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Abstract The dynamic behaviour of existing masonry buildings mainly depends on the out-

of-plane response of the vertical walls. A proper evaluation of their response can be ana-

lytically performed considering the dynamic equation of motion of the rigid body, in the

framework of rigid in compression no tension material. The above equation is numerically

solved with increasing magnitude of the seismic action, until the collapse condition of the

wall, due to a lack of equilibrium, is reached. In the paper two local collapse mechanisms are

considered, the two sided and the one sided rocking. The influence of considering a sim-

plified trilinear moment-rotation law is also discussed. For each mechanism, the force-

reduction factor, defined as the ratio between the seismic acceleration value causing the

collapse of the masonry element and the one corresponding to the activation of the rocking

motion, is evaluated. The dependence of this factor on the main parameters of the model is

deeply investigated by means of numerical analyses, varying the geometrical characteristics

of the panel, the energy dissipation model and the features of the seismic input. A power

function law between an effective force reduction factor, defined as the ratio of the force

reduction factor multiplied for the gravitational acceleration to the peak ground acceleration,

and the Housner Spectrum Intensity is identified for both the examined models. These laws

allow accounting for the so-called scale effect within a force-based framework. Eventually,

novel formulations for evaluating the force reduction factor of two and one sided rocking

systems are here proposed. Their effectiveness has been also highlighted considering both

spectrum-compatible accelerograms and natural records.

Keywords Unreinforced masonry � Rocking � Force reduction factor � Local collapse
mechanism

& Simona Coccia
coccia@ing.uniroma2.it

1 Department of Civil Engineering and Computer Science Engineering, University of Rome
‘‘Tor Vergata’’, Rome, Italy

2 University ‘‘Niccolò Cusano’’, Rome, Italy
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1 Introduction

The problem of the seismic assessment and retrofit of existing unreinforced masonry

buildings has become one of the main topics of interest in the world of constructions. Post-

earthquake damage surveys and shaking table laboratory tests have shown that the main

vulnerability of masonry structures with poor connections between orthogonal walls or

walls and floors is associated to local failure modes, specifically related to the out-of-plane

response (D’Ayala and Paganoni 2011). Assuming the hypothesis of rigid in compression

and no tension material, the collapse load of masonry structures can be evaluated with two

different approaches: an equivalent static method based on the Limit Analysis theory in the

un-deformed configuration (D’Ayala et al. 1997; D’Ayala and Speranza 2003; Coccia et al.

2015a; Coccia and Como 2015) or in the deformed configuration (Coccia et al. 2015b) and

a dynamic approach in the case of inertial horizontal actions. According to this last

approach, each masonry pier or spandrel is schematized in a macro-element, modelled as a

rigid body excited into a rocking motion upon a rigid horizontal base. Unilateral contacts,

impacts and sliding with friction may occur at the interface sections of the macro-element,

causing a kinetic energy dissipation. Therefore, the analysis of the dynamic problem of a

rocking element acquires fundamental importance in order to define a realistic ‘‘seismic

force reduction factor’’, called q-factor in Europe and R-factor in the United States, which

takes account of the ratio between non-linear dynamic response and static activation of

motion. A complete assessment of this parameter, for a masonry element undergoing to an

out-of-plane motion, is still missing. Further researches having the aim to investigate the

main parameters affecting the rocking response are then required. The seismic behaviour of

a single masonry wall depends on its position within the structure. Admitting that a simple

overturning mechanism can develop, the considered macro-element may be subjected to

two distinct kinematic mechanisms. The first, typical of isolated elements, is called in the

following ‘‘two sided rocking’’ and it is characterised by a rocking motion along both the

inward and outward directions. The second considered mechanism, called ‘‘one sided

rocking’’, is instead related to a masonry wall characterised by the presence of an element

that avoids inward rotation (e.g. a slab, a diaphragm floor or a transverse wall). Other

studies have been also developed in order to account for the effect of constraint from

lateral walls at the corners of the buildings (D’Ayala and Shi 2011). Since in the present

work the behaviour of historical masonry buildings characterized by poor connections with

lateral or internal perpendicular walls is investigated, the latter effect is not considered.

In literature, analytical, experimental and numerical studies are available, but the def-

inition of adequate force reduction factors is still missing. Experimental investigations are

typically effected in order to calibrate either numerical and analytical models (Sorrentino

et al. 2011; Costa et al. 2012). Numerical models are also based on the distinct element

approach (DEM), and permit to simulate either the two sided and the one sided rocking

mechanisms (Papantonopoulos et al. 2002; Peña et al. 2007; De Felice 2011). The

effectiveness of the numerical response clearly depends on the imposed boundary condi-

tion, specifically those related to the energy dissipation phenomenon. The analytical

models, finally, differ in the considered kinematic mechanism and consider steady state

harmonic functions, simple pulses or natural and artificial spectrum-compatible accelera-

tion time histories (Yim et al. 1980; Makris and Konstantinidis 2003; Sorrentino et al.

2008b; Shawa et al. 2012; Giresini et al. 2015).

The dynamic equation of the motion of the two sided rocking model was firstly

developed by Housner (1963), who modelled the element as a rigid inverted pendulum
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structure in absence of sliding between block and foundation. The overturning modes of a

rigid block exhibiting one or more impacts were investigated by Zhang and Makris (2001),

Kounadis (2010) and Hao and Zhou (2011). Prieto and Lourenço (2005) introduced a novel

formulation for the rocking motion of a rigid block, based on a single ordinary differential

equation, which also defined the damping effects by means of impulsive forces. The

response of the block to different acceleration time histories has been widely treated by

Sorrentino et al. (2006) and Sorrentino et al. (2008a).

The first analytical study of the one sided rocking model was developed by Hogan

(1992), who analysed the dynamical problem of an inverted pendulum structure impacting

on a side under harmonic forcing. Subsequently other authors, introducing the seismic

input in the model, stated the importance of a correct assessment of the energy dissipation

to properly evaluate the effective rocking behaviour of the masonry wall (Sorrentino et al.

2008a; Shawa et al. 2012). Due to this reason, the authors carried out experimental

investigations in order to estimate the kinetic energy dissipated at impact.

In this paper, the dynamic response of the two considered local collapse mechanisms is

investigated by means of numerical integrations of the equation of motion of the rigid

block, in the framework of rigid in compression no tension material. The aim of the work is

the definition of effective formulations for evaluating the force-reduction factor, defined as

the ratio between the seismic acceleration value causing the collapse of the masonry

element and the one corresponding to the activation of the rocking motion. The collapse

condition is due to a lack of equilibrium and the development of cracking within the body

is not here considered.

2 Equations of motion of the considered mechanisms

In the analytical model of the two sided rocking mechanism, the body deformability is

neglected and the coefficient of friction is assumed to be sufficiently large to prevent

horizontal sliding between the block and the rigid foundation (Housner 1963). The only

possible motion is then the rotation about the outside edges of the block (points O and O0 in
Fig. 1).

The main geometrical properties of the model are the radial distance R (from the centre

of mass G to each one of the two centres of rotation O and O0) and the angle a between the

line R and the side of the block, representing a measure of the slenderness of the block.

The equation of motion is obtained applying the Lagrange Equation to the block of

Fig. 1:

€hþ p2 � sin a� hð Þ ¼ p2 � €u tð Þ
g

� cos a� hð Þ
� �

ð1Þ

where (�) means differentiation with respect to time t, €u tð Þ is the time-dependent ground

motion acceleration, g is the gravitational acceleration, m is the mass of the block, IG is the

moment of inertia about the centre of gravity, p2 ¼ m�g�R
I0

is the frequency parameter of the

block and I0 ¼ IG þ m � R2 is the moment of inertia about the two centres of rotation.The

system is characterized by a threshold acceleration aRM , defined as the acceleration value

for which the moment due to self-weight equals the overturning moment due to seismic

action:

aRM ¼ g � tan a ð2Þ
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In this paper, only non-load carrying elements are considered, for which the overturning

condition, corresponding to the failure of the block, consists in the attainment of a rotation

higher than the slenderness angle a. During the forced oscillatory motion, the rotation of

the block can exceed the angle a, because a consecutive contrary pulse can bring the

system again in an equilibrium condition.

Whenever an impact occurs, dissipative phenomena take place, determining a damping

in the oscillatory motion of the block. In the paper, these effects are modelled according to

the classical approach based on the conservation of angular momentum with the

hypotheses of infinitesimal duration of the impact, no displacement and instantaneous

variation of velocity during impact (Housner 1963; De Lorenzis et al. 2007; Sorrentino

et al. 2008a; Costa et al. 2012).

Housner (1963) introduced a relationship between the velocity of the block before ( _h1)

and after ( _h2) the impact, depending on the parameter r (named coefficient of restitution),

defined as the ratio between the kinetic energies before and after the impact:

_h2 ¼ _h1 �
ffiffi
r

p
ð3Þ

The theoretical coefficient of restitution depends only on the geometry of the block and for

the case of rectangular block becomes:

r ¼ 1� 2bmR sin a
I0

� �2

¼ 1� 3

2
sin2 a

� �2

ð4Þ

where b is the half-width of the block.

Experimental tests performed on different types of masonry walls have however shown

a discrepancy with the theoretical values. For example, Sorrentino et al. (2011), testing two

different masonry typologies, made of tuff units and solid clay bricks respectively, propose

this relationship:

ffiffiffiffiffiffiffi
rexp

p ¼ 0:95 �
ffiffi
r

p
ð5Þ

where rexp is the obtained experimental coefficient of restitution.

Fig. 1 Model geometry
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Experimental tests performed by Costa et al. (2013) on sack stone masonry give a range

of
ffiffiffiffiffiffiffi
rexp

p
variable between 0.95�

ffiffi
r

p
and 0.98. The same authors propose to use a value

included in this interval in the analysis of the rocking behaviour of walls similar to the

tested ones and suggest that the effects of repetition may lead to the result of Eq. (5).

It is worth of interest to highlight the existence of a scale effect according to which the

smaller of two geometrically similar blocks is less stable than the larger one (Housner

1963; Sorrentino et al. 2006).

In the one sided rocking mechanism only rotations around the center O are allowed

(Fig. 1). When the block falls back into the vertical position impacting with the base, the

centre of rotation remains in the point O and the block continues to rotate around this latter

but in the opposite direction. Due to this reason, the motion of the block can start only if

the seismic acceleration acts along the correct direction. The motion of the block is again

described by Eq. (1), in which a new boundary condition on the sign of the rotation has to

be introduced.

Hogan (1992) developed the first model of energy dissipation for this mechanism,

assuming for the coefficient of restitution r Eq. (4). Based on the approach of the con-

servation of the angular momentum, Sorrentino et al. (2011) suggest evaluating the

coefficient of restitution assuming that the three impacts occur in sequence: the first on the

base, the second against the upper corner and the last one again on the base, after the

inversion of the block motion. The energy dissipation model is shown in Fig. 2.

For a rectangular block, according to Sorrentino et al. (2011), it is possible to estimate

the theoretical coefficient of restitution of the one sided rocking as:

r1s ¼ 1� 3

2
sin2 a

� �2

1� 3

2
cos2 a

� �" #2
ð6Þ

According to the outcomes of an experimental campaign, the same authors propose also

another formulation for the coefficient of restitution:

r1s;exp ¼ r1s 1:18� 0:473
_h1
_hr

 !2
2
4

3
5
2

ð7Þ

in which _h1 is the velocity of the block before the impact and _hr is the overturning velocity,
defined as:

Fig. 2 Theoretical energy dissipation model for the one sided mechanism
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_hr ¼ 2
mgR

Io
1� cos að Þ ð8Þ

The models previously described are defined considering a perfectly parallelepiped

geometry of the wall. In order to account for a deviation of the actual geometry from the

ideal one, the equation of motion can be modified considering a different moment-rotation

law (Doherty et al. 2002; Sorrentino et al. 2008a; Al Shawa et al. 2015; Ferreira et al.

2015). This approach will be also used in the paper in a further section with the aim to

highlight the differences with the classic theory. In particular, a simplified trilinear

moment-rotation law with a finite initial stiffness is implemented, (Fig. 3). The three

branches of the model are defined by means of two parameters, D1 and D2, defined as the

ratio between the angle of rotation and the slenderness angle of the block. The first

parameter identifies the ending point of the initial elastic branch of the trilinear model

while the second one defines the length of the steady part.

3 The force reduction factor

A simplified method to check the seismic safety of a masonry wall is proposed within the

Italian Standard (CMIT 2009) and consists in the satisfaction of the inequality:

aRM � S � ag
qSt

ð9Þ

where aRM is the threshold acceleration given by Eq. (2), S � ag is the peak ground

acceleration (PGA) and qSt is the force reduction factor given by the Code. According to

the current approach presented in the Italian Standard, this latter is taken to be always equal

Fig. 3 Trilinear simplified moment-rotation law
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to 2, regardless of the geometrical properties of the block, the type of mechanism and the

seismic input. In order to evaluate the effective force reduction factor, incremental

dynamic analyses are performed on masonry walls.

The equation of motion (Eq. 1), in which the seismic input ü(t) is increased by means of

a multiplier C, is numerically solved using the Newmark trapezoidal rule, until the

overturning condition is reached (Coccia et al. 2016).

In order to demonstrate the effectiveness of the integration procedure in the modelling

of the rocking behaviour of the block, a comparison between numerical and analytical free

vibrations is shown with reference to the experimental test performed by Sorrentino et al.

(2011) on a masonry wall made of tuff units (Fig. 4). The block is characterized by a height

equal to 800 mm and a thickness equal to 123 mm. The figure shows the trend of the ratio

of the rotation to the angle of slenderness with respect to time: the dotted grey line relates

to the experimental outcomes, the black dotted refers to the analytical solution found by

Sorrentino et al. (2011), while the continuous grey line corresponds to the integration

procedure used in this paper. The good agreement between the two analytical solutions

shows the adequacy of the proposed integration method that allows estimating the force

reduction factor as:

q ¼ C � PGA
aRM

ð10Þ

4 Parametric analyses

Parametric analyses are performed in order to identify the meaningful parameters of the

rocking behaviour and consequently the force reduction factor q of the masonry wall. The

analyses involve the geometrical aspects and the seismic signal features, as well as the type

of kinematic mechanism (two or one sided rocking). Different wall geometries are

Fig. 4 Comparison between
numerical and experimental free
vibrations
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considered, varying the height H (from 3 to 11 m) and the angle of slenderness a of the

block (3.1�, 6.8�, 11.3�).
For each geometry, incremental dynamic analyses are made with different artificial

spectrum-compatible motions, in order to have a sufficient variety of earthquake charac-

teristics. Nine acceleration response spectra, pooled in three groups (A, B and C) charac-

terized by the same peak ground acceleration value (0.106, 0.312 and 0.205 g,

respectively), are used to define artificial spectrum-compatible time histories (Fig. 5). For

each response spectrum, seven accelerograms are generated according to the code provi-

sions (CEN 2005).

4.1 The response of the two sided model

The first investigated mechanism is the two sided model. In order to evaluate the influence

of the energy dissipation model, the force reduction factor is evaluated with Housner’s

theoretical and Sorrentino’s experimental coefficients of restitution r, given by Eqs. (4) and

(5), respectively. The force reduction factor is evaluated as the average of the values

obtained by the incremental dynamic analyses made with each group composed by seven

artificial compatible accelerograms (CEN 2005).

For sake of brevity, the obtained results are reported in terms of q-factor versus the

height H of the block for the theoretical (Fig. 6) and experimental (Fig. 7) coefficients of

restitution, exclusively for the accelerograms belonging to group B.

For both energy dissipation models, the strength reduction factor increases with

increasing slenderness or height of the block. An increment of the slenderness angle, for

equal height of the block, corresponds to a stockier element, more stable against the

overturning condition. The increase of the strength reduction factor with the height of the

block is instead related to the previously described scale effect existing in the model.

Figure 8 shows a comparison of the force reduction factors obtained with the two

formulations of the coefficient r for all the considered acceleration time histories. The

theoretical one gives always results on the safe side, due to its lower dissipative capacity.

Fig. 5 Elastic response spectra used to generate the acceleration time-histories

1248 Bull Earthquake Eng (2017) 15:1241–1259

123



The collapse condition is in fact reached with a lower value of the seismic acceleration. For

this reason, the theoretical coefficient r will be only used in the following.

In order to understand the influence of the characteristics of the seismic motion on the

dynamic capacity of the rigid block, the q-factor of the elements having the intermediate

slenderness value a = 6.8� is reported in Fig. 9 for all the chosen response spectra. The

outcomes of the incremental analyses confirm the increase of the strength reduction factor

with the height H and highlight that the PGA is not the unique signal characteristic that

influences the overturning of the element. Similar results are obtained for the other con-

sidered geometries. Even if the PGA is the seismic characteristic most widely used to

describe an earthquake, it is well known that it does not permit to evaluate the effective

destructiveness potential of the seismic event. In many cases, very strong earthquakes do

not cause appreciable structural damage, on the contrary, ground motions characterized by

lower value of PGA have proven to be unexpectedly destructive. Sorrentino et al. (2006),

analysing the response of the element to different natural accelerograms, find that the only

Fig. 6 q-factor versus the height H of the block for the theoretical coefficients of restitution for the two
sided mechanism and for the accelerograms of group B; dependence on the angle of slenderness a

Fig. 7 q-factor versus the height H of the block for the experimental coefficients of restitution for the two
sided mechanism and for the accelerograms of group B; dependence on the angle of slenderness a

Fig. 8 Comparison of the force
reduction factors obtained with
the theoretical and the
experimental coefficient of
restitution for the two sided
mechanism
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values of the frequency or amplitude are not sufficient for the assessment of the block

overturning, while a most representative measure of the seismic motion that causes the

overturning of the block is instead the peak ground velocity (PGV).

In this paper, in order to introduce a dependency of the force reduction factor on the

characteristics of the seismic motion, the Housner Spectrum Intensity (SI) is used (Housner

1952). This parameter describes an artificial time history through the area included under

the pseudo-velocity response spectrum (Sv(T)) in the range between 0.1 and 2.5 s:

SI ¼
Z2:5s

0:1s

Sv Tð ÞdT ð11Þ

where T is the period of the structure. The values of the Housner Spectrum Intensity of

each elastic response spectrum are reported in Table 1.

The outcomes of the performed incremental dynamic analyses are shown introducing a

dimensionless coefficient defined as the ratio between the force reduction factor multiplied

for the gravitational acceleration and the peak ground acceleration, in the following called

effective force reduction factor:

qeff ¼
q � g
ag � S

ð12Þ

Figures 10, 11 and 12 show the trend of the effective force reduction factor versus the

Housner Spectrum Intensity. The mean value of the seven effective force reduction factors

is represented in the graphs by dots. The obtained results show as qeff decreases with

increasing Housner Spectrum Intensity according to a clear power function law (dotted line

in the same figures). It should be noted that a dependence of the response on the pseudo-

velocity response spectrum has also been found by other authors (Sorrentino and Masiani

Fig. 9 q-factor versus the height H of the block with slenderness a = 6.8 for the theoretical coefficients of
restitution for the accelerograms of group A, B and C for the two sided mechanism

Table 1 Values of the Housner
Spectrum Intensity

Group PGA (g) Spectrum SI (cm)

A 0.106 A1 31.18

A2 41.04

A3 35.92

B 0.312 B1 92.05

B2 133.45

B3 119.06

C 0.205 C1 59.05

C2 91.69

C3 80.24
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2007; Giresini et al. 2015). The determination coefficients R2 of the statistical regressions

are also reported in the figures.

4.2 The response of the one sided model

In this section the one sided rocking model is investigated and the force reduction factor is

evaluated. The two different energy dissipation models (Eqs. 6 and 7) suggested by Sor-

rentino et al. (2011) are taken into account. Similarly to the previous section, the q-factor

versus the slenderness a is plotted exclusively for the accelerograms belonging to the group

Fig. 10 qeff versus SI for the two sided mechanism, for the block with slenderness a = 3.1�

Fig. 11 qeff versus SI for the two sided mechanism, for the block with slenderness a = 6.8�

Fig. 12 qeff versus SI for the two sided mechanism, for the block with slenderness a = 11.3�

Bull Earthquake Eng (2017) 15:1241–1259 1251

123



B (Figs. 13, 14). Also in this mechanism, the q-factor increases with increasing slenderness

or height of the block and the overturning of the element is not only influenced by the PGA.

Similar results are found for the other geometries and seismic inputs.

The theoretical results are shown to be again on the safe side (Fig. 15), hence only the

theoretical coefficient r is used in the following to study the dependence of the q-factor on

the Housner Spectrum Intensity.

Similarly to the previous case, the effective force reduction factor decreases with

increasing Housner Spectrum Intensity, according to a power function law (Figs. 16, 17, 18).

4.3 Trilinear moment-rotation law

This section is devoted to the assessment of the force reduction factor by using a trilinear

moment-rotation law, in order to highlight the differences with the classic approach when a

deviation of the actual geometry of the wall from the perfectly parallelepiped one occurs

Fig. 13 q-factor versus the height H of the block for the theoretical coefficients of restitution for the one
sided mechanism and for the accelerograms of group B; dependence on the angle of slenderness a

Fig. 14 q-factor versus the height H of the block for the experimental coefficients of restitution for the one
sided mechanism and for the accelerograms of group B; dependence on the angle of slenderness a

Fig. 15 Comparison of the force
reduction factors obtained with
the theoretical and the
experimental coefficient of
restitution for the one sided
mechanism
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(Al Shawa et al. 2015). The values of the parameters defining the considered rocking block

model can be set on the basis of experimental tests. In this paper, D1 is set equal to 0.06 and

0.02 according to Doherty et al. (2002) and Al Shawa et al. (2015) respectively. Regarding

to the parameter D2, both authors suggest using a value equal to 0.28.

Figure 19 shows a comparison of the force reduction factors obtained with the two

approaches for an intermediate geometry of the block, characterized by a slenderness angle

and a height equal to 6.8� and 7 m respectively. All the nine acceleration response spectra

belonging to the groups A, B and C have been considered. The q-factors obtained according

Fig. 16 qeff versus SI for the one sided mechanism, for the block with a = 3.1�

Fig. 17 qeff versus SI for the one sided mechanism, for the block with a = 6.8�

Fig. 18 qeff versus SI for the one sided mechanism, for the block with a = 11.3�
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to the classic rigid body approach and to the trilinear model are indicated on the x-axis and

y-axis, respectively. The black colour is used to identify the results obtained with the

values of the parameters suggested by Doherty et al. (2002), while the ones obtained

according to Al Shawa et al. (2015) are plotted in grey. It is found that the percentage of

conservative cases increases adopting a trilinear moment-rotation law for both considered

values of the parameters D1 and D2 as in Al Shawa et al. (2015).

5 Analytical formulations for evaluating the Q-factor

In this section, starting from the results of the performed numerical analyses, analytical

formulations for evaluating the force reduction factor are proposed for both the considered

mechanisms. Since the performed dynamic analyses consider non-load carrying elements,

the proposed relationships can be used only for masonry walls not supporting any upper

horizontal structure.

As previously stated, the general formulation of the effective force reduction factor

assumes the form:

qeff ¼ C1SI
C2 ð13Þ

where the parameters C1 and C2 are function of the geometrical characteristics H and a of

the block. For both the investigated models, constant values can be assumed for the

coefficient C2, because of its low variability. In particular, the range of C2 is [-0.919;

-1.07] for the two sided mechanism and [-0.862; -0.95] for the one sided, assuming SI in

cm. For this reason, values equal to -1.0 and -0.9 are respectively used for the two

formulations.

Concerning C1, for both the two mechanisms, a linear dependence on H and a is

assumed:

Fig. 19 Influence of the trilinear simplified moment-rotation law for the block with a = 6.8� and H = 7 m
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C1 ¼ A1aþ A2H þ A3 ð14Þ

in which the coefficients A1, A2 and A3 are obtained for each model through a regression of

the numerical outcomes with the ordinary least squares method.

The following novel relationships for the evaluation of the q-factor are drawn by

applying the above procedure:

qtwo sided ¼ qeff
ag � S
g

¼ 30 � aþ 78 � Hþ 90ð Þ � SI�1:0 ð15Þ

qone sided ¼ qeff
ag � S
g

¼ 23 � aþ 65 � Hþ 840ð Þ � SI�0:9 ð16Þ

with a in degree, H in m and SI in cm.

The effectiveness of these analytical laws is highlighted in Fig. 20 in which the

numerical force reduction factor is plotted versus the analytical one for the two examined

models.

5.1 Comparison with the analysis performed with natural records

In order to confirm the observed trends of the effective force reduction factor with the

Housner Spectrum Intensity in the case of use of spectrum-compatible time histories,

further analyses are performed considering the natural records summarized in Table 2

together with the main seismic characteristics.

With reference to the intermediate geometry of the block, characterized by a slenderness

angle and a height to 6.8� and 7 m respectively, the effective force reduction factors for

both two sided and one sided mechanisms have been evaluated.

Figure 21 shows the obtained results for the considered geometry of the block and the

case of the two sided mechanism. The trend of the effective force reduction factor with the

Housner Spectrum Intensity evaluated according to the proposed formulation (Eq. 15) is

plotted with a continuous black line; the effective force reduction factors assessed

imposing to the block the time histories of Table 2 are superimposed by means of black

points. The same figure shows the effectiveness of the proposed analytical formulation: the

Fig. 20 Comparison between the q-factor obtained from the numerical procedure and from the analytical
proposed formulation

Bull Earthquake Eng (2017) 15:1241–1259 1255

123



obtained results, evaluated with natural records, are in fact included within an error zone

equal to ±20 % of the proposed law -superimposed with a black dashed line—and only in

few cases this interval has been exceeded.

Similarly to the previous case, Fig. 22 shows the results obtained considering the same

geometry of the block, for the case of the one sided mechanism. A good agreement

between the effective force reduction factors evaluated using natural records and the

formulation of Eq. (16) is found, also confirming the effectiveness of the proposed law for

the one sided mechanism.

Table 2 Seismic characteristics of the considered natural records

ID Event Date Mw PGA (g) PGV (cm/s) PGD (cm) Dt (s) SI (cm)

TH1 L’Aquila 2009-IV-06 6.3 0.03 1.8 0.6 118.995 9.04

TH2 South Iceland 2000-VI-21 6.4 0.02 4.29 2.46 62.99 9.81

TH3 Irpinia 1980-XI-23 6.9 0.06 5.06 2.01 66.48 20

TH4 Irpinia 1980-XI-23 6.9 0.06 6.28 2.57 66.48 21.92

TH5 Campano Lucano 1980-XI-23 6.9 0.06 5.89 5.01 66.51 23.56

TH6 Friuli 1976-IX-15 6 0.16 9.98 2.14 72.47 25.23

TH7 Umbria-Marche 1997-IX-26 6 0.07 8.95 1.79 50.495 30.59

TH8 Bingol 2003-V-01 6.3 0.3 20.97 3.73 64.71 74.53

TH9 Irpinia 1980-XI-23 6.9 0.16 26.02 9.68 85.995 113.42

TH10 Imperial Valley 1940-V-19 7 0.32 29.8 13.3 53.8 124.27

TH11 L’Aquila 2009-IV-06 6.3 0.33 32.14 7.19 100 137.5

Fig. 21 qeff evaluated with natural records for the two sided mechanism for the block with a = 6.8� and
H = 7 m
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6 Conclusions

In this paper, the out-of-plane response of masonry elements is analytically investigated in

the framework of the dynamic equation of motion of the rigid body, according to the

material hypothesis of infinite strength and stiffness in compression and tensile strength

equal to zero.

Two local collapse mechanisms, the two sided and the one sided rocking, have been

here examined, with the aim to properly evaluate the corresponding force reduction factor.

This last is defined as the ratio between the seismic acceleration value causing the collapse

of the masonry element and the one corresponding to the activation of the rocking motion.

The influence of considering a simplified trilinear moment-rotation law in the assessment

of the rocking behavior of the masonry block is also discussed.

Parametric analyses have been performed, numerically solving the dynamic equation of

motion with increasing magnitude of the seismic action until the attainment of the collapse

condition of the block. The main parameters of the model have been varied in order to

evaluate their impact on the global response of the system: the geometrical characteristics

of the block, i.e. the height and the angle of slenderness; the energy dissipation model,

describing the dissipative phenomena occurring when the block undergoes an impact to the

base; the main features of the seismic input.

It is shown that the theoretical dissipation models lead always to results on the safe side

with respect to the experimental ones, due to their lower dissipative capacity. The collapse

condition is in fact reached with a lower value of the seismic acceleration.

It is worth highlighting that the response of the block does not depend only on the value

of the peak ground acceleration: other characteristics of the seismic signal have to be taken

into account to effectively catch the collapse behaviour. It is furthermore shown that a

power function law exists between an effective force reduction factor, defined as the ratio

Fig. 22 qeff evaluated with natural records for the one sided mechanism for the block with a = 6.8� and
H = 7 m
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of the force reduction factor to the maximum value of the acceleration time history, and the

Housner Spectrum Intensity, for both the two examined models.

Eventually, novel formulations for evaluating the force reduction factor of the two

rocking models, dependent on the geometrical characteristics of the block and on the

Housner Spectrum Intensity, have been here proposed. Their effectiveness has been also

shown considering the implementation of both spectrum-compatible accelerograms and

natural records.
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Costa AA, Arêde A, Penna A, Costa A (2013) Free rocking response of a regular stone masonry wall with
equivalent block approach: experimental and analytical evaluation. Earthq Eng Struct Dyn
42:2297–2319. doi:10.1002/eqe.2327

D’Ayala D, Shi Y (2011) Modeling masonry historic buildings by multi-body dynamics. Int J Archit Herit
5:483–512. doi:10.1080/15583058.2011.557138

D’Ayala DF, Paganoni S (2011) Assessment and analysis of damage in L’Aquila historic city centre after
6th April 2009. Bull Earthq Eng 9(1):81–104. doi:10.1007/s10518-010-9224-4

D’Ayala D, Speranza E (2003) Definition of collapse mechanisms and seismic vulnerability of historic
masonry buildings. Earthq Spectra 19(3):479–509. doi:10.1193/1.1599896

D’Ayala D, Spence R, Oliveira C, Pomonis A (1997) Earthquake loss estimation for Europe’s historic town
centres. Earthq Spectra 13(4):773–793

De Felice G (2011) Out-of-plane seismic capacity of masonry depending on wall section morphology. Int J
Archit Herit 5(4–5):466–482. doi:10.1080/15583058.2010.530339

De Lorenzis L, DeJong M, Ochsendorf J (2007) Failure of masonry arches under impulse base motion.
Earthq Eng Struct Dyn 36(14):2119–2136. doi:10.1002/eqe.719

Doherty K, Griffith MC, Lam N, Wilson J (2002) Displacement-based seismic analysis for out-of-plane
bending of unreinforced masonry walls. Earthq Eng Struct Dyn 31(4):833–850. doi:10.1002/eqe.126

Ferreira TM, Costa AA, Vicente R, Varum H (2015) A simplified four-branch model for the analytical study
of the out-of-plane performance of regular stone URM walls. Eng Struct 83:140–153. doi:10.1016/j.
engstruct.2014.10.048

Giresini L, Fragiacomo M, Lourenço PB (2015) Comparison between rocking analysis and kinematic
analysis for the dynamic out-of-plane behavior of masonry walls. Earthq Eng Struct Dyn
44:2359–2376. doi:10.1002/eqe.2592

Hao H, Zhou Y (2011) Rigid structure response analysis to seismic and blast induced ground motions.
Proced Eng 14:946–955. doi:10.1016/j.proeng.2011.07.119

Hogan SJ (1992) On the motion of a rigid block, tethered at one corner, under harmonic forcing. Proc R Soc
Math Phys Sci 439(1905):35–45. doi:10.1098/rspa.1992.0132

1258 Bull Earthquake Eng (2017) 15:1241–1259

123

http://dx.doi.org/10.1080/15583058.2013.804965
http://dx.doi.org/10.1016/j.engfailanal.2015.04.019
http://dx.doi.org/10.1016/j.engfailanal.2015.04.019
http://dx.doi.org/10.1007/s40091-015-0101-x
http://dx.doi.org/10.1002/eqe.2327
http://dx.doi.org/10.1080/15583058.2011.557138
http://dx.doi.org/10.1007/s10518-010-9224-4
http://dx.doi.org/10.1193/1.1599896
http://dx.doi.org/10.1080/15583058.2010.530339
http://dx.doi.org/10.1002/eqe.719
http://dx.doi.org/10.1002/eqe.126
http://dx.doi.org/10.1016/j.engstruct.2014.10.048
http://dx.doi.org/10.1016/j.engstruct.2014.10.048
http://dx.doi.org/10.1002/eqe.2592
http://dx.doi.org/10.1016/j.proeng.2011.07.119
http://dx.doi.org/10.1098/rspa.1992.0132


Housner GW (1952) Intensity of ground motion during strong earthquakes. California Inst of Tech Pasadena
Earthquake Engineering Research Lab, California

Housner GW (1963) The behavior of inverted pendulum structures during earthquakes. Bull Seismol Soc
Am 53(2):403–417

Kounadis AN (2010) On the dynamic overturning instability of a rectangular rigid block under ground
excitation. Open Mech J 4:43–57. doi:10.2174/18741584010040100043

Makris N, Konstantinidis D (2003) The rocking spectrum and the limitations of practical design method-
ologies. Earthq Eng Struct Dyn 32(2):265–289. doi:10.1002/eqe.223

Papantonopoulos C, Psycharis IN, Papastamatiou DY, Lemos JV, Mouzakis HP (2002) Numerical pre-
diction of the earthquake response of classical columns using the distinct element method. Earthq Eng
Struct Dyn 31:1699–1717. doi:10.1002/eqe.185

Peña F, Prieto F, Lourenço PB, Campos Costa A, Lemos JV (2007) On the dynamics of rocking motion of
single rigid-block structures. Earthq Eng Struct Dyn 36:2383–2399. doi:10.1002/eqe.739

Prieto F, Lourenço PB (2005) On the rocking behavior of rigid objects. Meccanica 40(2):121–133. doi:10.
1007/s11012-005-5875-7

Shawa OA, de Felice G, Mauro A, Sorrentino L (2012) Out-of-plane seismic behaviour of rocking masonry
walls. Earthq Eng Struct Dyn 41:949–968. doi:10.1002/eqe.1168

Sorrentino L, Masiani R (2007) Risposta fuori del piano di pareti murarie, libere e vincolate in sommità, a
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