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Abstract The paper deals with the behavior of restrained rocking blocks under seismic

actions. Structural or non-structural masonry or r.c. elements, such as building façades or

pre-cast panels subjected to out-of-plane modes, may be assimilated to rocking blocks

restrained by horizontal springs. Horizontal restraints can represent flexible floors or steel

anchorages or any anti-seismic device designed to impede overturning probability. Their

effect could improve, in most cases, the dynamic response of blocks in terms of reduction

of rotation amplitude. Nevertheless, this effectiveness could vanish or, surprisingly, affect

the response in negative way, resulting in overturning when low values of stiffness or one-

sided motion in particular conditions are assumed. Two cases of horizontal restraints are

analyzed: (1) concentrated restraint as single spring and (2) smeared restraint as spring bed

with constant or linearly variable stiffness. The single stabilizing or destabilizing terms of

the formulation are here analyzed and commented, providing practical evaluations to

obtain enhancement of response in static and dynamic perspective. A numerical example

of a masonry façade with non-linear boundary conditions has been provided highlighting

how the choice of stiffness values affects the oscillatory motion and rebound effects.

Finally, unit stiffness for masonry/concrete walls and retrofitting techniques, such as steel

tie-rods, has been calculated.
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1 Introduction

The identification of the behavior of rocking blocks is relevant to define their failure

probability under seismic actions. Structural or non-structural elements of different

buildings typologies can be assumed as rigid blocks. A typical example of r.c. rocking

structures are pre-cast panels, frequently used in industrial or social buildings. These

panels, particularly the non-structural ones, were demonstrated to be highly vulnerable to

earthquakes if not properly connected to structural elements, as occurred in the 2012

Emilia Romagna Italian earthquake (Andreini et al. 2014; Giresini 2015a). Moreover, walls

of unreinforced masonry buildings are subjected to out-of-plane modes that can be studied

as rocking blocks. Obviously, the masonry texture has to be such to guarantee a monolithic

behavior (Rovero et al. 2015). These issues can be faced by means of simplified methods

based on static approaches, by performing kinematic linear/non linear analysis (NTC2008;

Lagomarsino 2012) through classic limit analysis. Recent developments of these methods

also including combinations of rocking, sliding and twisting in 3D rigid block formulations

are contained in (Casapulla et al. 2014; Casapulla and Portioli 2016). The contribution of

the present paper to these topics is reported in Sects. 2.1 and 3.1. In addition, out-of-plane

modes may be analyzed with a more sophisticated procedure, evaluating the evolution of

motion over time; the latter consists in the integration of equation of motion, generally

considering the energy dissipation with a restitution coefficient that reduces rotation

velocity after each impact. The contribution to these aspects is instead reported in

Sects. 2.2 and 3.2.

The framework in which this work is developed is the Housner’s formulation (Housner

1963), often used as basis of similar contributions related to rocking blocks (Makris and

Vassiliou 2014; DeJong and Dimitrakopoulos 2014; Sorrentino et al. 2006). Free-standing

blocks were shown to have high seismic stability and post-uplift resources when subjected

to rocking motion. This aspect was recently discussed by Makris (2014) and related to the

fact that rotational inertia increases with the square of the column size, whereas the

overturning moment linearly increases with size. For such a good performance, the

research field of rocking isolation is going to be more and more explored. The first

experiments in this sense were done in New Zealand, where a reinforced concrete bridge

pier with hysteretic dampers (Beck and Skinner 1973) and a chimney (Sharpe and Skinner

1983) were specifically designed to survive strong ground motion while rocking. However,

the rocking behavior is strictly dependent on the ground motion type, as shown by DeJong

(2012), who identified acceleration time histories causing ‘rocking resonance’ for various

constraints. Moreover, the author found that a negative stiffness, due to rocking force–

displacement law, prevents the resonance condition under constant frequency excitation.

Indeed, the frequency content strongly affects the rocking motion: pulse-type records,

typically characterized by high peak ground velocities and lower frequency content, result

in large rocking amplitude (Makris and Roussos 2000), whereas non-pulse type records

imply random responses (Acikgoz and DeJong 2014). Also artificial inputs can be defined

to cause amplitude resonance over motion (Casapulla 2015).

Anyway, poor literature on rocking blocks subjected to particular boundary conditions

is available (Makris and Vassiliou 2014; Giresini et al. 2015a). This configuration is more

suitable to describe masonry and reinforced concrete panels that can be assimilated to rigid

blocks. Indeed, those elements are generally horizontally connected to transverse walls,

flexible roofs such as timber beams or vaults, tie-rods or a combination of them. Therefore,

the need to investigate their response to recorded earthquakes emerges, together with the
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necessity to provide practical evaluation criteria to assess advantages or disadvantages

caused by these restraints. Thus, in this paper, horizontal restraints are applied to rocking

blocks to investigate their role in a dynamic perspective. A preliminary static approach is

illustrated to provide an order of magnitude of the spring stiffness to apply to the block. In

addition, information regarding its optimized position is given. Through the interpretation

of the restoring moment term, the minimum value of stiffness for which the global system

stiffness becomes from negative to positive can answer these questions. The dynamic

contribution of horizontally restrained blocks is analyzed through the equation of motion

and involves the rotational inertia, related to kinetic energy. Although an approach similar

to the static one can provide some indications to the minimum stiffness to adopt, only a full

rocking analysis is able to correctly predict the response.

Two cases of horizontal restraints are analyzed: (1) concentrated restraint as single

spring with stiffness K = [Force/Length] and (2) smeared restraint as spring bed with

stiffness of each spring K 0 = [Force/Length2]. First, the two cases are analyzed in static

perspective by discussing the restoring moment expression and then equations of motion

are obtained. For both static and dynamic approaches, indications about values of hori-

zontal restraints are provided to get an enhancement of response.

2 Single horizontal restraint

The model consists of a rectangular block rocking around an axis perpendicular to the 2D

plane passing by O (Fig. 1). The geometric characteristics of the block are the radius vector

R, defining the position of the center of mass with respect to O, and the slenderness ratio a,

arctangent of the ratio thickness s to height h. The block, whose mass is m, might be

connected to a flexible roof of mass mr (Fig. 1a). The roof flexibility is modeled with a

spring, assumed without eccentricity with respect to the block thickness. The roof mass mr

changes the rotational inertia due to the variation of the centroid position, as explained in

Fig. 1 Single horizontal restraint with stiffness K (a) or horizontal spring bed K 0 (b)
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(Giresini et al. 2015b). Moreover, when the roof is inclined with specific boundary con-

ditions, a horizontal destabilizing thrust may act as well (Giresini et al. 2015b). In the

following the role of the roof mass mr is considered negligible with respect to the block

mass m, considering only the dynamics of free or restrained elements without loads on the

top. The block may be restrained by a single restraint (Fig. 1a) or a smeared one (Fig. 1b),

both acting horizontally.

A concentrated horizontal restraint can represent, for civil engineering structures such

as r.c. or masonry panels, steel tie-rods or timber bracings frequently installed before or

after earthquakes to reduce further damages. Moreover, a single restraint could model

horizontal floors connected to the block, such as vaults or arches whose equivalent stiffness

can be determined by experimental or analytical tests (Giresini 2015b).

In this paper, only springs with linear behavior are considered for the first numerical

case, to investigate the response by limiting uncertain parameters. Nevertheless, a non-

linear constitutive law associated to the spring, due to different elasticity in tension and in

compression, represents a more realistic assumption for civil engineering rocking struc-

tures. Indeed, often masonry or r.c. panels are connected to transverse walls, flexible roofs

or strengthening techniques such as steel tie-rods acting in only one direction (Fig. 9a).

More in general, the stiffness could be sensitively different depending on the sign of

rotation. For that reason, the solution of the following equations of motion should take it

into account. The used MATLAB code for the case study presented in Sect. 5 contains an

automatic events definition function that detects the rotation sign and attribute to K or K0

pre-defined values. The constitutive law force-rotation is elastic (Fig. 2) and a cut-off or a

plastic phase with or without hardening could be included as well.

2.1 Static approach

The static approach is related to the definition of stabilizing and destabilizing effects in a

perspective of limit analysis. A kinematic chain is assumed and the collapse multiplier can

be calculated with equilibrium considerations. Let us assume the single-degree-of-freedom

block restrained by a horizontal spring and let the initial deformed configuration be #. The

virtual horizontal displacement du, caused by an imposed virtual rotation d# (Fig. 1a), is

expressed by:

du ¼ Rr cos ar � sgn #ð Þ#½ �d#; ð1Þ

where Rr identifies the spring position, being the radius vector that connects the oscillation

point O with the spring. Assuming that # tð Þ[ 0, without loss of generality, the finite

horizontal displacement of the restrained point is then obtained by the definite integral over

the interval [0, �#]:

Fig. 2 Definition of linear case and non-linear case for the elastic horizontal restraint

388 Bull Earthquake Eng (2017) 15:385–410

123



u ¼ Rr sin ar � sin ar � �#
� �� �

; ð2Þ

where �# is the current rotation angle. When the block is rotated by an angle #, the

horizontal restraint exerts a restoring moment Mr;K #ð Þ equal to:

Mr;K #ð Þ ¼ o

o#
Kuduð Þ ¼ KR2

r cos ar � #ð Þ sinar � sin ar � #ð Þ½ �: ð3Þ

Considering also the contribution of the self-weight and assuming that Rr ¼ bR with

0� b� 2, the global restoring moment Mr #ð Þ is:

Mr #ð Þ ¼ mgR sin a� #ð Þ þ Kb2R2 cos a� #ð Þ sina� sin a� #ð Þ½ �: ð4Þ

For r.c. or masonry panels, generally b� 1. To avoid bouncing or sliding, slender blocks

have to be considered. Let the Housner’s limit of a\20� ¼ 0:349 rad (Housner 1963) be

valid in the hypothesis of slender block. This means a height to thickness ratio h=s[ 2:75.

Lipscombe and Pellegrino (1993) studied the lower limit of h=s for which bouncing stops

within half oscillation cycle in a free vibration test. They found that for h=s[ 2:75

bouncing can be neglected if the restitution coefficient e� 0:8. For masonry and r.c.

panels, commonly values of h=s[ 5 are taken into account, in such a way to exclude

bouncing, usually being e� 0:95. Indeed, the theoretical value of eH ¼ 1 � 3
2

sin2 a

(Housner 1963), for h
s
¼ 5 (that is a ¼ 0:197 rad) gives eH ¼ 0:942. The real restitution

coefficient is generally lower than the theoretical one, due to geometrical imperfections or

other damping effects, e.g. local plastic deformations (Casapulla et al. 2010).

Thus, for small rotations, sin# ffi # and cos# ffi 1, Eq. (4) becomes:

Mr #ð Þ ¼ mgR sin a 1 � # cot a� Kb2R

mg
cot a cos a

� �
þ #2 Kb

2R

mg
cos a

� 	
; ð5Þ

Linearizing to first order terms, the dimensionless restoring moment is:

Mr #ð Þ
mgR

¼ sin a 1 � # cot a� Kb2R

mg
cot a cos a

� �� 	
ð6Þ

The factor of the rotation angle # in Eq. (6) is the normalized system global stiffness,

initially negative up to a limit value later defined. The global stiffness Ksys (Fig. 3) is

obtained from Eq. (6):

Fig. 3 Resisting moment–
rotation relationship and
variation of global stiffness
depending on the values of a
single horizontal restraint
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Ksys ¼ mgRcosa
Kb2R

mg
cosa� 1

� �
ð7Þ

and Eq. (6) becomes:

Mr #ð Þ ¼ Mr 0ð Þ þ Ksys# ð8Þ

where Mr 0ð Þ ¼ mgR sina.

The condition for which the global stiffness Ksys becomes positive is:

Kb2R

mg
[

1

cosa
ð9Þ

If the block is rectangular, the weight mg can be written in terms of the semi-diagonal R

and unit weight c as:

mg ¼ 4cR2 sin a cos ad ð10Þ

where d is the depth of the block in the direction of the axis of rotation. By substituting

Eq. (10) in Eq. (9) one has:

Kb2

R
[ 4c sin ad ð11Þ

From this expression it is possible to formulate some considerations on the effectiveness of

the single horizontal restraint. The resisting moment value for the configuration # ¼ 0 does

not change, since the effect of K intervenes for #[ 0 (Fig. 3). Its static contribution

depends upon the semi-diagonal R. For two blocks with same shape restrained by a spring

with same K and spring position (defined by the dimensionless parameter b), the larger

block requires a higher value of K or a higher position of the spring to obtain the same

improvement in terms of global stiffness increase.

By assuming, as numerical example, values of R ¼ 1:5 m, a ¼ 0:05 rad [corresponding

to height and thickness equal to 3.0 m and 0.15 m and (a) b ¼ 1] and an unit weight

c = 1.8E4 N/m3, one can evaluate the improvement obtained by adding a horizontal

restraint with specific K value (Fig. 4a). When K ¼ 1000 N/m, a very low value for civil
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Fig. 4 Dimensionless moment–rotation amplitude diagram for different values of the dimensionless

stiffness Kb2R
mg

of the horizontal restraint (a = 0.05 rad and R = 1.5 m). a b ¼ 1, b b ¼ 2 (Eq. 4)
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engineering restraints (for instance, it can be translated into a steel tie-rod of length 5.0 m

and diameter 0.2 mm), the rotation capacity increases by 20 %, passing from #
a ¼ 1:0 to

#
a ¼ 1:20.

It is sufficient to assume a stiffness five times higher (corresponding to the same tie-rod

with diameter 0.4 mm) to get positive global stiffness. More precisely, the minimum K

value given by Eq. (11) is equal to 5400 N/m. The effect is more positive if the position of

the spring is higher, e.g. (a) b ¼ 2 namely at the corner top (Fig. 4b). Thus, for common

panels dimensions in civil engineering, there is a great enhancement of response even with

low, but proper, values of horizontal restraint stiffness. It should be noticed that the

difference between the non-linearized (Eq. 4) and the linearized (Eq. 6) expressions gives

values of resisting moment different less than 1 %. Resisting moment values were cal-

culated for different normalized rotation values from 0 to the maximum corresponding to a

null resisting moment, with a range of 0.2. The values so obtained have been then averaged

obtaining the following error percentages. The difference increases (from an average value

of -0.53 % for K = 10,000 N/m to -0.18 % for K = 1000 N/m for b ¼ 1) when high

stiffness values are considered. The resisting moment is therefore overestimated for high

stiffness values, but this difference is negligible.

2.2 Dynamic approach

The contribution of the added spring in the equation of motion might not be conservative,

namely could result in an unexpected overturning, even though the free-standing block is

safe, depending on the type of action involved. For this reason, the necessity of comparing

the destabilizing effect given by the earthquake with those stabilizing emerges.

The equation of motion can be written from the Housner’s formulation including, in the

Euler–Lagrange equation, the potential energy equal to the work (Eq. 3) changed in sign:

I0 €#þ sgn #ð ÞmgR sin a� sgn #ð Þ#ð Þ þ sgn #ð ÞKb2R2 cos ar � sgn #ð Þ#ð Þ sinar½
� sin ar � sgn #ð Þ#ð Þ� � mg€ugR cos a� sgn #ð Þ#ð Þ ¼ 0

ð12Þ

where I0 is the polar inertia moment with respect to the oscillation point O,

I0 ¼ 4
3

m h2 þ s2
� �

¼ 4
3

mR2, and €ug is the acceleration time-history (in gravity acceleration

g units). This equation can be re-written by distinguishing stabilizing and destabilizing

terms:

€#þWSTAB þ KSTAB þ EDEST ¼ 0 ð13Þ

The stabilizing terms are:

WSTAB ¼ sgn #ð ÞmgR
I0

sin a� sgn #ð Þ#ð Þ ¼ sgn #ð Þ 3

4

g

R
sin a� sgn #ð Þ#ð Þ;

KSTAB ¼ þsgn #ð ÞKb
2R2

I0
cos ar � sgn #ð Þ#ð Þ sinar � sin ar � sgn #ð Þ#ð Þ½ �

¼ sgn #ð Þ 3Kb2

4m
cos a� sgn #ð Þ#ð Þ sina� sin a� sgn #ð Þ#ð Þ½ �

ð14Þ

It must be noticed that the stabilizing term related to self-weight WSTAB has this positive

effect for #j j\a. When #j j[ a, this effect turns to negative. The term with destabilizing

effect, representing the earthquake action, is:
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EDEST ¼ �mgR

I0
€ug cos a� sgn #ð Þ#ð Þ ¼ � 3

4

g

R
€ug cos a� sgn #ð Þ#ð Þ ð15Þ

by assuming that the acceleration on the ground is the same as that experienced by the

center of gravity of the block, due to its rigidity. In this paragraph, an approximate value of

K able to provide positive effect is determined. Naturally, it is not possible to state it

exactly, since the evolution of motion depends on dissipation properties, generally iden-

tified in the restitution coefficient. Only a full integration of the equation of motion will

give a completely reliable response assessment.

However, some indications on the minimum K value to adopt can be furnished as

follows. Let us consider again the block examined in the example of the previous para-

graph(a = 0.05 rad, R = 1.5 m, b ¼ 1 � 2, c = 1.8E4 N/m3). In a graph, where the sta-

bilizing and destabilizing effects are reported (Fig. 5), the earthquake can be initially

assumed as constant acceleration value, like the PGA (peak ground acceleration) com-

monly considered in response spectrum seismic analysis. For EDEST , two different constant

acceleration values (0.50 and 0.20 g) are assumed.

However, it is interesting to compare the effect of the stabilizing spring and the

destabilizing earthquake action, even though it is simply a constant acceleration value. The

cosine term is common to KSTAB and EDEST , while the maximum value of the sinus term in

KSTAB, named f #ð Þ, can be obtained from its derivative:

of #ð Þ
o#

¼ o

o#
sinar � sin ar � sgn #ð Þ#ð Þ½ � ¼ cos ar � sgn #ð Þ#ð Þ: ð16Þ

The derivative equal to zero identifies the rotation # for which f #

 �

is maximum:

# ¼ ar �
p
2
; f #

 �

¼ 1 þ sinar: ð17Þ

Anyway, the value # ¼ ar � p
2

does not have physical sense, since the overturning con-

dition is # = p
2
. However, the maximum value of f #


 �
is equal to 2. As general advice, to

obtain effective results from a structural point of view, KSTAB should be at least three orders

of magnitude with respect to EDEST , where their ratio is:
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Fig. 5 Stabilizing and destabilizing effects of the terms in the equation of motion, for a b ¼ 1 and b b ¼ 2
(a = 0.05 rad, R = 1.5 m)—single horizontal restraint
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KSTAB

EDEST

¼ Kb2R 1 þ sinað Þ
m€ugg

� Kb2R

€ugm g
[ 1000 ð18Þ

if the block is slender so that ar ffi a and if #j j\a. Being the stabilizing term related to

self-weight WSTAB negligible with respect to KSTAB, is not considered in the numerator.

Taking into account that strong ground motions reach a PGA €ugg
� �

of the order of 1.0 g,

assuming that the spring is applied, at least, at the middle of the block (b = 1) or higher

(1\b B 2), it can be deduced that the minimum K required, estimated by the simple

above procedure, should be:

Kmin ¼ 1000
mg

R
ð19Þ

That means, in the proposed numerical example, a minimum stiffness value around

5.4E6 N/m. When #j j[ a, the self-weight effect turns to negative. Therefore, this ‘‘effi-

ciency ratio’’ becomes:

KSTAB

EDEST þWDEST

¼
Kb2R 1þsinað Þ

mg

€ug þ tan #j j � að Þ ð20Þ

The term tan #j j � að Þ assumes a maximum value governed by typical physical r.c. or

masonry panels, whose maximum slenderness can attain a value of 50 (e.g., thickness of

0.1 m and height of 5.0 m or tan að Þ ¼ 0:02). Thus, tan #j j � að Þmax¼ tan p
2
� 0:02

� �
ffi 50

and the limit ratio can be expressed as:

KSTAB

EDEST þWDEST

¼
Kb2R 1þsinað Þ

mg

€ug þ 50
[ 1000 ð21Þ

which means:

Kmin ¼ 50000
mg

R
ð22Þ

assumed that the stabilizing term has to be at least three orders of magnitude higher than

the destabilizing term. Naturally, the value expressed in Eq. (22) is an upper limit of the

minimum. The minimum stiffness can be computed for the case under examination with

Eq. (21) by substituting the current values of a and €ug. In the numerical example, the

minimum stiffness is Kmin ¼ 2.7E8 N/m.

To numerically verify these assessments, a rocking analysis is performed in MATLAB

to solve the equation of motion for the same block. The acceleration time-history assumed

is the well known El Centro earthquake ground motion (Imperial Valley 5/19/40 04:39, El

Centro array 9, 180) with PGA = 0.348 g and PGV = 33.5 cm/s. An incremental analysis

is performed by changing the factor multiplying the acceleration values Ampl. to focus on

the range where the collapse of the block is more likely to occur. By taking into account

the fore mentioned considerations, values of stiffness from 0 to K = 1E6 N/m are

assumed. The incremental analysis is stopped at an amplification factor equal to 1.2,

corresponding to a PGA = 0.418 g. This way, one is inside the range of 0:2\€ug\0:5 of

Fig. 5. However, by substituting the values of a and €ug (equal to 0.348 g), Eq. (18) gives

Kmin ¼ 1.9E6 N/m. If one assumes to have #j j[ a, the minimum stiffness should be equal

to 1.5E6 N/m (Eq. 21). Therefore, Eq. (22) clearly overestimates the minimum value. The

difference of minimum stiffness given by Eqs. (18) and (22) is negligible, and one can
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assume then about 2.0E6 N/m. All the rocking analyses are performed by adopting the

same stiffness value in clockwise and counterclockwise rotation. The restitution coefficient

is that theoretical, provided by Housner (1963), in favor of safety.

Results are displayed in Table 1 in terms of maximum ratios of normalized rotation

amplitude #=að Þmax. The free-standing block overturns for an amplification factor of 1.20.

It must be noticed that in a dynamic rocking analysis, despite of a kinematic approach, the

block could survive for #
a [ 1: Low stiffness values, K = 100–1000 N/m, do not posi-

tively affect the response: indeed, the block is unstable when the restraint is both at the top

corner and at the middle of the block. This suggests that low stiffness values not only do

not influence the response, but could cause block overturning amplifying rocking motion.

The block can collapse with a restoring force even though, when it is free-standing, does

not collapse. This occurs because of the change of vibration period (variable with

amplitude), which could be closer to that of the excitation resulting in resonance condition.

For this reason, it becomes important to evaluate an order of magnitude of minimum

stiffness value to reduce the rotation amplitude to acceptable values. Values of

K = 100 N/m and K = 1000 N/m are indeed of the same order of magnitude as the

destabilizing term, as displayed in Fig. 5. A spring with K = 1E4–1E5 N/m allows

stable rocking; nevertheless, the rotation amplitude #=að Þmax attains maximum values

higher than those of the case without restraint (except the case K = 1E5 N/m and b = 2).

In these cases, the position of the spring at the top of the block (b = 2) gives maximum

rotations from 30 to 50 % lower than the spring located at the middle of the block (b = 1).

Higher values, such as 1E6 N/m in this example (corresponding to a steel tie-rod of

diameter 6.0 mm and length 5.0 m, acting in both directions), are recommended to attain

safe values of maximum rotation amplitude #=að Þmax, since these values are lower than

those without any restraint. For this order of magnitude the global system stiffness is

largely positive (Fig. 4). Thus, the minimum stiffness values given by Eqs. (18)–(21) are

reliable, as they guarantee safe rocking motion. For K[ 1E6 N/m, the amplitude ratio

tends to zero (results not reported), confirming the benefit of the restraint.

In conclusion, it is possible to numerically estimate the weight of the restoring moment,

given by self-weight and horizontal restraint, with respect to the applied ground motion.

The check of these terms can provide a first insight on the effectiveness of the strength-

ening system, by means of the simple formula of Eqs. (18)–(22), before performing

rocking analysis. It must be noticed that strengthening measures generally act only in one-

sided motion. In this case, numerical unstable effects can emerge when a finite value of

Table 1 Maximum ratios of normalized rotation amplitude obtained from incremental rocking analysis
(a = 0.05 rad,R = 1.5 m, El Centro earthquake, Ampl. = amplification factor)

Ampl. K = 0 N/m K = 100 N/m K = 1000 N/m K = 1E4 N/m K = 1E5 N/m K = 1E6 N/m

b = 1

1.0 0.712 Overturning Overturning 2.935 0.906 0.2216

1.1 0.839 Overturning Overturning 3.196 1.212 0.2412

1.2 Overturning Overturning Overturning 3.371 1.570 0.2584

b = 2

1.0 0.712 Overturning 3.128 2.069 0.402 0.039

1.1 0.839 Overturning Overturning 2.264 0.451 0.044

1.2 Overturning Overturning Overturning 2.431 0.486 0.049
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stiffness is assumed for a clockwise rotation and zero value is considered for a counter-

clockwise rotation (Giresini et al. 2015a). For a numerical application of such a non-linear

conditions, see Sect. 5.

3 Smeared horizontal restraints

The second considered configuration consists of a rectangular block restrained by smeared

horizontal elastic restraints (Fig. 1b). The height and thickness are respectively labeled h

and s. Each spring of the elastic ‘‘bed’’ is located at a distance R zð Þ with respect to the

oscillation point O. Let the angle formed by the panel side and R zð Þ be a zð Þ. The

dimensions of each spring of stiffness K 0 is [Force/Length2]. Smeared horizontal restraints

can model transverse connecting walls or added layers with assigned stiffness, due to a

vertical distribution of tie-rods or similar anchorages.

3.1 Static approach

Analogously to the procedure illustrated in Sect. 2, the stabilizing effect of the horizontal

restraints is here investigated. The generic spring K 0, uniformly distributed along the

vertical side, is considered at depth z; the axis z rotates with the rotation of the block. The

corresponding radius vector R zð Þ is function of z and the angle formed with the wall is a zð Þ.
The horizontal virtual displacement du at a generic z is in the deformed configuration of

Fig. 1b is:

du zð Þ ¼ R zð Þ cos a zð Þ � sgn #ð Þ#½ �d#; ð23Þ

The finite displacement is then obtained by integrating Eq. (23) over the interval [0, �#],

where �# is the fixed current rotation:

u zð Þ ¼ R zð Þ sin a zð Þ � sin a zð Þ � sgn #ð Þ �#
� �� 

; ð24Þ

The virtual work done by the spring with constant stiffness K 0 is calculated by imposing a

virtual differential displacement with respect to the virtual rotation angle d#.

When the block is rotated by an angle #, the generic horizontal restraint with stiffness

K 0 exerts a restoring moment Mr;K 0 #ð Þ equal to:

Mr;K 0 #ð Þ ¼ odW zð Þ
o#

¼ o

o#
K 0dz cos#u zð Þdu zð Þ½ � ð25Þ

being dz cos# the influence length of the single spring at depth z and W zð Þ the corre-

sponding work done. Substituting in Eq. (25) Eqs. (23)–(24), the work dW zð Þ becomes:

dWz ¼ � sgn #ð ÞK 0R zð Þ2
cos a zð Þ � sgn #ð Þ#½ � sin a zð Þ � sin a zð Þ � sgn #ð Þ �#

� �� 

cos#sin d#dz;
ð26Þ

The work dW along the vertical side of the block is then calculated by integrating Eq. (26)

over the interval 0; h½ � in dz with R zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ z2

p
:
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dW ¼
Z h

0

dWz ¼ �sgn #ð ÞK 0 cos#sin d#
Zh

0

s2 þ z2
� �

cos a zð Þ cos#½

þsgn #ð Þ sin a zð Þ sin#� sin a zð Þð1 � cos#Þ þ sgn #ð Þ cos a zð Þ sin#½ �dz:

ð27Þ

It is convenient to express the trigonometric functions in terms of coordinate z and

thickness s:

cos a zð Þ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ z2

p ; sin a zð Þ ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ z2

p : ð28Þ

This way, the expression of work done by the spring bed is simplified in:

dW ¼ �sgn #ð ÞK 0 cos#sin d#
Zh

0

z cos#þ sgn #ð Þs sin#ð Þ s 1 � cos#ð Þ þ sgn #ð Þz sin#½ �dz:

ð29Þ

Equation (29) can be expressed in the short form:

dW ¼ �sgn #ð ÞK 0sin d#
Zh

0

A þ B z þ C z2dz; ð30Þ

where:
A ¼ sgn #ð Þs2 sin# cos# 1 � cos#ð Þ;
B ¼ s sin2 # cos#� cos3 #þ cos2 #

� �
;

C ¼ sgn #ð Þ sin# cos2 #

ð31Þ

and:

dW ¼ �sgn #ð ÞK 0sin d#h Aþ Bh

2
þ Ch2

3

� �
: ð32Þ

By linearizing sin d# ffi d#, it is finally possible to write the restoring moment relative to

the spring bed:

Mr;K 0 #ð Þ ¼ � odW zð Þ
o#

¼ sgn #ð ÞK 0h Aþ Bh

2
þ Ch2

3

� �
ð33Þ

Considering also the contribution of the self-weight and considering #[ 0, the global

restoring moment Mr0 #ð Þ is:

Mr #ð Þ ¼ mgR sin a� #ð Þ þ K 0h Aþ Bh

2
þ Ch2

3

� �
: ð34Þ

or, in terms of R:

Mr #ð Þ ¼ mgR sin a� #ð Þ þ K 0h Aþ 2BR cos aþ 4CR2 cos2 a
3

� �
: ð35Þ

The spring bed might be active only in a portion of the vertical side, e.g. from depth

z ¼ h0 [ 0 to z ¼ �h. In this more general case, the restoring moment would be:
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Mr #ð Þ ¼ mgR sin a� #ð Þ þ K 0 �h� h0ð Þ Aþ B �hþ h0ð Þ
2

þ
C �h2 þ �hh0 þ h02
� �

3

" #

: ð36Þ

For small rotations #, it implies sin# ffi # and cos# ffi 1; substituting s ¼ 2R sin a and

h ¼ 2R cos a; one obtains A = 0; B = s #2; C = #; and Eq. (34) becomes:

Mr #ð Þ ¼ mgR sin a 1 � # cot a� 8

3

K 0R2

mg
cot a cos2 a

� �
þ #24

K 0R2

mg
cos2 a

� 	
; ð37Þ

By neglecting the second order term depending on #2 one has:

Mr #ð Þ ¼ mgR sin a 1 � # cot a� 8

3

K 0R2

mg
cot a cos2 a

� �� 	
; ð38Þ

and the system global stiffness can be written as:

K 0
sys ¼ mgR cos a

8

3

K 0R2

mg
cos2 a� 1

� �
; ð39Þ

The condition of K 0
sys to be positive is therefore for rectangular blocks:

K 0 [
3

2
c tan ad ð40Þ

where d is the depth of the block in the direction of the axis of rotation. For smeared

horizontal restraints the minimum stiffness value does not depend on R but only on the

block shape. When blocks are stockier, a higher value of K 0 is required to get the same

stabilizing effect. A numerical application can be useful to understand the benefit intro-

duced by the spring bed. Let us assume two blocks with same R but different shape, namely

a ¼ 0:32 rad and a ¼ 0:05 rad. The results are displayed in Fig. 6.

The minimum values of K to attain positive global stiffness, for the stocky and the more

slender block, are respectively 9000 and 1350 N/m (Eq. 40).
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Fig. 6 Dimensionless moment–rotation amplitude diagram for different values of the spring bed stiffness

K0 (R = 1.5 m): a a ¼ 0:32 rad, b a ¼ 0:05 rad (Eq. 34)
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The difference between the linearized and the non-linearized expression is less negli-

gible for the stockier block, with an average difference of -8.9 % (K = 0) up to 3.4 %

(K = 10,000 N/m). In other words, in absence of spring bed the restoring moment is

overestimated by about 10 % when the linearized expression is considered. For the more

slender block, one has a negligible average difference of ?0.05 % (K = 0) up to 0.15 %

(K = 10,000 N/m) between the two expressions. Indeed, the linearization has to be

adopted carefully for stocky blocks as discussed by Giresini et al. (2015b).

3.2 Dynamic approach

The equation of motion of the block restrained by smeared springs can be written from the

Housner’s equation including in the Euler–Lagrange equation the potential energy

(Eq. 33):

I0 €#þ sgn #ð ÞmgR sin a� sgn #ð Þ#ð Þ þ sgn #ð ÞK 0�h Aþ B�h

2
þ C�h2

3

� �

� mg€ugR cos a� sgn #ð Þ#ð Þ ¼ 0

ð41Þ

where I0 is the polar inertia moment with respect to O and €ug is the acceleration time-

history (in gravity acceleration g units) and A;B;C are expressed by Eq. (31).

Equation (41) can be re-written by distinguishing stabilizing and destabilizing terms:

€#þWSTAB þ K 0
STAB þ EDEST ¼ 0 ð42Þ

The stabilizing terms are:

WSTAB ¼ sgn #ð ÞmgR
I0

sin a� sgn #ð Þ#ð Þ ¼ sgn #ð Þ 3

4

g

R
sin a� sgn #ð Þ#ð Þ;

K 0
STAB ¼ þsgn #ð ÞK

0h

I0
Aþ Bh

2
þ Ch2

3

� �
¼¼ þsgn #ð ÞK

0

I0
f hð Þ

ð43Þ

The term with destabilizing effect, representing the earthquake action, is:
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Fig. 7 Stabilizing and destabilizing effect of the terms in the equation of motion (a = 0.05 rad,R = 1.5 m)

(K 0
STAB;MAX ffi 40 for K0 = 10 N/m2, K 0

STAB;MAX ffi 400 for K0 = 100 N/m2, K 0
STAB;MAX ffi 4000 for

K0 = 1000 N/m2)—smeared horizontal restraint
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EDEST ¼ �mgR

I0
€ug cos a� sgn #ð Þ#ð Þ ¼ � 3

4

g

R
€ug cos a� sgn #ð Þ#ð Þ ð44Þ

Obviously, only K 0
STAB differs from the case of single restraint. The terms of the equation

for the block previously considered, a = 0.05 rad and R = 1.5 m, are displayed in Fig. 7.

The same values of acceleration €ug and stiffness as the single restraint case are assumed.

Naturally, the difference between K 0
STAB and EDEST is much more evident in this case, due

to the smeared restraint. The stockier block with a = 0.32 rad and R = 1.5 m gives

similar trends as those shown in Fig. 7 without appreciable difference.

Referring to a quantitative assessment, one can again state that the ratio between sta-

bilizing and destabilizing effect could be at least three orders of magnitude. This time, the

contribution (negative or positive depending on the rotation value) is neglected in favor of

simplicity.

K 0
STAB

EDEST

¼
K 0h Aþ Bh

2
þ Ch2

3


 �

mgR€ug cos a� #ð Þ ¼ K 0f hð Þ
mgR€ug cos a� #ð Þ [ 1000 ð45Þ

The shape of f hð Þ, specialized for the considered numerical case

(a = 0.05 rad,R = 1.5 m), is displayed in Fig. 8. The maximum f hð Þ value is about 3.7.

By substituting the other values in Eq. (45), one obtains K 0
min ¼ 1.1E6 N/m2. Analogously

to what was done for the case of single horizontal restraint, a rocking analysis is performed

by integrating Eq. (41). The acceleration time-history is again that registered in the El

Centro earthquake and the Housner’s theoretical value of restitution coefficient was

adopted to maximize the response. From Fig. 7 and Eq. (44), if one assumes as reliable

value to impede overturning equal to K0 = 100–1000 N/m2, that prevision is not always in

favour of safety (Table 2). In the rocking analysis, the stiffness limit of 1.1E6 N/m2 is

enough to make the response safe, as reported in Table 2, obtaining normalized ratio

amplitudes lower than 0.5. By contrast, when the value of K0 is not sufficient, the spring

bed could cause unexpected responses, as collapse for the restrained block that does not

fail when it is free (e.g. K0 = 0, Ampl.1.0 or 1.1). Moreover, again as in the case of single

restraint, the maximum amplitude ratio can overcome that of the case in absence of

restraints (K0 = 1000 N/m2).
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Fig. 8 Stabilizing terms f hð Þ of Eq. (43) (a = 0.05 rad, R = 1.5 m)
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3.3 Case of unit stiffness variable with linear law

In the previous paragraphs the unit stiffness has been considered constant (Fig. 9a).

Nevertheless, in practical cases such as out-of-plane modes of existing masonry buildings,

the stiffness cannot be assumed constant but variable with the z coordinate. In fact, portion

of perpendicular walls of triangular shape often participate together with the wall in the

rocking response, offering a not uniform transverse stiffness. Let us consider the simplest

case of linear variation. Let the spring stiffness at the lowest position be K 0
0 and the

corresponding spring flexibility or compliance C0
0 ¼ 1=K 0

0. If DC is the flexibility incre-

ment, the linear variability of the spring flexibility is:

C0 zð Þ ¼ 1

K 0 zð Þ ¼ C0
0 þ DC

z
�h

ð46Þ

where �h is the maximum height of the spring bed (Fig. 9) and DC its variation such as:

DC ¼ 1

K 0
1

� 1

K 0
0

¼ K 0
0 � K 0

1

K 0
0K

0
1

ð47Þ

By expressing K 0 zð Þ from Eq. (46) taking into account Eq. (47) one has:

K 0 zð Þ ¼ K 0
0

1 þ K 0
0

K 0
1

� 1

 �

z
�h

¼ K 0
0

1 þ Xz
ð48Þ

being X ¼ 1
�h

K 0
0

K 0
1

� 1

 �

. The contribution of it to the equation of motion can be now obtained

by simply including the variation with z of the spring stiffness in the integral of Eq. (30):

dW ¼ �sgn #ð ÞK 0
0 sin d#

Z �h

0

Aþ Bzþ Cz2

1 þ XZ
dz; ð49Þ

The variation of work done by the spring bed is therefore:

dW ¼ �sgn #ð ÞK 0
0sin d#

A

X
ln 1 þ Xzð Þ þ B

X
z� 1

X
ln 1 þ Xzð Þ

� �����

þ C

X3

ð1 þ XzÞ2

2
� 2 1 þ Xzð Þ þ ln 1 þ Xzð Þ

" #�����

�h

o

;

ð50Þ

that is:

Table 2 Maximum ratios of normalized rotation amplitude obtained from incremental rocking analysis
(a = 0.05 rad, R = 1.5 m, El Centro earthquake, Ampl. = amplification factor)—smeared horizontal
restraint

Ampl. K0 = 0
N/m2

K0 = 100
N/m2

K0 = 1000
N/m2

K0 = 1E4
N/m2

K0 = 1E5
N/m2

K0 = 1E6
N/m2

1.0 0.712 Overturning 3.13 2.062 0.4079 0.072

1.1 0.839 Overturning Overturning 2.264 0.4506 0.043

1.2 Overturning Overturning Overturning 2.652 0.4855 0.049
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dW ¼ �sgn #ð ÞK
0
0

X
sind# A ln 1 þ X�hð Þ þ B �h� 1

X
ln 1 þ X�hð Þ

� ��

þ C

X2

ð1 þ X�hÞ2

2
� 2 1 þ X�hð Þ þ ln 1 þ X�hð Þ þ 3

2

" #)

:

ð51Þ

Obviously, the limit of dW as X tends to zero, is given by Eq. (32) with h ¼ �h.

Now, the equation of motion can be modified in the general case of linearly variable

spring deformability by including the term of the work in the Euler–Lagrange’s equation:

I0 €#þ sgn #ð ÞmgR sin a� sgn #ð Þ#ð Þ

þ sgn #ð ÞK
0
0

X
A ln 1 þ X�hð Þ þ B �h� 1

X
ln 1 þ X�hð Þ

� ��

þ C

X2

ð1 þ X�hÞ2

2
� 2 1 þ X�hð Þ þ ln 1 þ X�hð Þ þ 3

2

" #)

� mg€ugR cos a� sgn #ð Þ#ð Þ ¼ 0

ð52Þ

where the terms A;B;C are expressed by Eq. (31).

4 Parametric analysis and discussion of results

A parametric analysis was performed by considering different acceleration time-histories,

later used for a practical case study in Sect. 5. These earthquakes have been chosen as they

have similar PGA and PGV values as those of the El Centro earthquake (Table 3). Indeed,

particularly the PGV is a relevant parameter for the risk of collapse in rocking motion. The

geometric dimensions and weight are the same adopted in Sects. 3 and 4, namely

Fig. 9 Smeared horizontal restraints varying with linear law of spring flexibility C0ðZÞ

Table 3 Earthquakes used for the parametric analysis of restrained block (PGA peak ground acceleration,
PGV peak ground velocity)

Station code PGA (g) PGV (cm/s) Station code PGA (g) PGV (cm/s)

AQK 0.334 32.210 AQG 0.446 30.959

AQA 0.402 31.910 ELCENTRO 0.348 33.450
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a = 0.05 rad, R = 1.5 m, g = 1.8E4 N/m3. Both concentrated and smeared restraints are

considered. The so obtained rocking spectra, reported in Sects. 4.1 and 4.2, allow both to

identify a safe domain and to confirm the minimum stiffness value obtained from

Eqs. (18)–(20).

4.1 Parametric dynamic analysis of blocks with single restraint

By widening the analysis started in Sect. 2.2 (Table 1), one can see that the results are

similar adopting different acceleration time-histories. The results are displayed in terms of

rocking spectra, intending them as maximum rotation amplitude #=að Þmax function of the

restraint stiffness (Fig. 10). The rocking response for different earthquakes with similar

characteristics is similar, with and without restraint. Generally, for the same earthquake

and the same K value, a higher position of the restraint (b ¼ 2Þ determines a safer con-

ditions, especially for the higher K values. An exception is given by AQK. Moreover, for

example for AQG earthquake, overturning does not occur for K[ 1E4 N/m, but the values

of normalized rotations are higher or close to 1, resulting in a situation not in favour of

safety. A good reduction of maximum normalized rotation is achieved for K C 1E6 N/m,

value suggested by Eq. (18). It is relevant to notice that for these values of K, rocking

attenuates tending to zero in a monothonic and therefore reliable way. This means that,

adopting for value higher than a limit value, higher K, safer the rocking condition.

4.2 Parametric dynamic analysis of blocks with smeared restraints

Similarly to what occurred for the single restraint, also for the smeared one higher the

stiffness values, lower the maximum amplitude ratio. Different earthquakes with similar

characteristics give analogous results, confirming that a minimum stiffness of the order of

1E6 N/m2 (Eq. 45) is necessary to get a safe response. Also lower values, such as 1E5 N/

m2, can guarantee rocking without overturning, but if one wants to define limit states such

as maximum amplitude ratio lower than 0.1 (Dimitrakopoulos and Paraskeva 2015), the

value of 1E6 N/m2 is required (Fig. 11).
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Fig. 10 Parametric analysis of block restrained by a single horizontal spring with a = 0.05 rad,
R = 1.5 m, g = 1.8E4 N/m3: a b ¼ 1; b b ¼ 2
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5 Case study: a masonry church façade

5.1 Façade of Santa Gemma church in L’Aquila and seismic records

The rocking analysis in both linear and non-linear range is applied to the church of S.

Gemma Vergine in Goriano Sicoli (L’Aquila, Italy), which was strongly damaged after the

2009 earthquake. The considered boundary conditions are a spring bed with constant

stiffness, as discussed in the following. The historic church was built in the fifteenth

century for the first time, and nearly totally rebuilt after a strong earthquake occurred in the

eighteenth century (Di Giannantonio 2003). The three nave church is made of stone

masonry and lime stone in the external walls with internal filling and nearly regular texture.

The vaults are constructed with brick masonry and lime mortar and the colonnade with

inner irregular stone masonry.

The church suffered from widespread damage in both structural and non-structural

elements from the 2009 earthquake. The non-homogeneous damage on the columns

allowed to estimate seismic microzonation effects due to local soil stratigraphy (Sassu

et al. 2009). Several collapse mechanisms were identified in the church macro-elements,

particularly in the apse and in the main façade (Andreini et al. 2011). The latter was

subjected to two out-of-plane modes around horizontal hinge: the first nearly at the base of

the wall and the second in correspondence of the tympanum. The first mechanism is here

considered and displayed in Fig. 12. The final detachment of the façade, with respect to the

perpendicular walls, is evident from a visual inspection and the gap between façade and

transverse walls is of about 30 cm. In out-of-plane mechanism, a portion of the perpen-

dicular longitudinal walls, 70 cm long, participated to the rocking motion. The longitudinal

walls are here considered as spring bed limited to the lower portion of the façade. By

means of a back analysis, the survival of the façade to the seismic records that it expe-

rienced can be verified. For calculating the unit stiffness K 0 offered by the longitudinal

walls, it is necessary to define masonry elastic modulus, cross section and depth of the

walls (in grey in Fig. 12). The portion where the stiffness is active [namely �h in Eq. (52)] is

4.9 m long (Fig. 13).

Masonry elastic modulus Ey, in vertical direction, was obtained from on site double flat

jack tests, taken from similar masonry type specimens tested on site in L’Aquila district,

and it is equal to 1700 MPa (Conti 2011). The value of Ex adopted in horizontal direction
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Fig. 11 Parametric analysis of block restrained by a smeared bed spring with a = 0.05 rad, R = 1.5 m
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has been taken equal to Ey/0.8 according to the masonry type and ratio between block and

mortar thickness (Brignola et al. 2008).

The rocking phenomenon involves the façade in two steps: first the block rocks having

as boundary conditions the rectangular perpendicular portion identified by the larger crack,

and secondly, when the block is detached as in Fig. 12, its center of mass changes by

taking into account the increased masonry volume. At this step, boundary conditions are

represented by the triangular shape walls visible in Fig. 12b as red and blue cracks. The

model is described in Fig. 14. The two steps can be separately analyzed in the rocking

analysis, by considering the first nearly constant stiffness (Eq. 41) and the linearly variable

one (Eq. 52). The bed spring stiffness can be defined for masonry walls perpendicular to

the façade as:

K 0 ¼ ExA

L �h
¼ Ex

t

L
; ð53Þ

being Ex the elastic modulus in the horizontal direction, t and �h respectively the thickness

and depth of the participating transverse walls while A = t �h is the perpendicular walls

Fig. 12 Santa Gemma church in Goriano Sicoli (AQ): dimensions (in meters, a) and façade rocking
mechanism (b)

Fig. 13 View from south of the façade mechanism at the top (a) and at the lower part (b)
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cross section (Fig. 14a). L is the length of the perpendicular walls portion involved in the

rocking motion, variable with z.

By substituting the geometric and mechanical values in Eq. (53) assuming the constant

stiffness of the first step, one obtains two stiffness values due to the different thicknesses of

the perpendicular walls, equal to 0.61 m and 1.06 m for left and right side respectively of

the façade:

K 0
LEFT ¼ 1:85E9

N

m2
;K 0

RIGHT ¼ 3:22E9
N

m2
: ð54Þ

By assuming an elastic behavior of the bed spring, these values are simply summed up to

get the final value of stiffness equal to K 0
TOT ¼ 5.07E9 N/m2.

The analysis is carried out by applying the natural seismic records registered nearby the

site of Goriano Sicoli during the main shock on 2009 April 6th (ITACA 2.0 earthquake

database; Luzi et al. 2008). All the seismic records considered are referred to West–East

orientation due to the façade position (Table 4).

Fig. 14 Horizontal restraints of typical masonry façade connected to transverse walls: a rocking façade-
cyan and transverse walls as boundary conditions-violet; b equivalent rocking block at first step and real
smeared constraints; c equivalent rocking block and considered smeared constraints in the analysis

Table 4 Seismic records features, 2009-04-06 UTC01:32:40, MW = 6.3, ML = 5.9, orientation West–East
(Repi: distance of the station from the epicentre; distance: distance of the church from the station; PGA,
PGV, PGD: peak ground acceleration, velocity, displacement)

Station code Eurocode 8 soil type Repi (km) Distance (km) PGA (cm/s2) PGV (cm/s) PGD (cm)

AQV B 5.1 58 644.247 -40.206 6.787

AQK B 1.8 53 327.730 -32.210 7.191

AQA B 5.2 60 394.745 31.910 5.429

AQG B 5.1 60 -437.428 -30.959 5.995

CLN B* 30.6 25 -79.780 4.857 -2.877

SUL A* 53.6 20 -33.680 -2.800 1.006
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5.2 Rocking analysis

The analysis is performed in non-linear assumptions (Fig. 2), since for clockwise rotation

the perpendicular masonry walls are compressed and behave as horizontal restraint, while

in the counterclockwise rotation, when rocking motion is activated and masonry is no

tension resistant, any restraint is available. However, the rocking analysis is also carried

out considering the linear case, where in both rotations the stiffness is supposed to act.

Other approaches on the evaluation of one-sided rocking motion are available in the

literature, as those that reduce the velocity after impact by a damping coefficient together

with the restitution coefficient (Sorrentino et al. 2008). A parametric analysis allows to

make some considerations about the response of the restrained block. The adopted

parameter is the stiffness spring bed, assumed to vary between 0 (free-standing block) and

1E12 N/m2 with intervals of one order of magnitude (0, 10, 100, 1E3,…, 1E12 N/m2). The

overturning condition is fixed to #
a

� �
max

[ 10.

The outcomes of the parametric analysis applied to the main façade of Santa Gemma

church are reported in Fig. 15. Such graphs are a sort of failure domains of the rocking

block subjected to several seismic actions and variable boundary conditions (Giresini et al.

2015a). When the façade is stable, the maximum amplitude ratio #=að Þmax is below 1.0

(Fig. 15a, b). A higher number of overturning results for the seismic records with higher

PGV (AQV and AQK with 40 and 32 cm/s respectively).

However, a slightly lower PGV value of 31 cm/s (that of AQA seismic record) does not

imply any collapse. The response is strongly influenced by the stiffness value for the

earthquakes with higher intensity. There is not a correspondence between the entity of non-

linear stiffness and probability of collapse. However, the church façade is stable as dis-

played in Fig. 15a. If the restraint was smeared over the whole height of the façade, the

safe domain would have been slightly reduced (Fig. 15b).

The rebound effect exerted by the perpendicular walls is clear in Fig. 15c. Indeed, for K0

higher than 1E6 N/m2 [for AQK action, (d)] the rebound effect is visible while with lower

stiffness values the motion is oscillatory Fig. 15c, since the bed spring does not affect the

response enough. Finally, the linear case shows that higher the stiffness, lower the max-

imum amplitude ratio. The minimum value of K0 to obtain a positive global stiffness is

given by Eq. (40) and is equal to 2.1E4 N/m2.

This is valid for all the seismic records and it is a reason why it is preferable to have

similar stiffness in clockwise and counterclockwise rotations to achieve a reduction of

amplitude ratio by increasing it. It is worthy to notice that some values of stiffness can

worsen the block response with respect to the free-standing condition in both non-linear

(Fig. 15a, b) and linear (Fig. 15f) cases.

6 Common values of unit stiffness for masonry and r.c. panels

Theoretically the lower limit of unit stiffness of the spring bed is not of interest in per-

forming parametric analysis, since the block might be free-standing. By contrast, to define

an upper limit of unit stiffness could be relevant for structural engineers who want to verify

the seismic vulnerability assessment of a rigid block however restrained. The bed spring

stiffness can be defined for masonry walls/r.c. panels perpendicular to the rigid block and

connected to it as expressed in Eq. (53). The masonry elastic modulus Ey, in vertical

direction, can be obtained from on site tests such as double flat jack tests.
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This mechanical parameter can be used for defining the horizontal modulus Ex with

coefficients depending on the masonry type (stone or brick), on the ratio of block modulus

over mortar modulus and on the ratio mortar to block thickness (Anna Brignola et al.

2008). In absence of experimental tests, range of values of elastic modulus are given by the

Italian codes (Circ. espl. 02.02.2009) for existing masonry. The minimum elastic modulus

is equal to 690 MPa for irregular stone masonry, whereas the maximum is 5600 MPa for

solid brick and cement mortar. For historic buildings made of brick and lime mortar, a
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Fig. 15 Rocking analysis results of the façade of Santa Gemma church in Goriano Sicoli: a non-linear case
in the real configuration; b non-linear case with bed spring smeared over the whole height of the façade; c
façade subjected to AQV record and K 0

TOT ¼ 5.07E9 N/m2; d façade subjected to AQK seismic record and

K 0
TOT ¼ 1E7 N/m2; e oscillatory motion for non-linear case and value of stiffness K0 = 1E6 N/m2 and AQK

record; f linear case in the real configuration
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common average value provided by the codes is 1600 MPa. Maximum and minimum

thickness of perpendicular masonry walls can be 1.0 and 0.1 m, while a reference value of

0.20 m could be assumed for concrete. By varying the depth of the perpendicular walls, it

is possible to assess that the range of values of stiffness is between 2E8 and 2E10 N/m2

(Fig. 16a). Naturally, for depth lower than 50 cm much higher stiffness value can be

obtained, but those are not significant from an engineering point of view.

In Fig. 16b the stiffness of two steel tie-rods/m per each perpendicular wall is obtained

for different parameters and tie-rod length. As maximum values of the order of 1E9 and

1E8 N/m2 are obtained for diameter of respectively 4 cm and 1 cm. These abaci can

provide preliminary values for the stiffness of steel tie-rods to be used for historical

constructions (Andreini et al. 2013a, b; De Falco et al. 2013). These values are then

comparable to those calculated for masonry walls and can be taken into account for

obtaining an oscillatory motion. Indeed, when the stiffness is different depending on the

sign rotation (see Sect. 5) a rebound effect can emerge and could cause overturning. If a

masonry façade rocking against perpendicular walls is unstable under a given set of

acceleration time-histories due to a rebound effect, the panel can be restrained by steel tie-

rods commonly used in retrofitting techniques of historic structures. The benefit introduced

by them can therefore be assessed with a rocking analysis. If the stiffness is the same order

of magnitude in clockwise and counterclockwise rotations it generally implies oscillatory

motion, without potentially risky rebound effect.

7 Conclusions

This paper deals with the dynamics of horizontally restrained blocks. For two type of

restraints, one concentrated with variable position and another smeared as spring bed, the

equations of motion were obtained. The check of stabilizing and destabilizing terms can

provide a first information on the effectiveness of the strengthening system, defined by a

stiffness value. Minimum stiffness values can be set before performing rocking analysis to

get a safe response. The obtained expressions of minimum stiffness have been confirmed
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Fig. 16 Orders of magnitude of bed spring stiffness: a two masonry/concrete walls, stiffness depending on
elastic modulus, thickness and depth of perpendicular walls; b four steel tie-rods/m with different diameter
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by full dynamic analyses. Moreover, it was shown that sometimes low stiffness values

could cause block overturning, even though the free-standing block is stable under a given

earthquake.

When the same stiffness value is considered in clockwise and counterclockwise rota-

tion, the rocking motion is oscillatory and tends to vanish for high stiffness values. It must

be noticed that strengthening measures generally act only in one-sided motion for civil

engineering applications. In this case, unstable effects due to the rebound effect can emerge

when a finite value of stiffness is assumed for clockwise rotation and very low or null value

is considered for counterclockwise rotation and vice versa. In a non-linear range with

different values of stiffness in clockwise and counterclockwise rotations, there exists a

minimum stiffness value, under which the motion is oscillatory since the restraint does not

influence enough the response. This minimum value depends on the considered seismic

record. In case of very different values of stiffness in clockwise and counterclockwise

rotations, overturning occurs due to the rebound effect without any failure correspondence

with the stiffness value. It is then preferable to have similar stiffness in clockwise and

counterclockwise rotations to achieve a reduction of amplitude ratio by increasing this

stiffness and make the response safer.
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