
ORIGINAL RESEARCH PAPER

Estimating ground motion incoherence through finite
source simulation: a case study of the 1980 El-Asnam
Earthquake

K. AfifChaouch1 • B. Tiliouine1 • M. Hammoutene1 •

R. Sigbjörnsson2 • R. Rupakhety2

Received: 28 July 2015 / Accepted: 8 January 2016 / Published online: 25 January 2016
� Springer Science+Business Media Dordrecht 2016

Abstract Spatial variability of ground motions has significant influence on dynamic

response of extended structures such as bridges and tunnels. In this study, the widely used

finite-source ground motion simulation approach, the so-called Empirical Green’s Function

(EGF) method, is extended to synthesize seismic motions across an array of stations

located at bedrock in the epicentral region of the 1980 El-Asnam region (North-West

Algeria). The target event being simulated is the October 10 1980 Ms ¼ 7:2 Earthquake,

and the EGF is obtained from the ground motion recorded at Sogedia Factory station

during the 8 November 1980 ML ¼ 5:6 aftershock. Coherency functions are then estimated

from the simulated ground accelerations. A parametric study investigating the influence of

shear wave velocity, earthquake magnitude, and epicentral distance is conducted by

simulating ground acceleration for different scenarios using the Hybrid Green’s Function

method. The main finding of the study is that finite source effects can cause significant loss

in coherency at bedrock in the near-field. In the far-field, the source effect alone does not

seem to produce incoherent motion, which implies that scattering and local site effects

could be dominating there. Furthermore, coherency functions are found to be more sen-

sitive to inter-station separation in the near-field than in the far-field. Increasing shear wave

velocity seems to increase coherency functions, and larger earthquakes seem to produce

more incoherent motion than smaller ones. The simulation method presented here produces

incoherent motion mainly due to the finite source effect, while path effects are partially

accounted for through the EGF, and local site effects are not considered. In this sense, the

estimated coherency functions represent that of plane waves. A parametric model of plane

wave coherency is calibrated and presented based on the simulation results. The results

indicate that the parametric model can be used as a first approximation, and at least an

upper bound of lagged coherency in the near-field region of the El-Asnam Earthquake
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scenario. This model could be useful in random vibration analysis or generation of spatially

variable ground motion for time history analysis of lifeline structures in the study area.

Keywords Ground motion simulation � Green’s function � Finite source � Lifeline �
Coherency � El-Asnam Earthquake

1 Introduction

Lifelines systems such as gas mains, oil pipelines, bridges, dams etc., which are supported

on ground over large horizontal distances experience differential seismic movement of

their supports during earthquakes. This differential motion of the supports results in dis-

placement and stress distribution in the structural elements that are different than what is

caused by uniform motion of all the supports. In many cases, the outcome is additional

strain (or stress) on the elements, which can, in the event of strong shaking, result in

damage to the elements of the such structures (e.g., Zerva 1994; Harichandran and Wang

1990; Lupoi et al. 2005; Walling and Abrahamson 2007; Nazmy and Abdel-Ghaffar 1992).

Spatial variation of ground motion results from different physical processes related to the

seismic source, the wave propagation path, and local site conditions. Attenuation effects

result in reduction of ground motion amplitudes with distance from the source. At a local

spatial scale, for example within a few hundred meters, the attenuation effect is not critical,

and spatial variation is due to physical processes such as (1) wave passage effects, which

refer to the difference in arrival times of seismic waves at different locations; (2) inco-

herence effects, which refer to the differences in amplitudes and phases due to multiple

reflections and refractions of seismic waves in inhomogeneous medium, as well as the

complex superposition of waves radiated from different parts of the source; and (3) local

site effects, which refer to the change in amplitude and frequency content of ground motion

due to local variation of soil conditions.

When the soil medium is locally uniform, variability in amplitude and frequency

content is less significant than variations in phase caused by wave passage and incoherence

effects. In such situations, ground motion variability is locally modelled as realizations of

random processes with spatially uniform amplitude and frequency content (Der Kiureghian

1996). Engineering models of such processes are often calibrated from strong-motion array

data from past earthquakes. This includes estimation of apparent wave propagation

velocity, the coherence function, and the site-dependent power spectral density function of

seismic waves. Several models of coherency and correlation functions, both theoretical and

empirical, are reported in the literature (see, for example, Der Kiureghian 1996;

Harichandran and Vanmarcke 1986; Abrahamson et al. 1991b; Luco and Wong 1986).

Such models are needed in simulating time series of spatially variable ground motion

which are required in seismic response analysis of horizontally extended structures. It is

well known that coherency functions are characteristic of a local site, source, and wave

propagation path, and therefore models calibrated from data collected in one region may

not be suitable for use in other areas (Somerville et al. 1988, 1991; Oliveira et al. 1991;

Abrahamson et al. 1991a; Santa-Cruz et al. 2000; Ding et al. 2004). Despite this, due to

lack of local data, coherency models calibrated for one region are often used to simulate

ground motion in other regions, sometimes with different tectonic and geological settings.
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Although strong motion networks are expanding in many countries, dense arrays, which

are required to record local variability, are still rare. An alternative method to simulate

spatially variable ground motion when recorded data is lacking could be numerical sim-

ulation of ground motion. In this context, stochastic simulation methods (Hao et al. 1989;

Bi and Hao 2012; Oliveira et al. 1991; Shinouzuka et al. 1987) which require pre-specified

coherency functions are not applicable and one needs to resort to simulation based on the

physics of seismic source and wave propagation. The choice of an appropriate simulation

method depends on the availability of data on the wave propagation path and seismic

source. The simulation method should be capable of incorporating the physical effects (e.g.

the finite source effect) that lead to spatial variability at a local scale that conform to the

current empirical and theoretical understanding of spatial and spectral nature of coherency

functions (Schneider et al. 1992; Ding et al. 2004; Ding and Song 2010; Menke et al. 1990;

Horike and Takeuchi 1996).

The two widely-used ground motion simulation approaches rely on point-source and

finite-source modelling. The point-source method (Boore 1983, 2003; Boore and Atkinson

1987; Hao and Gaull 2004) lacks the ability to model incoherence effects due to seismic

waves radiated from different parts of a finite source. Such effects can be at least partially

incorporated in finite-source ground motion simulation methods. Such methods rely on

modelling an extended earthquake source and the wave propagation medium. Numerical

simulations of ground motion incorporating the effects of a three-dimensional seismic

source, wave propagation in complex media, as well as the influence of the local site—such

as, topographic effects and basin response—have gained popularity in the recent years

(see, for example, Bielak et al. 2010; and Smerzini and Villani 2012). Such simulations are

often deterministic numerical methods based on Finite Elements (Bielak et al. 2005), Finite

Differences (Graves 1996; Pitarka 1999) or Spectral Elements (Faccioli et al. 1997;

Komatitsch and Vilotte 1998: Mazzieri et al. 2013). Such extensive simulation methods are

very attractive due to their ability to model complex source, path, and site effects in

generation and propagation of three-dimensional seismic wave field. These methods are,

however, computationally expensive and require knowing the source as well as geological

and geotechnical properties of the area in great detail. The results of such simulations are

accurate, like any other simulation, to the same degree that the input data are accurate. In

other words, detailed information on the fault geometry and slip distribution, as well as the

geological structure of the site is required. While such information can be compiled for

recent large earthquakes, it is not easily predicted for future earthquakes. In this sense,

although such methods have been very successful in reproducing ground-motion records

from well-studied past earthquakes, their reliability in predicting ground motion due to a

future earthquake depends on the level of confidence with which various source, path, and

site parameters are predicted. Through detailed geological and geotechnical studies,

uncertainties in the path and site parameters can potentially be reduced, but, inherent

uncertainties in source parameters, such as slip distribution, are still significant; it is not yet

possible to predict the source model of a future earthquake based on past experience. Most

importantly, these physics-based, numerical methods can simulate only low-frequency (to

about 2.5 Hz; see for example, Smerzini and Villani 2012) motion. For engineering

applications, and especially for incoherence effects, larger frequency components

(*2–9 Hz) are more relevant. Hybrid methods of simulation where low-frequency motion

obtained from physics-based models are combined with high-frequency motion obtained

from stochastic models have been developed in recent years (see, for example, Mai et al.

2010; Graves and Pitarka 2010; Aagaard et al. 2010). Due to the computational cost and
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lack of detailed information about the source, path, and site, these models have limited use

in routine work.

An alternative to modelling the wave propagation effect is provided by the use of the so-

called Empirical Green’s Functions (EGF). These functions are calibrated from ground

motion time series recorded during small events and, in this sense, incorporate, at least

partially, the effect of wave the propagation path. The small event must correspond to the

same seismogenic source as the target event being simulated. Hartzell (1978) first utilized

observed records from small events (e.g., aftershocks and foreshocks) as Green’s functions

to simulate ground motion time series corresponding to a mainshock. Since then, his

original idea has been applied, developed, and improved by numerous researchers (e.g.,

Kanamori 1979; Hadley and Helmberger 1980; Mikumo et al. 1981; Irikura and Muramatu

1982; Kamae and Irikura 1998; Irikura 1983, 1986; Irikura et al. 1997). Sometimes, EGF in

the form of recorded time series from small earthquakes are not available. In these cases,

the EGF method as originally developed is not applicable. To overcome this problem,

hybrid methods for broad-band ground motion simulation have been developed combining

deterministic and stochastic approaches. One such method is the Hybrid Green’s Function

(HGF) technique proposed by Kamae et al. (1998a). In this semi-empirical method, ground

motion time histories corresponding to small earthquake events are calculated theoretically

using the stochastic point-source model (Boore 1983; Hao and Gaull 2004), which are then

used as EGF to simulate the ground motion corresponding to large earthquakes. This

approach has been used in simulating strong motion time series in regions where recorded

data is not available (Suzuki and Asano 2000; Joshi and Midorikawa 2004; Joshi and

Mohan 2008; Liang et al. 2006, 2008).

In the following sections, we provide a brief review of the EGF and the HGF method for

ground motion simulation, and explain their application in simulating spatially variable

ground motion. Basic definitions and spectral methods used in evaluating ground motion

coherency are also reviewed. A case study of the 1980 El-Esnam Earthquake is presented,

with simulated coherency functions at bedrock in the near-field. This is followed by a

parametric study investigating the effects of shear wave velocity, earthquake magnitude,

and epicentral distance on simulated coherency functions. The results are compared with

published literature, and they are interpreted in light of the physics of ground motion

generation incorporated in the simulation methods. Based on the simulation results, a

parametric model of bedrock coherency is calibrated using the plane wave coherency

model of Hindy and Novak (1980). Finally, the main results are summarized and discussed,

along with comments on their practical applicability, and potential for future research.

2 Stochastic and empirical ground-motion coherency models

Spatial variability of ground motion is caused by a number of factors (Abrahamson et al.

1991b; Der Kiureghian 1996; Zerva and Harada 1997; Somerville et al. 1988) which can be

summarized as follows:

a. Differences in the manner of superposition of waves arriving from an extended finite

source, and wave scattering by irregularities and inhomogeneity along the wave path

and at the site, commonly termed incoherence effects.

b. Traveling-wave or wave-passage effects, in which non vertical waves reach different

points on the ground surface at different times, producing a time shift between the

motions at those points.
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c. Site effects due to the variation in filtering effects of overlying soil columns.

The joint characteristics of stochastic ground motion processes at two locations on the

ground surface are fully described by their cross spectral density functions. Such joint

characteristics are commonly described by a dimensionless parameter—the so-called

coherency function—which is obtained by normalizing the cross spectral density function

with the respective power spectral density functions. Considering, motions ai tð Þ and aj tð Þ
at two discrete locations i and j separated by a distance n, the complex coherency function

in space and circular frequency xð Þ is defined as:

cij n;xð Þ ¼ Sij n;xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sii xð ÞSjj xð Þ
p ð1Þ

where Sij n;xð Þ is the smoothed cross spectral density function of ai tð Þ and aj tð Þ; and Sii xð Þ
and Sjj xð Þ are their smoothed power spectral density functions. Separating cij n;xð Þ into its

absolute value and phase, we obtain

cij n;xð Þ ¼ cij n;xð Þ
�

�

�

� exp ihij n;xð Þ
� �

ð2Þ

where 0� cij n;xð Þ
�

�

�

�� 1, is the lagged coherency function and hij n;xð Þ is phase spectrum.

Lagged coherency squared is called coherency. Generally, lagged coherency decreases

with increase in separation distance and frequency.

In this study, all coherencies are computed from simulated time series of ground

acceleration; the simulation method is described in the following sections. The simulated

time series are aligned to remove wave passage effects (see, for example, Rupakhety and

Sigbjörnsson 2012, 2013; Zerva 2009; Ancheta et al. 2011). The alignment is achieved by

shifting the time axis of a time series with respect to an arbitrarily selected reference

station by an amount corresponding to the time lag where the cross-correlation of the time

series and that at the reference station is the maximum. The stationary part of the aligned

time series is extracted by visual inspection of the time evolution of Arias Intensity of the

simulated time series. A Tukey window with a tapering length of 15 % of the length of the

stationary part of the signal was applied. The windowed signals are then used to estimate

power and cross spectral density functions which are smoothed. We smooth all power

spectra using a Hamming spectral window with a parameter of M ¼ 39 (2M þ 1 is the

width of the window). This level of smoothing is selected in order to reduce the variance in

lagged coherency. We note that the window length used here is longer than what is

reported in Zerva (2009). The fact that the simulated time series in our study have a

relatively long duration means that the frequency resolution of the computed spectra is

relatively fine. This allows us to use longer windows to effectively reduce variance in

computed spectral estimates without seriously compromising their frequency resolution.

Based on coherency estimated from recorded strong motion array data, several models

of coherency functions have been proposed in the literature. In the present study,

coherencies estimated from simulated ground motion are compared with the model of

Hindy and Novak (1980). This model is mathematically expressed as (Novak and Hindy

1979; Hindy and Novak 1980):

c n;xð Þj j ¼ exp �ðaxnÞb
h i

ð3Þ

where a and b are model parameters. The dimensionless parameter a is defined as

a ¼ g=vs, with g ¼ l R=roð Þ1=2, where vs is the shear wave velocity, R is the distance
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travelled by the wave, ro the scale length of random inhomogeneities along the path, and l2

a measure of the relative variation of the elastic properties in medium. The semi-empirical

model of Luco and Wong (1986) is a particular case of Eq.(3) with b ¼ 2. The model has

been used extensively by researchers in seismic response analysis of lifelines (e.g. Luco

and Wong 1986; Zerva 1994; Der Kiureghian and Neuenhofer 1992). The model is based

on shear wave propagation through random media, an approximation that may be valid for

the propagation of the waves from the source to the ground surface or from the source to

the bedrock-layer interface. Zerva and Harada (1997) and Der Kiureghian (1996) have also

used this model for the description of coherency of bedrock motion. Nuti and Vanzi (2004)

pointed out that the parameter g has values in the range of 0.02–0.5. The model of Hindy

and Novak (1980) is more flexible than the Luco and Wong (1986) model, and is therefore

adopted in this study.

3 Ground motion simulation

3.1 Empirical Green’s function method

The EGF method of Irikura et al. (1997) considers a rectangular fault plane (length L,

width W) divided into l� m elementary rectangular sub-faults on its surface. Denoting the

Green’s function associated with a sub-fault io; joð Þ by ueiojo x; tð Þ, the total synthetic signal
U x; tð Þ at point x due to the whole fault plane is given by:

U x; tð Þ ¼
X

l

i¼1

X

m

j¼1

Rs hij;uij

� �

riojo

Rs hiojo ;uiojo

� �

rij
F tð Þ � cueiojo x; tð Þ ð4Þ

where * denotes convolution. The function F tð Þ is given by:

F tð Þ ¼ d t � tij
� �

þ 1

n0

� 	

1� exp �1ð Þf g
X

ðn�1Þn0

k¼1

exp
� k � 1ð Þ
ðn� 1Þn0


 �� 


� d t � tij �
k � 1ð Þs
n� 1ð Þn0

� 	

ð5Þ

and tij is given by Eq. (6):

tij ¼
rij � ro

vs
þ
nij
vr

ð6Þ

In these equations, tij is the phase delay, Rs is the radiation pattern (Aki and Richards

2002), s is the rise time of the event for which ground motion is being simulated,riojo is the

Euclidean distance between the receiver x and the rupture starting point on an elementary

sub-fault io; joð Þ, rij is the Euclidean distance between the receiver and the centre of the

sub-fault i; jð Þ, nij is the distance between the hypocentre and the centre of the sub-fault

i; jð Þ,vs is the shear wave velocity, vr ¼ 0:72vs is the rupture velocity, n0 is an integer to

eliminate spurious periodicity (Irikura 1983), FðtÞ is the slip-time filtering function, c is the

stress drop ratio, r0 is the Euclidean distance between hypocentre and the receiver, and

dðt � tijÞ represents Dirac delta function. The parameters l, m, and n are determined from

the scaling relations given by Kanamori and Anderson (1975). For instance, when the

seismic moment ratio of the target earthquake (the one being simulated) to the elementary
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one (the one used for the empirical Green’s function) is N3, the parameters l, m, and n

should each be equal to N (Irikura 1983); the total number of divisions along the length or

the width of the fault so that the dimensions of sub-faults are small enough to be treated as

point source.

Kamae et al. (1998b) revised the Kanamori and Anderson (1975) relation to allow for

the potential difference in stress drop between the target and the small events. The revised

relations are:

L

Le
¼ W

We

¼ D

cDe

¼ s
se

¼ M0

cM0e

� 	1=3

¼ N ð7Þ

where L and Le are fault lengths, W and We are widths, s and se are rise times, and D and

De are average slip, corresponding to the target event and small event, respectively.

The rise time parameter s is given by the following relation in Geller (1976):

s ¼ 16S
1
2

7p
3
2vs

ð8Þ

where S ¼ L�W is the fault plane area. Alternatively, the rise time of the target event can

be obtained from the similarity equation (Eq. 7) if the rise time of the small event is known

(see Irikura 1983).

Because the frequency content of earthquakes is magnitude dependent, direct applica-

tion of Green’s function as in Irikura (1986) can lead to underestimation of ground motion

amplitudes at low frequencies. To overcome this, Irikura et al. (1997) introduced the

exponential slip function (Eq. 5) (see, for more details, Liang et al. 2006, 2008; Joshi and

Midorikawa 2004).

3.2 The Hybrid Green’s function method

The HGF method works in a similar way to the EGF method, except that a synthetic time

series, rather than recorded time series from small earthquakes, is used as the EGF. In this

work, the method of Boore (1983) is used to first simulate ground motion corresponding to

an aftershock which is then used as the Green’s function to simulate ground motion due to

main shocks corresponding to different scenarios. To simulate the Green’s function, we

calibrate the model parameters of a theoretical Fourier Amplitude Spectrum (FAS) using

the aftershock data of the El-Asnam aftershock. Only the S-wave portion of the recorded

data is used in calibrating the model. More details on the calibration process and the

obtained model parameters are presented in subsequent sections.

The theoretical FAS of ground acceleration shear waves, A fð Þ, at a distance r from a

point source with seismic moment Mo is given by (Boore 1983):

A fð Þ ¼ CMoS f ; fcð ÞP f ; fmð Þ
r

exp � pfr
Qsvs

� 	

ð9Þ

where f is the frequency, Qs is the shear-wave quality factor accounting for inelastic

attenuation,1=r models the geometric spreading, and C is the scaling factor given by

Eq. (10):

C ¼ Rs h;uð Þ FSð Þ PJð Þ
4pqv3s

ð10Þ
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where Rs h;uð Þ is the radiation pattern of shear waves, FS accounts for free surface, PJ is a

factor that accounts for the partitioning of total shear-wave energy into two horizontal

components, and q is the average density of the rock. The source spectrum S f ; fcð Þ(Brune
1970) is the x-squared model function of the corner frequency which is given by:

fc ¼ 4:9� 106vs
Dr
Mo

� 	1
3

ð11Þ

where Dr is the stress drop. The function P f ; fmð Þ is a high-cut filter function with cut-off

frequency fm and is taken from Boore (1983).

4 Case study: Coherency estimated from ground motion simulated using
EGF method

The EGF method, which has been used in simulating ground motion at a single location, is

extended here to synthesize spatially varying horizontal ground motion at bedrock. The

seismic scenario considered is the 10 October 1980 El-Asnam Earthquake of magnitude

Ms ¼ 7:3, for which ground motion records are not available. The earthquake occurred at

12:25 GMT and the hypocentre was estimated to be at 36�170N, 1�410E and at a depth of

12 km (Cisternas et al.1982). The ground motion from the ML ¼ 5:6 aftershock of 08

November 1980 recorded at the Sogedia Factory Station (see Fig. 1) is used as the

empirical Green’s function. We note that only one aftershock from the source of the target

event is available at the study site. In a more favourable situation, if multiple aftershocks

Fig. 1 Map of the epicentral region of the 10 October 1980 El-Asnam Earthquake (simplified from
Despeypoux 1984). Epicentral locations (from Cisternas et al. 1982) and the Sogedia Factory station are
indicated. The inset shows the map of Algeria with the red rectangle indicating the location of the epicentral
area shown in the main figure
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are available, it is preferable to use them as Green’s functions from different sections of the

source to the site. This allows a more accurate representation of the path effect, especially

for large faults. The epicentral distance of this station is about 5 km. The aftershock event

took place in the same rupture zone as the mainshock (target) event and with a similar

faulting mechanism (Cisternas et al. 1982). In the following, the mainshock, for which

ground motion is being simulated, is called the target event, and the aftershock, from which

the empirical Green’s function is obtained, is called the small event.

In order to simulate ground motion at bedrock, the empirical Green’s function should

also correspond to the bedrock. Since the bedrock is not outcropping at the recording

station, deconvoluted motion (Petrovski and Milutinovic 1981) corresponding to the

bedrock is utilized. The time series of the deconvoluted motion is baseline corrected using

the method described in Rupakhety et al. (2010). The horizontal components of ground

acceleration corresponding to the bedrock are shown in Fig. 2. The fault plane is assumed

to be 40 km 9 15 km with a dip angle of 60� (see Fig. 3). Shear wave velocity is taken as

2 km/s (Petrovski and Milutinovic 1981; Yielding et al. 1981) and the corresponding

rupture velocity vrð Þ is equal to 1.44 km/s. The stress drop of the mainshock is 100 bars

(from Dechamps et al. 1982) and, for the small event, a value of 82.57 bars is calculated by

using the relation given by Boore (1983) and a corner frequency of 0.37 Hz obtained from

a spectral fitting procedure described in Sect. 5. This gives a stress drop ratio cð Þ equal to
1.21. The fault plane is divided equally into seven parts in both directions, i.e., the scale

factor parameter N is equal to 7, and the number n0 is taken as 20. The Fourier spectrum

(FAS) of the aftershock (see Fig. 6) is characterized by a significant trough around 5 Hz,

which yields a rise time of se ¼ 0:2 s; and using the similarity condition (Eq. 7) rise time

for the mainshock is estimated to be s ¼ 1:4s. The latter value is close to the 1s adopted by

Dechamps et al. (1982). Other relevant parameters used in the simulation are given in

Table 1 in the Appendix. The location of the hypocentre is shown with a red star in Fig. 3,

and it lies on cell ði0; j0Þ ¼ ð7; 4Þ from where the rupture is assumed to propagate radially.

It is noted that in the presented methodology, the total seismic moment of the target event

is assumed to be uniformly distributed over the entire fault plane. This assumption was

invoked due to the lack of information on the actual (or expected) slip distribution of the

past (or future) event. However, if heterogeneous slip distribution models are available, the

methodology can be extended to account for non-uniform slip distribution. This can be

done by scaling the contribution of each sub-fault in the total motion in proportion to the

seismic moment released at the sub-fault, keeping the total seismic moment unchanged

(see, for example, Irikura and Kamae 1994). Horizontal components of ground acceleration

are then simulated at five stations at bedrock, namely Sð0Þ, Sð1Þ, Sð2Þ, Sð3Þ and Sð4Þ (see

Fig. 3). Station Sð0Þ is considered as the reference station and it lies directly under the

Sogedia Factory station; the other stations are separated from it by 40, 100, 200, and
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Fig. 2 Acceleration of bedrock (NS and WE component) obtained by deconvolution of ground acceleration
due to the 8 November 1980 aftershock recorded at the Sogedia Factory station. The acceleration time series
are obtained from Petrovski and Milutinovic (1981)
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500 m. Epicentral distance of the reference station is 5 km. Simulation of ground motion

and estimation of lagged coherencies were performed by computer codes developed by the

authors.

The ground acceleration time series simulated at the five stations are shown in Fig. 4.

Peak ground acceleration (PGA) of the simulated motion is close to 60 % of acceleration

due to gravity. Lagged coherencies computed from the simulated signals are shown in

Fig. 5.

The spectral and spatial characteristics of the simulated lagged coherencies, as shown in

Fig. 5, are similar to those reported in the literature (see, for example, Zerva 2009). In

general, lagged coherency decays in both frequency and space. The lagged coherencies for

short separation distances of 40 and 100 m show frequency decays less significant than those

for a separation distance of a few hundred meters. It is noted that the coherency estimate for a

separation distance of 500 m first decreases with frequency, then starts increasing around

7 Hz. Such apparent increase of coherency with frequency is physically not meaningful and

is most likely due to uncertainties in the spectral estimation and smoothing operation (see

Zerva 2009 and Rupakhety and Sigbjörnsson 2012 for a more detailed discussion). The

coherency is significantly less than 1.0 at low frequencies (1–2 Hz) for the long station

separation of 500 m and at intermediate frequencies (3–5 Hz) for the medium separation

distance of 200 m. Such loss in coherency has been attributed to (see, for example, Zerva

2009) scattering of waves along the propagation path (caused by heterogeneities in the path)

and near the stations (due to heterogeneities near the surface). It is noted that such effects are

not fully modelled in the present simulation method because EGF is available at only one

station. In this sense, spatial variation of scattering effects is not captured in the simulation.

Fig. 3 Schematic representation of the finite-fault model corresponding to the 1980 El-Asnam mainshock;
the star indicates the location of the hypocentre, the blue triangle represents the Sogedia Factory station
which recorded the 8 November 1980 aftershock, and the blue dots represent the locations of bedrock
stations at which ground motion is simulated (dimensions are not to scale). The stations lie on a line
connecting the Sogedia Factory station to the epicentre
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The relatively small value of coherence at low frequencies and large separate distance may

therefore be due to source effects in the near field, which is found to be prominent at low

frequencies (Abrahamson et al. 1991a). This behaviour can also be explained by the fact that

the term tij in Eq. (6) might become nearly random in the near-field region of a rectangular

fault plane (Irikura 1986) and consequently the phase difference between two stations

increases with increasing separation distances. In the far-field, the source to site distance is

large compared to the inter-station separation distance of a few hundredmeters, and therefore

loss of coherencewith separation distance is less pronounced than that in the near-field, as the

term tij is almost the same for the different stations.

The results of the simulations indicate that source effects in coherency are significant;

considerable loss in coherency is obtained just by modelling the source effect. On the other

hand, the source effects, site effects, and scattering effects may constructively and

destructively interfere in coherency decay (see Zerva 2009 for a detailed discussion), and

isolating these different effects from recorded data is not straightforward. The simulation

method presented in this work models coherency decay mainly due to source effect, which

seems significant for the case under study.
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Fig. 4 Transverse (orthogonal to the epicentral direction) component of ground acceleration simulated at
the five stations. The simulated signals are first aligned to eliminate wave passage effects. Stationary part (by
visual inspection of time evolution of Arias Intensity) is then extracted and tapered with Tukey windows
with end taper length equal to 15 % of the length of the signal. These tapered signals are used to compute
lagged coherencies shown in Fig. 5
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5 Sensitivity analysis of simulated coherency

It is well known that the coherency of ground motion is affected by seismic source,

propagating medium, site condition, the relative orientation between source and site (di-

rectivity) and parameters such as fault orientation and fault depth (Jin et al. 2000; Ding

et al. 2004; Ding and Song 2010; Santa-Cruz et al. 2000; Schneider et al. 1992; Somerville

et al. 1988, 1991; Zerva and Shinozuka 1991; Abrahamson et al. 1991a; Horike and

Takeuchi 1996). The sensitivity of ground motion parameters at a station simulated by the

EGF method has been studied by Pavic et al. (2000). However, the sensitivity of coherency

of simulated ground motion to the parameters used in simulation has not been studied. In

this section, such a sensitivity analysis is presented. The main objective of this analysis is

to identify those simulation parameters which have a large influence on simulated

coherency functions, and therefore need to be well constrained for the simulation of the

strong ground motion field (Zerva 1994; Jin et al. 2000; Hao et al. 1989). The parameters

considered in this analysis are magnitude (source parameter), wave velocity (path

parameter) and epicentral distance (path parameter). It is noted that other source phe-

nomena, such as heterogeneous slip distribution, directivity effect, and focal mechanism

can influence the coherency of the resulting ground motion. Parameters such as slip dis-

tribution and the directivity effect are not easily modelled (or predicted for future events).

In this sense, priority is given to those source parameters which are relatively well

understood in the sensitivity analysis presented in this work. The effects of other relevant

source parameters are outside the scope of this study, but parametric studies investigating

such effects could shed more light on source effects in coherency of ground motion in the

near-fault and are currently under investigation. Because EGFs corresponding to various

scenarios of these parameters are not available, we use the HGF method for ground motion

simulation.

The stress-drop ratio is assumed to be 1. We also note that we investigated the effect of

this parameter in coherency estimates and decided that a value equal to 1 was suitable. It

was found that, although this parameter has some effects in the simulated ground motion

amplitudes, lagged coherencies were not very sensitive to this parameter. A direct

implication of changing this parameter is the change in number of sub-faults to be used in

simulation. If too few sub-faults are used (corresponding to large values of c), the finite-

fault effect is not appropriately modelled. However, such a situation is not likely because,

within reasonable variations of the parameter, the number of sub-faults remains unchanged

(see Eq. 7) as it is rounded off to the next integer. When a suitable value of number of sub-

faults is selected, c needs to be adjusted to conserve the seismic moment. The simulated

coherency functions were found to be relatively insensitive to the choice of this parameter

as long as a reasonable number of sub-faults is used in the simulation. The EGFs are

simulated using the stochastic method with a theoretical source spectrum given by Eq. (9).

Some parameters of the spectrum are kept constant for all scenarios, namely:FS ¼ 2,

PJ ¼ 0:71 and Dr ¼ 100 bars (from Dechamps et al. 1982). The parameters Qs, fc and fm
were obtained by fitting the theoretical source spectral model of Eq. (9) to the FAS of the

deconvoluted aftershock ground motion time series recorded at the Sogedia Factory sta-

tion. Only the shear wave parts of the two horizontal components of motion were extracted

and windowed. Rotation-invariant estimate of FAS of horizontal motion is then obtained

based on the formulation presented in Rupakhety and Sigbjörnsson (Rupakhety and Sig-

björnsson 2014a, b). The FAS is fitted to the theoretical model yielding Qs ¼ 45,

fc ¼ 0:37 Hz and cut-off frequency, fm ¼ 20 Hz. Figure 6 shows a comparison between the
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rotation invariant spectra and the theoretical model fitted to it. The other parameters

required for simulating EGF are mentioned in the following sections as they depend on the

different scenarios being simulated. Using the FAS spectra and phase spectrum obtained

from the aftershock record, EGF are simulated using the stochastic method. These EGFs

are then used to simulate ground acceleration at the five bedrock stations. Coherency

estimates are obtained from the simulated ground motion using the procedure described in

Sect. 2.

5.1 Effect of shear wave velocity

Shear wave velocity and rupture velocity, which are closely related, play an important role

in how the seismic waves radiated from the different sections of an extended source

superimpose in time at a station. Since the superposition of these waves at nearby stations

is expected to affect the coherency of motion across the stations, we study the sensitivity of

coherency to shear wave velocity. Three different scenarios of generic rock with

vas ¼ 1500 m/s, vbs ¼ 2500 m/s, and vcs ¼ 3500 m/s are considered to simulate ground

acceleration at the five stations using the HGF method. Table 2 in the Appendix lists the

others relevant properties of the generic rocks (from Betbeder-Matibet and Bour 2002;

Chapellier and Mari 2011).

Lagged coherencies corresponding to the transverse component of ground acceleration

for the three generic rocks are shown in Fig. 7. The results indicate that at low frequencies

(\2 Hz) lagged coherency is not very sensitive to shear wave velocity. At such low

frequencies, the wavelengths of shear waves are not as sensitive to variations in wave

velocity as they are at high frequencies. High sensitivity of wavelengths might result in

high sensitivity of coherence within a small spatial area. It is also observed that the decay

of coherency with frequency is faster when the shear wave velocity is lower. At fre-

quencies above 2 Hz, the coherency seems, in general, to increase with shear wave

velocity, except for a separation distance of 500 m, where the increase is not consistent for

all frequencies. The overall increase of coherency with shear wave velocity is expected

from the fact that the differential arrival time of shear waves radiated from different

sections of the fault decreases with increasing wave velocity. Increasing wave velocity also

implies smaller time difference in arrival of waves radiated from a sub-fault at different

stations, which results in higher coherency. It should be noted that the simulation method

used here considers only the source effect in loss of coherency and does not take into
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account scattering effects in the propagation medium or near the receiver. Even in lack of

these scattering effects, considerable loss in coherency is observed at medium and high

frequencies, which implies that source effects alone can have a significant effect on

coherency. This effect is expected to be more pronounced in the near-field region (see,

Abrahamson et al. 1991a; Ding et al. 2004)—which is the case of the present analysis—for

the reasons explained in Sect. 4.

5.2 Effect of earthquake magnitude

Abrahamson et al. (1991a) show some evidence of magnitude dependence of coherency. At

frequencies below 5 Hz small magnitude events tend to have lower coherency than large

magnitude events, while at frequencies of 6–10 Hz, the reverse is true. Somerville et al.

(1988) suggested that coherency for aftershocks is greater at all frequencies than that for

mainshock in the near-field.

To study the effect of the magnitude on bedrock coherency, we compute accelerograms

which correspond to two earthquake events. One of them corresponds to the 1980 El-

Asnam mainshock with Ms ¼ 7:3 M0 ¼ 540� 1024 dyne - cmð Þ and the other one cor-

responds to the 13 May 1995 Kozani-Greneva Earthquake with Mw ¼ 6:5 M0 ¼ 55�ð
1024 dyne - cmÞ which occurred in northwestern Greece. The five receiver stations are

placed on bedrock of type b (shear wave velocity equal to 2500 m/s) for both events. For

the larger event, simulations are based on the HGF method using aftershock data from 8

Nov 1980 aftershock. The fault geometry is considered to be the same as that of the El-

Asnam Earthquake, with N ¼ 7 and ði0; j0Þ ¼ ð7; 4Þ. For the smaller event, the HGFs are

simulated from the recording of the largest aftershock of the Kozani-Greneva Earthquake

that occurred on 15 May 1995 with Mw ¼ 5:1 M0 ¼ 0:44� 1024 dyne - cmð Þ. For this
event, a rectangular fault with dimensions 29 km� 13 km is divided into 5� 5 sub-faults.

The strike, dip, and rake of this event are taken to be the same as that of the El-Asnam

mainshock. The cut-off frequency is taken to be 7 Hz and the stress-drop 12.19 bars. The

relevant parameters of this event are taken from Roumelioti et al. (2000). The rupture is

assumed to start at the cell i0; j0ð Þ ¼ 1; 2ð Þ with radial propagation. The resulting lagged

coherency functions are shown in Fig. 8. It is observed that coherency of the smaller

earthquake is larger than that of the larger one at all frequencies, which is consistent with
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Fig. 7 Lagged coherencies of transverse ground acceleration for three generic rocks: a for vas ¼ 1500 m/s,

b for vbs ¼ 2500 m/s, and c for vcs ¼ 3500 m/s. The black, blue, green, and redlines correspond to separation

distance of 40, 100, 200, and 500 m, respectively
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the observations of Somerville et al. (1988). For the smaller earthquake, and for a sepa-

ration distance up to 200 m, loss in coherency does not start until about 6 Hz, whereas

lagged coherency for the 500 m separation distance steadily decreases from about 1 Hz.

On the contrary, loss in coherency with frequency starts at much lower frequencies for all

separation distances for the larger earthquake. Spatial decay of lagged coherency is more

pronounced for the larger earthquake. These results indicate the finite source effect on

lagged coherency. As the rupture area increases, seismic waves radiated from different

parts of the fault arrive more asynchronously at nearby stations, resulting in loss of

coherency.

5.3 Effect of epicentral distance

Abrahamson et al. (1991a), using data recorded on soil site at the LSST array in Lotung,

Taiwan, observed that coherency in the near-field was lower than that in the far-field at low

frequencies, which was interpreted as a source effect. Whereas the reverse was true for

higher frequencies, which was interpreted as a path effect. Similar results were found by

Somerville et al. (1988). In the presented simulation method, site effects are not modelled

and, thus, the loss in coherency is mainly due to the source effect. This section investigates

the importance of this effect for different epicentral distances.

Three different epicentral distances are considered: d1 ¼ 5 km, d2 ¼ 33 km, and

d3 ¼ 65 km, which correspond, respectively, to hypocentral distances of 12.96, 35.1, and

66.09 km. These three distances are assumed to represent, for the 1980 El-Esnam main-

shock, the near-, intermediate-, and far-field (see Hammoutene et al. 1992). By using the

HGF method, ground acceleration time series are simulated at three sets of five stations on

bedrock of type b. On each set, the reference stations are placed at the epicentral distance

mentioned above, and the other stations are separated from it by 40, 100, 200, and 500 m.

All the stations on the hanging wall and lie on the radial line from the epicentre of the

target event to the Sogedia Factory station. HGFs for the simulation are based on the

ML ¼ 5:6 M0 ¼ 1:55� 1024 dyne� cmð Þ event.
Figure 9 presents the lagged coherency functions at different separation distance in the

near-, intermediate-, and far-field. It can be observed that lagged coherency increases at all

frequencies with epicentral distance. In the far-field, and on bedrock, the loss in coherency
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Fig. 8 Lagged coherency at bedrock for a large magnitude and b and small magnitude earthquakes. The
black, blue, green, and red lines represent separation distance of 40, 100, 200, and 500 m, respectively
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is negligible up to 8 Hz. This is expected because the simulation method presented here

only accounts for the source effect, which is not strong in the far-field. It can thus be

concluded that the effect of finite source in lagged coherency is negligible in the far-field,

which implies that scattering and local site effects are the main sources of incoherence. In

the near-field, however, considerable loss in coherency is observed, which indicates that

source effects are important. In the near-field, the term tij in Eq. (6) is sensitive to the

separation distance between the stations, which implies asynchrony in arrival of waves

radiated from different sub-faults at these stations. This asynchrony results in loss of

coherency. In the far-field, this term is not sensitive to inter-station separation distance and,

therefore waves radiated from different stations arrive almost synchronously at nearby

stations. This results in highly coherent motion. The consequence of this differential

sensitivity is also apparent from Fig. 9, where lagged coherency functions are less sensitive

as epicentral distance increases . A word of caution regarding this interpretation is that the

presented results account only for finite source effects, and lack modelling of scattering and

local site effects. When these effects are present, lagged coherencies in the far-field are

expected to be smaller than what is presented in Fig. 9.

In summary, a finite source produces more incoherent motion than a point source, as is

suggested by Faccioli (1991). In the near-field of an extended seismic source, ray paths

extending from different portions of the ruptured fault give rise to differential ground

motion at two points some distance apart because of different azimuths, incidence angles,

attenuation, and scattering paths.

6 Parametric modelling of spatial coherency

In this section, we calibrate a parametric model to the coherency functions computed from

simulated ground motion corresponding to the 1980 El-Esnam Earthquake (see Sect. 4, and

Fig. 5). The functional form of the model is taken to be the same as that of Hindy and

Novak (1980), as presented in Eq. (3). This model was selected because it has been

extensively used by researchers in seismic response analysis of lifelines. Since this model

does not explicitly consider scattering effects and noise, it is often viewed as a plane wave

coherency model and is, therefore, suitable for our analysis. Ramadan and Novak (1993)

found that the exponentially decaying spatial incoherence model of Hindy and Novak
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Fig. 9 Lagged coherency functions, from left to right, corresponding to near-, intermediate-, and far-field of
the 1980 El-Esnam Earthquake. The black, blue, green, and red lines correspond to separation distance of
40, 100, 200, and 500 m, respectively
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(1980) is in general agreement with a number of spatial incoherence expressions when the

model parameters are chosen appropriately. We note that we tried to calibrate the

Harichandran and Vanmarcke (1986) model without success, as this model did not seem to

be well constrained by the simulated coherency data. The model of Luco and Wong (1986),

which constrains the parameter b of the Hindy and Novak (1980) model to 2, was found to

be too restrictive and less applicable in space-frequency decay of lagged coherencies. To

calibrate the parameters of the Hindy and Novak (1980) model, we use non-linear least

squares regression in the hyperbolic arctangent tanh�1
� �

transformation of lagged coher-

ency. Such a transformation is preferable because the transformed variable has approxi-

mately frequency independent variance (Jenkins and Watts 1969). The frequency and

separation distance ranges used fitting the model were 0� 8½ � Hz and 0� 500½ � m,

respectively. The regression parameters were found to be a ¼ 5:87� 10�5 and b ¼ 1:52.
The R-squared value of the fit was found to be 0.88 with a root mean square error of 0.30,

which demonstrate the goodness of fit of the model. A comparison between lagged

coherencies and the fitted model is shown in Fig. 10.

The comparison in Fig. 10 shows that the model fits the simulated lagged coherencies

relatively well for separation distances up to 100 m. For separation distance of 100 m, the

fit is good up to a frequency of 5 Hz. For a separation distance of 500 m, the model fits

simulation results relatively well and, therefore, the model is considered to capture the

overall spatial and spectral characteristics of lagged coherency. The quality of fit is also

clear from the residuals (difference between model prediction and simulated results) in

tanh�1 transformation as shown in Fig. 11. The mean value of the residuals is closest to 0

for a separation distance of 100 m, while it is most biased for a separation distance of

500 m.

7 Summary and Conclusions

The main contribution of this work is to present an approach to simulate spatially variable

ground motion using the EGF method. This method has been extensively used in the

literature to simulate point estimates of strong ground motion. In this work, we test whether

it is suitable for simulating a ground motion field within a relatively small spatial extent,
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thereby modelling incoherence effects. The case study and parametric study presented

herein suggest that the presented approach is suitable for simulating incoherence due to the

finite source effect. In particular, plane wave coherency estimates can be obtained through

such simulations. Although loss in coherency is due to source, scattering, and local site

effects, the present methodology captures only the effect of the finite source. This is a

limitation of the method. Nevertheless, in absence of recorded data, the method can be

useful in modelling spatially variable ground motion, in the sense that the simulated

coherencies can be considered as upper bounds of what is expected in the presence of

scattering and local site effects. It needs to be pointed out that further research in incor-

porating these effects in simulated lagged coherencies is underway. Of special interest here

is the development of models to convert lagged coherencies at bedrock to those at the

surface of a random soil layer. In addition, investigation of scattering effects will also be

valuable. In the practical sense, and in absence of strong motion array data in the study

region, the results presented herein could provide a rough approximation of ground motion

coherency, which can be used in (a) random vibration analysis of lifeline structures, or

(b) simulating spatially variable ground motion for time history analysis of such structures.

To facilitate such modelling, a parametric model of lagged incoherency has been pre-

sented. The parametric model follows the same functional form as that of Hindy and

Novak (1980) and the model parameters are calibrated using simulated lagged coherency

functions. Due to the lack of scattering effects in the simulated ground motion, the pre-

sented model should be considered representative of plane wave coherence, as is the case

of the Hindy and Novak (1980) model.

A parametric study investigating the sensitivity of lagged coherency showed that shear

wave velocity, earthquake magnitude, and epicentral distance are all important factors that

contribute to plane wave coherency. Larger shear wave velocity was found to produce

more coherent motion in general. Larger earthquakes were found to produce more inco-

herent motion. In the near-field, the finite source effect seems to be significant, producing

incoherent motion, while in the far-field, plane wave coherency was found to be almost

equal to one up to a frequency of 8 Hz. Because structures in the near-field are more

severely affected by earthquakes, the practical significance of the presented methodology is

justified in the sense that it provides at least a first approximation, and possibly an upper

bound, on lagged coherencies.

Further study on the effects of other relevant parameters such as, geometry of the fault,

location of stations on the hanging or foot wall, directivity of stations with respect to
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rupture propagation, and geometry of the rupture source will be valuable in understanding

their effects in plane wave coherency. For example, randomness in rupture velocity and

rise time on the fault can enrich the frequency content of ground motion (Zerva and

Shinozuka 1991). The effects of fault geometry and size of sub-events could also have

significant effects on ground-motion coherency (see, for example, Ding and Song 2010).

Bilateral rupture propagation and source directivity effects can also influence ground-

motion coherency (see, Spudich 1994). Source asperities may generate highly coherent

energy in a narrow frequency band (Abrahamson et al. 1991a) thereby altering the spectral

nature of lagged coherency functions. These effects, among others, need to be investigated

in detail, preferably using well-recorded, past earthquakes. Furthermore, effects of layered

soil (see, for example, AfifChaouch et al. 2014) and scattering effects need to be

investigated.

Appendix

See Tables 1 and 2.

Table 1 Input parameters for the application of the EGF method

Parameter Simulation of the El-Asnam mainshock

Target event Small event

Ms 7.3 5.6

M0ðdyne:cmÞ 540 9 1024 from Dechamps and
Gaudemer (1981)

1.55 9 1024 estimated from the Bolt and
Herraiz (Bolt and Herraiz 1983) equation:
logM0 ¼ ð17:92� 1:02Þ þ ð1:11� 0:15ÞML

for 3�ML � 6:2

Epicenter
coordinates

36�17 N 01�41E 36�14 N 01�40E

Hypocentral depth
(km)

12 12

Strike angle ð	Þ 220 Calculted by Dechamps
and Gaudemer (1981)

220

Dip angle ð	Þ 60 60

Rake angle ð	Þ 78 78

Fault length (km) 40 5.714 From scaling relations: Eq. (7)

Fault width (km) 15 2.142

Rise time s ðsÞ 1.4 0.2

Coordinates of the reference station point Sð0Þ

Hypocentral
distance
ri0j0 (km)

12.96

Radiation pattern
Rsðhi0 j0 ;ui0 j0

Þ
0.868
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