulting from the differential displacement of

the soil in the embedment region [Eq. (2)].

This paper presents a numerical and theoretical investigation of the filtering effect

induced by rigid massless embedded foundations. The goal of this study is threefold: (1) to

offer insight into the relevant factors affecting the problem; (2) to extend the numerical

observations available in the literature; (3) to define new simplified, but physically sound,

solutions to be incorporated in recommendations for the seismic design of structures with

embedded foundations. Results of this work will be useful not only to improve the

understanding of the mechanisms underlying filtering effects, such as the little relevance of

the three-dimensional features of the foundation, but also for the design practice.

Fig. 1 Schematic representation of the soil–foundation kinematic interaction in the case of embedded
foundations and vertically propagating SH waves
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2 Problem definition and dimensional analysis

In this section we derive the dimensionless groups governing the filtering effect induced by

embedded foundations, under the assumption of vertically propagating plane shear waves.

We refer to the general case of a rectangular foundation (embedment depth H, width B,

length L, mass density q*, shear modulus G*, damping ratio n) embedded in a homoge-

neous isotropic visco-elastic soil layer (depth Hd, mass density q, shear modulus G,

Poisson’s ratio m, damping ratio n). Table 1 summarises the 14 physical variables relevant

for the problem at hand, which can be formulated as:

(a) (b)
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Fig. 2 Formulas proposed by Elsabee and Morray (1977) for the kinematic response factors: a Iu and b Ih

Table 1 Variables governing the dynamic interaction between soil and embedded foundations

Variable Dim. Description

Foundation input motion uFIM L Base horizontal disp.

hFIM L0 Rotation

Free-field motion uff0 L Surface horizontal disp.

x T-1 Angular frequency

Foundation properties q* ML-3 Mass density

G* MT-2L-1 Shear modulus

H L Embedment

B L Width

L L Length

Soil properties q ML-3 Mass density

G MT-2L-1 Shear modulus

m L0 Poisson’s ratio

n L0 Damping ratio

Hd L Depth of soil deposit
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uFIM ¼ f uff0;x;H;B; L; q�;G�; q;G; n; m;Hd

� �
hFIM ¼ g uff0;x;H;B; L; q�;G�; q;G; n; m;Hd

� � ð3Þ

Applying the Buckingham theorem, it is possible to rescale Eq. (3) in dimensionless

form, using H, G and q as dimensionally independent variables:
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The dimensionless ratios in Eq. (4) take into account the physical, mechanical and

geometrical properties of the problem. Among these,

1. xH/VS relates the embedment depth of the foundation to the wavelength of the

excitation (k = VS/f = 2pVS/x), i.e. the deeper the foundation the longer the

wavelengths which can be filtered by scattering effects;

2. G*/G and q*/q are the relative shear stiffness and mass density, respectively, between

the foundation and the soil: the stiffer and the denser the foundation, the stronger its

filtering capacity;

3. Hd/H is the relative depth between the soil deposit and the foundation embedment,

which, for soil layers of finite depth, can introduce spurious oscillations in the

kinematic interaction factors (Elsabee and Morray 1977);

In order to reduce the problem at hand and/or in the light of a kinematic-inertial

decomposition method, some simplifying assumptions are usually introduced in the lit-

erature, i.e.: the embedded foundation is rigid (G*/G � 1) and massless (q*/q � 1); the

soil deposit is assimilated to a homogeneous half-space (Hd/H � 1). As far as n and m are
concerned, numerical works have shown that, while affecting the dynamic response of both

the foundation and the soil, they have a minor influence on the kinematic response factors

(Mita and Luco 1989; Di Laora and de Sanctis 2013). Moreover, it will be shown in the

following that, as far as the aspect ratios of the foundation are concerned, only the

foundation width B in the polarization plane of the shear wave affects significantly the

filtering phenomenon. Under these assumptions, the interaction factors can be expressed as

functions of two sole parameters:

Iu ¼ F
xH
VS

;
B

H

� �

Ih ¼ G
xH
VS

;
B

H

� � ð5Þ

By introducing a further hypothesis on the foundation geometry, two limiting 1D

conditions can be identified, i.e.:

1. B/H = 0 (infinitely thin foundation): the difference between the FIM and the

corresponding free-field surface motion is related only to the variation of ground

motion with depth. As a consequence, the two kinematic interaction factors can be

computed with reference to the free-field motion in the embedment region, assuming

elastic behaviour for the soil (n = 0), as:
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Iuj B=H¼0ð Þ ¼
uff jz¼H

uff0
¼ cos

xH
VS

� �

Ihj B=H¼0ð Þ ¼
hff � H
uff0

¼ 1� cos
xH
VS

� � ð6Þ

where hff ¼ uff0 � uff jz¼H

� �
=H is the free-field pseudo-rotation of the soil.

2. B/H = 1 (infinitely extended foundation): the foundation cannot rotate (hFIM = 0)

and the half-space condition results in uFIM ¼ uff0. As a consequence, the two

kinematic interaction factors reduce to:

Iuj B=H¼1ð Þ ¼ 1

Ihj B=H¼1ð Þ ¼ 0
ð7Þ

These asymptotic conditions will be used in the following both to interpret numerical

results and to provide simplified solutions for design.

3 Numerical analyses

A total of 17 plane-strain analyses of a rectangular foundation of width B and depth H,

embedded in an homogeneous half-space, were carried out in the time domain using the

finite difference code FLAC 2D v7 (Itasca 2011). Moreover, two three-dimensional

analyses were carried out with the code FLAC 3D. The complete set of analyses is reported

in Table 2, with the ratio B/H ranging from 0.25 to 20.

Table 2 Summary of the
numerical analyses

# H (m) B (m) B/H L/B Bm (m) Hm (m)

1 12 3 0.25 ? 300 27

2 12 6 0.5 ? 300 27

3 3 3 1 ? 300 27

4 6 6 1 ? 300 27

5 12 12 1 ? 300 27

6 3 6 2 ? 300 27

7 6 12 2 ? 300 27

8 12 24 2 ? 300 27

9 3 12 4 ? 300 27

10 6 24 4 ? 300 27

11 12 48 4 ? 450 27

12 3 18 6 ? 300 27

13 6 36 6 ? 450 27

14 12 72 6 ? 450 27

15 3 30 10 ? 450 27

16 6 60 10 ? 450 27

17 3 60 20 ? 450 27

18 6 6 1 1 100 27

19 6 12 2 1 100 27
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3.1 Model definition

Figure 3 shows the typical mesh adopted in this study. The soil was modelled as a linear

visco-elastic isotropic material, with mass density q = 1.835 t/m3, shear wave velocity

VS = 100 m/s and Poisson ratio m = 0.3. A Rayleigh viscous damping was used, with a

given value of 2 % at the reference frequencies of 1 and 10 Hz.

The rigid massless foundation was modelled as an open excavation with rigid bound-

aries and supports, in order to enforce rigid body displacements. To this purpose, elastic

beams with reduced mass density were introduced (E = 5.0 GPa, A = 7.0 m2,

I = 6.0 m4, qb = 0.008 t/m3), both along the boundaries of the foundation and as an

internal frame, thus increasing the overall shear stiffness of the foundation without

affecting significantly its total mass. Perfect contact was assumed between the sidewalls

and the soil elements.

Free-field boundary conditions were applied along the lateral sides of the mesh,

involving the coupling of the main grid with a one-dimensional free-field column through

viscous dashpots, in such a way that outward waves originating from the interior of the

model can be properly absorbed.

As far as the boundary condition at the base of the mesh is concerned, both viscous

dashpots and the dynamic input were applied in order to reproduce the upward propagation

of shear waves within a semi-infinite domain (Joyner and Chen 1975). The input was a

constant amplitude sinusoidal sweep, defined in terms of a horizontal displacement time

history, with a duration of 60 s and a frequency increasing linearly with time from 0.5 to

10 Hz (Fig. 4). This range was chosen to include the typical frequency content of real

earthquakes.

The dimensions of the mesh were chosen after a preliminary parametric study so as to

minimise possible side effects due to spurious wave reflections at boundaries, and hence to

recover free field conditions. The elements of the mesh have a maximum size of 0.75 m

close to the foundation, in order to describe correctly the minimum wavelength of the

applied signal (kmin = VS/fmax = 10 m).

Fig. 3 2D analyses: finite difference model
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Moving to 3D analyses, the square foundation (B/L = 1) was modelled as an empty

excavation, with shell elements of increased stiffness and reduced mass density attached to

the internal boundaries. The numerical model is consistent with that adopted in the 2D

analyses, in terms of boundary conditions, dynamic input, mesh discretisation, and

mechanical properties of both soil and foundation elements.

4 Results

The complex valued functions Iu and Ih were obtained from the Fourier transform of uff0(t),

uFIM(t) and hFIM(t), where uFIM corresponds to the horizontal displacement of the bottom

centre of the foundation and hFIM is computed as (v1–v2)/B, where v1 and v2 are the vertical

displacements of the two corners at the base of the foundation. As an example, Fig. 5

shows, for analysis No. 11, the numerical values of the real part, imaginary part and

amplitude of (a) Iu and (b) Ih.

In order to ascertain three-dimensional effects on the filtering problem, Fig. 6 compares

the results from this study (B/H = 1, 2 and L/B = 1, ?), in terms of (a) |Iu| and (b) |Ih|,

with some of those available in the literature, obtained with BEM, FEM or hybrid BEM–

FEM approaches. All literature results refer to the case of cylindrical (Day 1978; Luco and

Wong 1987) and square (Mita and Luco 1989) foundations (L/B = 1) embedded in a

uniform elastic half-space, with the only exception of Elsabee and Morray (1977), who

considered a cylindrical foundation embedded in an elastic soil layer of finite depth

overlying a rigid bedrock. In spite of showing some scatter, numerical data are in sub-

stantial agreement, both qualitatively and quantitatively, with a maximum difference of
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Fig. 4 Sweep input signal: a displacement time history and b Fourier amplitude spectrum
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±15 % on the average in terms of Ih (B/H = 2). Moreover, FDM results are in perfect

agreement with each other and with those reported by Mita and Luco (1989). Based on this

comparison, it is apparent that the ratio L/H has a minor influence on the kinematic

interaction factors, with respect to xH/VS and B/H, and, therefore, that it can be ignored
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Fig. 5 Analysis No. 11: real and imaginary part of the kinematic interaction factors: a Iu and b Ih

(a)

(b)

Fig. 6 Comparison between numerical FDM results (B/H = 1, 2) and literature data, in terms of: a |Iu| and
b |Ih|
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without any loss of relevant information. This implies that, when looking at filtering

effects, 2D analyses provide a reasonable representation of the 3D behaviour of rigid

embedded foundations.

Figure 7 shows the numerical values of (a) |Iu| and (b) |Ih|, as a function of the

dimensionless frequency xH/VS and for different values of B/H, together with the theo-

retical solutions for the 1D limit conditions of B/H = 0 and B/H = ?. For small B/

H (squat/slender foundations), the interaction factors tend to the free-field 1D conditions,

where filtering effects are mostly due to the embedment of base slab. In this condition, |Iu|

shows an oscillating trend, with local minima and maxima clearly related to the resonant

frequencies of the corresponding free-field case, and a significant rocking component

emerges in the FIM, as reflected by |Ih|. On the other hand, for large B/H values (spread

foundations), both factors tend to stabilize, moving towards the asymptotic solution for B/

H = ?, without significant oscillations as xH/VS increases. As a result, filtering of the

horizontal displacements reduces, but no rocking component is introduced. In other words,

numerical analyses indicate that both Iu and Ih are strongly affected by the aspect ratio of

the foundation and are not related merely to the embedment depth of the foundation. In

particular, for a given value of H, the larger the foundation the smaller the overall filtering

effect induced on the free-field ground motion.

Based on the best fit of numerical data, simplified expressions for |Iu| and |Ih| were

defined using ad hoc functions which allow to recover the 1D limiting conditions as B/

H ? 0 or B/H ? ?:

Iu
xH
vs

;
B

H

� �����
���� ¼ a1

1þ a2
xH
vs

	 
2

1þ xH
vs

	 
2
þ 1� a1ð Þ

cos a3
xH
vs

	 
��� ���
1þ xH

vs

	 
2
� �2a1 ð8Þ

Ih
xH
vs

;
B

H

� �����
���� ¼ a4 1� cos

xH
vs

� �� �
ð9Þ

in which coefficients a1, a2, a3, a4 depend on the ratio B/H, as detailed in ‘‘Appendix’’. As

shown in Fig. 8, Eqs. (8) and (9) provide a good description of the actual trend exhibited

(a) (b)

Fig. 7 Numerical results and limit conditions of: a |Iu| and b |Ih|
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by |Iu| and |Ih|, particularly for xH/VS\ 5, which corresponds to the range of frequencies

typical of real earthquakes.

5 Guidelines for design

In the light of the results presented so far, and bearing in mind that the accuracy of any

simplified method should be consistent with the uncertainties involved in the characteri-

zation of the free-field ground motion, this section aims to review critically standard

guidelines for including filtering effects in the evaluation of the FIM (FEMA 440 2005;

Mylonakis et al. 2006). We will refer to both dynamic and static procedures for the seismic

design of structures, where the design earthquake is defined in terms of a time history or a

response spectrum, respectively.

Since the interaction factors are complex valued transfer functions, the mathematical

rigorous procedure for computing the FIM consists in applying Iu and Ih to the Fourier

spectrum of the free-field motion, when the latter is defined as a time history (Method M1).

However, taking into account that simplified formulas are available only for real-valued

functions |Iu| and |Ih|, the latter are adopted in the design practice, ignoring any possible

phase shift between the translation and rocking components of the foundation motion

(Method M2).

Moving to static procedures, Mylonakis et al. (2006) suggested to apply |Iu| and |Ih|

directly to the free-field acceleration spectrum (Sa;ff0 xð Þ), if the design earthquake is

specified in this form (Method M3). Accordingly, for a structural mass located at a vertical

distance Hc from the base, foundation rocking and translation result in:

Sa;FIM xð Þ ¼ Iu xð Þj j þ Ih xð Þj j � Hc=H½ �Sa;ff0 xð Þ: ð10Þ

Clearly, methods M2 and M3 involve quite crude simplifications, whose effects must be

ascertained. To this end, we considered the ideal case of an embedded foundation

(H = 6 m, B/H = 1, 4 and 6, VS = 100 m/s), supporting a structural mass located at

Hc = 20 m and subjected to ten acceleration time histories, all registered during real

earthquakes. For sake of simplicity, we considered the above accelerations as free field

(a) (b)

Fig. 8 Comparison between numerical results (symbols) and interpolating functions (lines): a |Iu| and b |Ih|
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surface accelerations (€uff0), that is we ignored any stratigraphic amplification effects.

Table 3 summarizes the values of peak acceleration, PGA, duration, T5–95 and mean fre-

quency, fm. Figure 9 shows (a) the acceleration time histories and (b) the Fourier amplitude

spectra, while Fig. 10 shows the elastic response spectra at 5 % damping of the ten signals.

Figure 11 shows, for earthquake No. 7 and for B/H = 1 and 4: (a, b) the acceleration

time histories and (c) the elastic response spectrum at 5 % damping of both free-field

motion and FIM, the latter computed according to methods M1 and M2. As expected,

filtering effects depend strongly on the ratio B/H, with a maximum reduction of about 50 %

in the horizontal peak acceleration computed for B/H = 1, together with the appearance of

a significant rocking component. Looking at the response spectra of Fig. 11c, the combined

effect of translation and rotation of the foundation turns out to be either beneficial or

detrimental for the structural system, depending on the ratio B/H, the major effects arising

in the short period range. For the case at hand (Hc = 20 m), procedure M1 provides a

maximum amplification in the spectral ordinates of 65 % for B/H = 1 and a maximum

reduction of 40 % for B/H = 4, with respect to the free-field condition. By comparing the

results from methods M1 and M2, no substantial difference is observed in terms of

maximum accelerations, the only difference being a phase shift in the time history.

Moreover, neglecting phase angles in the computation of the FIM introduces only small

errors in the spectral ordinates, with a maximum value of 25 % for structural periods larger

than 0.2 s (B/H = 4), always on the conservative side. These observations apply to all the

earthquakes considered in this work.

Figure 12 shows, for all earthquakes and for B/H = 1, 4 and 6, the ratio of FIM to free-

field response spectral ordinates, the former computed according to methods M1 and M2.

The figure shows also the values |Iu| ? |Ih|�Hc/H (method M3), and those of |Iu|, to highlight

errors in reducing the design spectrum of the free-field motion without taking into account

|Ih|. Depending on the ratio B/H, i.e. on the interplay between the reduction in the hori-

zontal motion and the introduction of rocking oscillations, kinematic interaction may lead

to either an increase (B/H = 1) or a reduction (B/H = 4, 6) of the spectral ordinates, with

respect to the free-field case. Both simplified procedures M2 and M3 allow to take into

account these effects, providing always conservative results with respect to the rigorous

procedure M1. However, the error introduced reduces with increasing periods, where the

foundation rocking tends to vanish and, for T[ 0.2 s—i.e. for most of the real structures

where considering the filtering effect induced by the foundation embedment makes sense—

the maximum error associated to methods M2 and M3 is 35 and 40 % respectively. On the

Table 3 Ground motion param-
eters of input earthquakes

# Earthquake PGA (g) T5–95 (s) fm (Hz)

1 Kocaeli—Turkey (1999) 0.34 17.6 2.67

2 Loma Prieta—USA (1989) 0.37 15.7 4.11

3 Friuli—Italy (1976) 0.32 4.8 3.98

4 Imperial Valley—USA (1979) 0.33 10.3 4.34

5 Hollister—USA (1961) 0.19 9.2 2.84

6 Kobe—Japan (1995) 0.33 18.6 4.11

7 Trinidad—USA (1983) 0.17 3.2 4.30

8 Northridge—USA (1983) 0.58 19.0 3.38

9 Chi Chi—Taiwan (1999) 0.21 9.4 4.23

10 Landers—USA (1992) 0.44 22.3 5.72
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(a) (b)

Fig. 9 Ten real earthquakes: a acceleration time histories and b Fourier amplitude spectra
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Fig. 10 Ten real earthquakes:
elastic response spectra

(a)

(b)

(c)

Fig. 11 Earthquake No. 7—acceleration time histories of: a horizontal translation and b rocking of free-
field motion and FIM, together with c their elastic response spectra
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other hand, in spite of being always unconservative, using solely |Iu| provides a reasonable

approximation of the actual trend for large values of B/H (B/H C 4), where the foundation

rocking is small.

Based on the above observations, it can be concluded that both procedures M2 and M3

can be adopted effectively in the design practice, when computing the design motion either

as a time history or as an elastic response spectrum, to take into account in a simplified

manner filtering effects induced by embedded foundations.

6 Conclusions

This work was devoted to the filtering effects induced by rigid massless embedded

foundations subjected to vertically propagating shear waves. Based on results from

dimensional analysis and numerical simulations, it was found that the problem can be

reasonably described solely by two dimensionless groups, namely: (1) xH/VS, relating the

wave length of the signal to the embedment depth of the foundation, and (2) the aspect

ratio of the foundation, B/H, where B is the foundation width in the polarization plane.

New simplified and physically sound expressions were derived for the kinematic

interaction factors, |Iu| and |Ih|, and standard methods for using these functions in the

evaluation of the FIM were critically reviewed, with reference to both static and dynamic

procedures for the seismic design of structures. More in detail, it was pointed out that real-

valued functions |Iu| and |Ih| can be used instead of complex-valued factors Iu and Ih.

Moreover, filtering functions can be applied either to the Fourier amplitude spectrum or to

the response spectrum of the free-field signal, if the design motion must be specified as a

time history or acceleration spectrum respectively.

In order to reduce the problem, usual approximations of linear viscoelastic material and

uniform half-space were assumed for the soil. Possible nonlinearities or non-uniformities,

leading to variability of shear wave velocity with induced strain level or depth, could be

taken into account using conventional procedures, as summarized in Brandenberg et al.

(2015). At one hand, non-uniform soil profiles could be introduced by using the time-

averaged shear wave velocity (depth/travel time) for the soil included within the embed-

ment depth of the foundation. On the other hand, when dealing with strong earthquakes,

corresponding to which the induced shear strains can lead to a significant reduction of the

(a) (b) (c)

Fig. 12 All earthquakes: ratio of the response spectra between FIM and free-field motion for: a B/H = 1,
b B/H = 4 and c B/H = 6 (H = 6 m, Hc = 20 m, VS = 100 m/s)
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mobilised shear modulus of the soil, a site-specific ground response analysis should be

performed to obtain values of strain-compatible shear modulus (and associated equivalent-

linear Vs). Following Idriss and Sun (1993), the computed peak shear strain (cmax) must be

converted to a representative uniform strain (ceff = a�cmax), where a = (M - 1)/10 and

M is the moment magnitude of the earthquake. Then, ceff is used to compute the mobilised

shear modulus from the selected modulus reduction curve for the soil.

However, this equivalent-linear procedure does not allow to take into account the

occurrence of plastic phenomena within the soil–foundation system, such as the formation

of gaps between the foundation and the soil, slippage along the side walls and yielding of

the soil itself at specific locations around the foundation (Gazetas 2015). Further studies are

needed to explore these phenomena, all possibly affecting the dynamic behaviour of

embedded foundations and, hence, also their filtering action on the signal transmitted to the

structure.

The results of this work could be extended to explore the role of the stiffness of the

foundation in cases where the rigidity assumption is no longer applicable, and to examine

other realistic foundation layouts combining features of piled and embedded foundations.
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Appendix

Coefficients a1, a2, a3, a4 in Eqs. (8) and (9) are computed as a function B/H from the best

fit of numerical data:

a1 B=Hð Þ ¼ B=Hð Þa

bþ B=Hð Þa a ¼ 1:04 b ¼ 4:24 ð11Þ

a2 B=Hð Þ ¼ aþ B=Hð Þ
1þ B=Hð Þ a ¼ 1:92 ð12Þ

a3 B=Hð Þ ¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffi
B=H

p þ a B=Hð Þb a ¼ 0:32 b ¼ 0:38 ð13Þ

a4 B=Hð Þ ¼ 1

1þ a B=Hð Þb
a ¼ 1:70 b ¼ 1:62 ð14Þ
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