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Abstract In this paper, the role of shear failure in the seismic behaviour of reinforced

concrete structures has been investigated. In current practice, the effects of shear on beams

and columns are usually neglected in nonlinear analysis, which is carried out based on the

flexural behaviour of each element. In such analyses, only the flexural behaviour of the

member is considered, while the experimental results confirmed the possibility of other

modes failure prior to ultimate flexural capacity. Also, it is now generally accepted that

axial load plays a dominant role in evaluating the seismic behaviour of RC columns.

However columns, especially the exterior ones, can be subjected to variable axial loads

depending on the lateral loads. In this study, a numerical model including rotational

springs, was developed to simulate the effects of shear for beams and columns based on the

material failure mechanism. Moreover, a procedure was recommended to take into account

the effects of the variations of axial load on RC columns. In order to verify the proposed

model for columns, the obtained results of the analytical analysis were compared to

experimental results. The results predicted by the proposed model were in good agreement

with the experimental tests. In addition, to evaluate the performance of the proposed model

at structural level, two RC frames with various failure modes have been investigated and

the results confirmed the ability of the model in predicting the inelastic behaviour of the

frame, which can provide an alternative method in current practice. Moreover, a parametric

analysis were carried out in order to highlight the effect of the variations of axial load on

nonlinear response of reinforced concrete columns.
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1 Introduction

Reinforced concrete (RC) structures may have a high seismic vulnerability during seismic

actions. The inadequate shear capacity of columns can be one of the most severe defi-

ciencies of such structures which make them vulnerable against earthquakes. Experi-

mental, numerical and analytical studies (Aboutaha et al. 1999; Lynn 2001; Sezen 2002;

Ousalem et al. 2002; Sezen and Moehle 2002; Elwood and Moehle 2003; Colajanni et al.

2015; Ousalem et al. 2003; Elwood 2004; Elwood and Moehle 2005; Baradaran Shoraka

2013) as well as post-earthquake reconnaissance confirmed that failure mode of RC col-

umns in existing structures with inadequately and light detailed transverse reinforcement

may be shear failure, and consequently, axial failure. Moreover, experimental studies (Ang

et al. 1989; Aschheim and Moehle 1992; Wong et al. 1993; Ho and Pam 2003; Lee and

Watanabe 2003; Moretti and Tassios 2007; Mullapudi and Ayoub 2010) confirmed that the

shear capacity of columns is significantly dependent on their inelastic flexural deforma-

tions. Several models for shear have been provided to compute the reduction of shear-

capacity of RC members. The ATC (1996) seismic design guideline developed a model for

describing the interaction between shear capacity and displacement ductility demand.

Priestley et al. (1994) provided a shear-capacity model for RC columns by taking into

account the shear strength due to concrete, transverse reinforcement, and axial load. Sezen

and Moehle (2004) proposed a new model for predicting the column shear capacity based

on theoretical formulations and experimental evidence. Based on this model, the shear

capacity contribution due to concrete is related to displacement ductility demand.

According to the material failure criteria of concrete, Park et al. (2006) developed a

theoretical model to estimate the shear capacity of slender RC beams without transverse

reinforcement. Since the normal stresses distribution changes due to the beam inelastic

flexural deformation, the shear capacity was computed as a function of the flexural

deformation. Park et al. (2012) used a similar approach to predict the shear-capacity

degradation and the deformation capacity of slender RC columns subjected to cyclic lateral

loading.

On the other hand, experimental studies conducted by Lynn (2001), Sezen (2002) and

Matchulat (2009) proved that the axial load largely affects the response of members in

terms of the load–deflection and the mode of failure. Also, RC columns with high axial

load ratios result in sudden, brittle failures than RC columns under lower axial load ratios.

Regarding the effects of variations of axial load on the nonlinear behaviour of columns,

Kreger and Linbeck (1986), Abrams (1987), Li et al. (1988), Lynn (2001), Ousalem et al.

(2002) and Sezen (2002) performed tests on RC columns under varying axial load. The

observed response of the RC columns in terms of the strength, deformation capacity and

stiffness was significantly different from those columns subjected to reversals of lateral

load under constant axial load. Moreover, Saadeghvaziri and Foutch (1990) investigated

the effect of vertical ground motion on the dynamic response of Highway Bridge. Vertical

motion induces a change in the axial load in the columns. This analytical study demon-

strated that hysteresis loops of columns and piers are very asymmetric and unstable,

leading to uncoupled variations in the axial load. They found a significant fluctuation in the

strength and stiffness of the columns. For the analysis of the hysteretic response of RC

columns subjected to varying axial load, Taucer et al. (1991) proposed a new fiber beam-

column finite element along with a consistent nonlinear solution algorithm. ElMandooh

Galal and Ghobarah (2003) proposed an inelastic biaxial model based on plasticity theory.
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This quadri-linear degrading model considers the effect of variations of axial load on

lateral deformation.

Some model have been proposed in literature to obtain the nonlinear response of RC

columns during shear and axial load failure. Elwood and Moehle (2003) provided a shear-

friction model based on the observation from experimental tests to calculate the drift ratio

at axial failure of a shear-damaged column. Elwood (2004) proposed a uniaxial material

model that incorporates the failure surfaces and the subsequent capacity degradation.

Moharrami et al. (2015) used nonlinear truss models to capture nonlinear response of

shear-dominated RC columns subjected to cyclic loading. The concrete constitutive

equations were modified to account for the contribution of the aggregate interlock to the

shear strength.

To estimate the nonlinear behavior of a RC column subjected to varying axial load, the

existing models in literature are generally not practical and simple enough to be adopted in

commercial nonlinear analysis softwares. Therefore, providing a simplified but accurate

model is required. Also, the model should consider the effect of variations of axial load to

capture the realistic and complete response of columns as well as structures.

In this study, in order to consider the shear effect in members, a model was suggested,

where the nonlinear behaviour of members was simulated by rotational springs. To

evaluate the properties of the spring, the seismic shear behavior was computed based on

material failure mechanism. For this purpose, shear effect was implemented in the

flexural moment–rotation curve of the member. Moreover, a procedure was proposed for

considering the effects of axial failure mechanism and variations of applied axial load to

columns.

2 Numerical model

In order to evaluate the nonlinear behaviour of RC structures using a lumped plasticity

model, the calculation of plastic hinge properties is needed. Considering only the flexural

nonlinear behaviour of structural components with common assumption that shear

behaviour of members can be simplified and neglected in nonlinear analyses, misleading

results in terms of the prediction of the performance of structures can be obtained (Guner

and Vecchio 2011). Therefore, flexural and shear inelastic behaviours of the structural

components should be considered in calculation of properties of plastic hinges. To

simulate this behaviour, a numerical model with rotational springs in beam and column

was proposed as shown Fig. 1. L is the distance of critical section to the point of contra-

flexure. Lp is the plastic hinge length, evaluated according to Paulay and Priestley

(1992). The other dimensions are described in figure. It should be noted that in an

accurate numerical model, consideration of nonlinearities in the joint panel is required.

However, some past studies (Niroomandi et al. 2010, 2014; Shayanfar and Akbarzadeh

2016; Shayanfar et al. 2016) indicated that for RC structures with adequate transverse

reinforcements in the joint panel, the shear demand induced by seismic actions is sig-

nificantly lower than the shear capacity. Therefore, diagonal cracking in the joint panel

does not occur.

In practical applications, the numerical model can be useful to analyze members as well

as structure using commercial software programs. Therefore, the determination of the

accurate properties of these springs is necessary.
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3 Flexural and shear effects in beam and column

Different failure modes in beams and columns can be detected comparing shear capacity

and shear demand. According to the proposed model, these failures are detected by using

rotational spring. In order to calculate the properties of the rotational springs, moment–

curvature analysis of section is required based on the principles of strain compatibility and

equilibrium and material constitutive relations for concrete and steel (see Fig. 2). Here, ec
and c define the value of concrete strain at the extreme compression fiber and the value of

neutral axis depth, respectively. The other parameters are described in figure. In a RC

member confined by transverse reinforcements, the confinement effect should be consid-

ered in the stress–strain characteristics of concrete.

In the present study, the Mander et al. (1988)’s stress–strain model was used for

unconfined and confined concrete, adopted for concrete of core and cover of section,

Lp /2Lp /2

Lp/2
Rotational spring

hb

hc

L

L

Rigid elements

Fig. 1 Plastic hinge locations at the RC members for a typical exterior joint
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Fig. 2 Layer-by layer sectional analysis of a RC section: a cross-section, b normal strain distribution, c
normal stress distribution, d shear stress capacity of concrete controlled by compression, e shear stress
capacity of concrete controlled by tensile and f forces
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respectively. The elastic–plastic model was considered for steel bars. Once the moment–

curvature curve of section is formulated, it is can be converted into moment–rotation curve

considering the curvature distribution along the member length. However, the shear effect

in member should be considered in the calculation of moment–rotation curve, following

the iterative procedure given below:

1. Assume a value of concrete strain, ec, at the extreme compression fiber.

2. Assume a value of neutral axis depth, c.

3. Compute the total compressive force in concrete, Ccon, and the compressive and

tensile forces, Fsi, in longitudinal reinforcements as follows

Ccon ¼
X

fcðxÞb ts ð1Þ

Fsi ¼
X

fsiAsi ð2Þ

where ts is the strip thickness in the cross section; b is the member width; Asi is the

area of longitudinal reinforcements at the i-th re-bar layer; x is the distance from

the centroidal axis.

4. Check the force equilibrium [Eq. (3)]. If Cc ? Fsi is closed to the applied axial

force, then the assumed value of c is correct and go to step 5. Otherwise assume a

new value of c and go to step 2.

Cc þ Fsi � N ¼ 0 ð3Þ

5. Compute the bending moment, Mf, as follows

Mf ¼
X

fcðxÞbtsxi þ
X

Fsi

h

2
� di

� �
ð4Þ

6. Calculate the equivalent shear moment, Ms, corresponding to the normal stress, fc
(x), as follows

Ms ¼ Vn � L ð5Þ

In Eq. (5), L is the distance of critical section to the point of contra-flexure; Vn is

the shear strength of the member taking into account the contributions of concrete

and transverse reinforcements, calculated by Eq. (6) as follows

Vn ¼
X

v xð Þbts þ
Avfyvd

s
ð6Þ

where Av is the total transverse reinforcement area; fyv defines the yielding strength

of the transverse reinforcements; s is centre to centre spacing of transverse rein-

forcement; m(x) is the concrete shear stress acting on the cross section corre-

sponding to the normal stress fc(x) that can be computed using the approach

developed by Park et al. (2006, 2012). It is well known that a RC member is

subjected to opposite sign moments at its ends during seismic loads. It can induce
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the tension and compression zones in the cross-section. Therefore, as shown in

Fig. 3, an element of the beam or column section is subjected to the shear stress

and the compressive normal stress. According to resulted principal compression

and tension stresses, crushing or diagonal cracking of the concrete may appear in

the member (if flexural capacity is more than shear capacity). Based on the

Rankine’s failure criteria (Chen 1982), the failure of materials can occur when the

principal compression and tension stresses induced by the combined stresses

reaches the strength of materials. Therefore, by taking into account the interaction

between the principal compression and tension stresses and the compressive nor-

mal stress, based on Mohr’s circle approach, the shear capacity in an element of the

section can be written as

vc xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0cc f 0cc � fc xð Þ
� �q

failure controlled by compression ð7Þ

vc xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0cc f 0cc � fc xð Þ
� �q

failure controlled by tension ð8Þ

vc xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0cc f 0cc � fc xð Þ
� �q

ð9Þ

where f0t denote the tensile strength of concrete which can be taken into account as

(MacGregor et al. 1960)

f 0t ¼ 0:292
ffiffiffiffi
f 0c

p
ð10Þ

As a result, the total shear capacity of a RC member can be determined in terms

of the sum of the shear capacities due to the concrete contribution,
P

v xð Þ, and

Element A
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σ
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Fig. 3 Rankine’s failure criteria (Chen 1982) for concrete
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the transverse reinforcement contribution [Eq. (6)]. It should be noted that if

compressive strain in concrete is higher than strain at the peak compressive

strength of unconfined and confined concrete, vc (x) is considered equal to zero.

In other words, at a compressive fiber where the concrete stress reaches the

compressive strength of the concrete, the contribution of the concrete can be

neglected due to the fact that crushing occurs in the concrete and principle

compressive stress reaches the failure surface (see Fig. 3). Therefore, the con-

crete in the compressive fiber cannot develop any shear capacity (Park et al.

2006). According to Willams and Sexsmith (1995) and Park et al. (2012), the

deformation capacity was taken into account as the deformation corresponding to

80% of the strength in the intersection of the shear demand and shear capacity

curves. In current study, it was assumed that (1) the compression zone of the

intact concrete provides the shear capacity of beam or column (to be conser-

vative and simple); and (2) the effect of aggregate interlock and dowel action is

ignored (nearly correct if the longitudinal reinforcement has yielded due to the

fact that the tensile zone in the cross-section of RC columns is significantly

damaged by flexural cracking). Therefore, the shear capacity of intact concrete in

the compression zone is severely greater than the contributions of the dowel

action and aggregate interlock (Park et al. 2006, 2012).

7. Determine the moment carrying capacity as follows

M ¼ min Mb;Msð Þ ð11Þ

8. Calculate the rotation corresponding to M as follows:

hi ¼
uiLeff

2
for es � ey ð12Þ

hi ¼ hy þ ui � uy

� �
Lp for es � ey ð13Þ

in which (Paulay and Priestley 1992)

ui ¼
ec
c

ð14Þ

Leff ¼ Lþ 0:022fsdb fs � fy ð15Þ

Lp ¼ kLþ 0:022fydb � 0:044fydb ð16Þ

k ¼ 0:2
fsu

fy

� �
� 1� 0:08 ð17Þ

where fsu is the ultimate stress of the steel.

9. Repeat steps 1–8 for a range of ec. Maximum value of ec can be calculated based on
ultimate strain in the extreme compression fiber of concrete core,

10. Plot moment–rotation curve.
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Following the above steps, the moment–rotation characteristics of rotational springs can

be determined. Figure 4 shows interaction between shear and flexural behaviours using the

developed shear model. As can be seen, failure mode of RC beams and columns can be

considered in three different categories including flexural, shear–flexural and shear failure

which are detected by comparing the values of shear and flexural moments.

In this study, the slop of moment–curvature curve prior to reaching yield moment is

used as the effective flexural stiffness in nonlinear analysis. It is described by Eq. (18):

EcIeff ¼
My

uy

ð18Þ

In Eq. (18), My defines the yield moment at critical section. Ec is the modulus of

elasticity of concrete.

In current paper, the evaluation of reinforcement buckling limit state was taken into account

following the methodologies of the recommended by Berry and Eberhard (2005). According to

the mentioned model, the plastic rotation at the onset of buckling can be computed as:

hp bb ¼ C0 1þ C1qeff
� �

1þ C2

N

Agf 0c

� ��1

1þ C3

L

h2
þ C4

fydb

h2

� �
ð19Þ

in which
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Fig. 4 Interaction between shear and flexural capacities of RC members with a flexural behaviour; b shear
behaviour; c shear–flexural behaviour
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qeff ¼
fyv

fc
qs ð20Þ

where C0, C1, C2, C3 and C4 were taken into account as 0.019, 1.65, 1.797, 0.012 and

0.072, respectively; qs denotes the volumetric ratio of the transverse reinforcements.

Finally, rotation at the onset of bar buckling can be obtained by:

hbb ¼ 1:07
ey
h
Lþ hp bb ð21Þ

As a result, ultimate rotation of a RC member can be controlled by using the afore-

mentioned criteria. It should be noted that Berry and Eberhard (2005) adopted the Priestley

et al. (1996)’s model to approximately estimate the yield curvature (uy = 2.14 9 ey/h).
Therefore, in Eq. (21), this model was considered to determine the yield rotation. More-

over, the study conducted by Niroomandi et al. (2015) proved the reliability of the method

recommended by Berry and Eberhard (2005).

It is noteworthy that if shear failure occurs in columns, axial failure mechanism

becomes the critical parameter based on the studies conducted by Lynn (2001), Sezen

(2002), Ousalem et al. (2002), Elwood (2004), Elwood and Moehle (2005) and Baradaran

Shoraka (2013), such that columns axial capacity will lose. The relationship between

applied axial load on column and the drift at axial failure (Da/L) can be determined as

(Elwood and Moehle 2005);

Da

L
¼ 4

100

1þ tan2 65�

tan 65� þ N s
AsvFyvdc tan 65�

	 
 ð22Þ

where 65� and dc represent the assumed angle of the shear failure plane and the depth of

the column core, respectively. Therefore, for a given axial load, the column horizontal drift

or displacement in axial failure can be derived. On the other hand, after detection of axial

failure, according to the extracted results of tests conducted by Lynn (2001), Sezen (2002),

Ousalem et al. (2002) and Elwood and Moehle (2003) also the reported results from

analytical study by Elwood (2004), an increase in lateral shear deformations can lead to an

increase in axial deformations and a reduction in axial load capacity. Therefore, shear–

axial interaction should be considered. For this purpose, the model provided by Elwood

(2004) is not simplified enough to be used in existing commercial softwares. This model

needs a special purpose program for simulating shear–axial interaction. In this paper, a

simplified analytical procedure was provided to take into account shear–axial interaction.

Figure 5 shows interaction between shear moment, rotation and axial load for shear-

damaged columns with axial failure (type 1) and with no axial failure (type 2). Here, hb and
hc denote the column rotation at 80% of maximum shear moment, Mi. As can be seen in

Fig. 5, for the column type 1, the axial strength demand corresponding to column rotation,

hb, (point B) is higher than the axial capacity of the column. In this case, ha (point A) is
assumed as the ultimate rotation corresponding to the formation of axial mechanism at

30% of maximum shear moment. Using this procedure, not only the effect of the column

axial failure was considered but the column post peak behaviour was also modified.

However, for column type 2, when the column rotation reaches point C, the axial capacity

corresponding to the column rotation, hc, is higher than the axial strength demand of the

column. In this case, the no axial mechanism would appeared in the column.
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4 Effect of variations of applied axial load

This section describes the effect of variations of axial load on nonlinear behaviour of

columns in RC frame. It is now generally accepted that axial load plays a dominant role in

evaluating the seismic behaviour of the column. However columns, especially the exterior

ones, can be subjected to variable axial loads due to the lateral loads. Under seismic

loading, lateral inertial forces generate overturning moments. These moments are con-

verted into axial load in the column, tensile on one side of the frame and compressive on

the opposite. Properties of a RC column, namely crack stresses, instantaneous rigidities,

and yield stresses due to fluctuations of axial loads during seismic actions. For example, for

a RC column at the tensile side, concrete cracking occurs earlier and the column strengths

and rigidities may decrease. Therefore, when axial compression reduces, columns behave

much softer than columns under constant axial load levels. In these columns, axial com-

pression decreases and the neutral axis location is translated towards the extreme com-

pressive fibre of section. Subsequently, the effective area of the cracked section decreases

and resisting flexural demand is derived with less material. On the other hand, when axial

compression increase, the neutral axis location is translated towards the extreme tensile

fibre of section. The relation between the axial load and the column shear force or the

column moment can be repressed as:

N ¼ Ng � KVn ¼ Ng � K
M

L
ð23Þ

where K is the axial load factor. According to above discussion, it is clear that axial load is

one of the most important parameters in the calculation of moment–rotation of columns.

Therefore, increase or decrease of axial load during seismic action can significantly

influence the nonlinear behaviour of columns. In order to calculate the axial load factor, a
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preliminary pushover analysis of the RC frame system is required (computing the ratio of

the applied axial load on column due to lateral loads to the column shear force). To

determine the linear relationship between axial load and inter-storey shear of column, a

simplify procedure was developed as given below:

1. Perform static nonlinear analysis for a predefined distribution of horizontal loads.

2. Determine the relationship between column axial load and column shear force for each

step loading.

3. Plot column axial load-column shear force.

4. Compute a linear regression analysis of column axial load on obtained column shear

force from pervious step.

5. Calculate proportion coefficient value of K.

Using this parameter, total applied axial load on, N, due to an induced axial force in

column, DN = K 9 Vc, and gravity load can be derived.

Traditionally, this effect can be simulated by defining axial-moment hinge at ends of

columns. Axial-moment hinge can be defined by axial load–moment interaction diagram.

Moreover, for each axial load level, moment–rotation relation is determined to define

complete inelastic behaviour of column. This method works well only for columns with

flexural failure since the shear capacity of column is more than flexural capacity in such

cases. However, for columns with shear or flexural–shear behaviour, we need to modify

Eq. (3), since the neutral axis location is varied by fluctuating axial loads during lateral

loading. According to Eq. (23), for determining shear and flexural capacities considering

the effects of variations of axial load, the natural axis can be calculated by Eqs. (24) and

(25), respectively.

X
fc xð Þbwts 1� K

L
xi

� �
þ
X

Fsi 1� K

L

h

2
� di

� �� �
¼ Ng for Mb �Ms ð24Þ

X
fcðxÞbwts þ

X
Fsi � K

X
v xð Þbwts � K

Avfyvd

s
¼ Ng for Mb [Ms ð25Þ

As can be seen, for axial load factor equal to zero (K = 0), results derived from

Eqs. (24) and (25) and Eq. (3) are quite identical. Based on mentioned equations, the

neutral axis is depended on value of axial load generated by seismic actions. Therefore,

moment–rotation of a RC column under varying axial load can be calculated by the

mentioned procedure in the previous section and only the neutral axis should be deter-

mined using Eqs. (24) and (25). To clarify the proposed procedure for taking into account

the effects of variations of axial load, the interaction between flexural, shear and axial

behaviour for a value of concrete strain ec at the extreme compression fiber of section was

illustrated in Fig. 6. As can be seen, by plotting flexural and shear moment versus axial

load diagram, value of axial load corresponding to concrete strain ec,i can be computed.

Moreover, to detect the failure mode of column, the flexural and shear behaviours were

separately considered. Therefore, using this procedure, the axial load corresponding to

each value of concrete strain at the extreme compression fiber of section, ec,i, can be

derived such that the effects of variations of axial load were considered. For columns with

shear or flexural behaviour, the neutral axis and consequently, shear or flexural moment

corresponding to this point can be calculated using Eqs. (24) and (25) respectively. In

order to define the response of column in term of ductility, this point should be converted

to moment–curvature diagram. This diagram can be plotted through the determination of
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curvature corresponding to moment Mi for applied axial load Ni on column. However,

according to proposed model, the nonlinear behaviour of columns were simulated by

rotational springs (see Fig. 1). Therefore, to obtain properties of these springs, the

moment–curvature diagram should be transformed to moment–rotation diagram. For this

purpose, Eqs. (24) and (25) can be adopted for each value of curvature corresponding to

the concrete strain at the extreme compression fiber of section. It should be noted that for

determining the different types of the curvature distribution, namely the elastic and

inelastic curvature distribution, we need to calculate the yield curvature corresponding to

the yield strain, ey, in tensile reinforcements. It can be derived taking into account inter-

action between the yield curvature and axial load that is computed through section analysis

for various applied axial load on column. Therefore, for each value Ni, the yield curvature

uy can be obtained (see Fig. 6). It should be noted that using Eqs. (24) and (25), the neutral

axis and consequently, strain in tensile reinforcements at any level of axial load, is

obtained. Therefore, comparing obtained strain with ey, the elastic and inelastic curvature

distribution can be detected. As a result, using this procedure, the moment–curvature

diagram is converted to moment–rotation relation that can be assigned to rotational spring

of column. In order to assess the effect of value K on the nonlinear response of RC

columns, a parametric analysis was carried out on the cantilever column with 1400 mm

height and 450 9 450 mm2 cross-sectional dimensions. The column longitudinal rein-

forcement ratio was taken into account as 2.55%. The transverse reinforcements consisted

of 6-mm placed at 300 mm. A constant axial load, Ng, was taken into account as 0.2 f0c Ag.

The compressive strength of concrete and the yield stress of steel bars were assumed 20

and 420 MPa, respectively.
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Fig. 6 Moment–rotation relation of RC column under varying axial load
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In Fig. 7, the effects of variations of axial load on the flexural and shear capacities of the

aforementioned column was examined. As can be observed in Fig. 7a, the initial stiffness

of the column is a function of the axial load factor so that it can be positively affected

increasing K from -6 to 6. As a result, taking into account only the gravity load value in

the column, Ng, the initial stiffness is estimated as misleading. It is well known that the

flexural capacity of a RC column is improved increasing the level of axial load up to the

balanced point (tension-controlled column) and a ductile failure for column part can be

expected. On the contrary, after this point, the flexural moment is negatively affected by

the axial load (compression-controlled column) and column failure mode changes to an

undesirable and brittle failure mode.

Therefore, as can be seen in Fig. 7a, increasing K from -6 to 6, initially, the maximum

flexural capacity was enhanced to the balanced point (for the aforementioned column, the

axial load corresponding to the balanced point is approximately 0.45 f0c Ag), but, at higher

axial load levels, the column flexural capacity is negatively affected increasing the axial

load factor. Therefore, considering K = 0, misleading results may be computed by
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nonlinear analysis. Figure 7b compares the shear capacity of the mentioned column under

various axial load factors. As can be seen, neglecting the effect of the variations of axial

load, the column shear capacity can be conservative for K[ 0, while the same for K\ 0

can be quite unsafe and non-conservative.

In Fig. 8, the lateral load versus displacement response of the mentioned column in

various axial load factors was evaluated. Since the lateral force versus displacement

response of RC columns with shear or flexural–shear behaviour is crucially dependent on

the shear demand as well as the shear capacity, the axial load variations can influence

nonlinear behaviour of RC columns considering the effect of axial load variations on

flexural and shear capacities. As can be seen in Fig. 8, by considering K = 0, the response

of the column in terms of initial stiffness, strength and displacement ductility leads to

misleading prediction.

In Fig. 9, the effects of the axial force variations on curvature ductility factor (ui/uy)

and flexural stiffness (Ie/Ig) were highlighted. As can be seen, as expected, increasing the

curvature ductility factor, flexural stiffness reduces due to increasing flexural cracking. It

should be noted that the curvature ductility factor of a RC column is inversely pro-

portional to axial load factor K. Since the neutral axis is a function of parameter

K [Eqs. (24) and (25)], considering a value of the normal strain, ec, at the extreme

compression fiber, an increase of K induced an increase of axial load and the neutral axis

which can reduce curvature ductility. According to above discussion, neglecting the

effect of the variations of axial load, the assessment of the nonlinear behaviour of a RC

column leads to misleading predictions. As a results, Figs. 7, 8 and 9 confirm the

importance of taking into account the effect of the variations of axial load applied on

column in nonlinear analyses.

5 Verification of proposed flexural and shear model at sub-assembly level

This section represents the validation of the proposed procedure for determining properties

of column rotational springs. For this purpose, four columns which tested by Gill et al.

(1979), Lynn (2001) and Sezen (2002) were selected.
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5.1 Tests by Gill et al. (1979)

Gill et al. (1979) performed tests on four RC columns with various axial load. For test unit

1, test unit 2, test unit 3 and test unit 4, the concrete strength was reported as 23.1, 41.4,

21.4 and 23.5 MPa, respectively. The yield strength of 10, 12 and 24 mm diameter bars

were measured as 297, 294 and 375 MPa, respectively. For test unit 1, test unit 2, test unit

3 and test unit 4, the applied axial stress on the column was reported as 26, 21, 42 and 60%

of concrete compressive strength, respectively. Also, failure mode for columns tested by

Gill et al. (1979) was reported as flexural failure. Complete details of tested specimens are

given by Gill et al. (1979). Figure 10 describes the comparison of the load–displacement

curves obtained from analytical analyses and reported from the experiments (Gill et al.

1979). As can be seen, very good agreement between experimental and analytical curves

confirms the reliability of the proposed procedure for determining properties rotational

springs.

5.2 Tests by Lynn (2001)

Lynn (2001) conducted tests on four RC columns with various axial load. For specimens

2SLH18, 3CLH18, 3CMD12 and 3SMD12, the concrete strength was reported as 33.1,

26.9, 27.6 and 25.5 MPa, respectively. The yield strength of 25.4 and 32.3 mm diameter

reinforcements was reported as 331 MPa and the same for 9.5 mm diameter reinforce-

ments was measured as 400 MPa. For specimens 2SLH18, 3CLH18, 3CMD12 and

3SMD12, the applied axial stress on the column was reported as 7, 9, 26 and 28% of

concrete compressive strength, respectively. Also, failure mode for columns tested by

Lynn (2001) was reported as shear failure. Complete details of tested specimens are given

by Lynn (2001). In Fig. 11, the load–displacement curves obtained from analytical anal-

yses and reported from the experiments (Lynn 2001) were compared. For specimens

2SLH18, 3CLH18, it can be seen that the analytical and experimental results are in a

reasonably good agreement. Moreover, the ultimate displacement corresponding to 80% of

the peak load occurred prior to the axial failure limit. As a result, the no axial mechanism

appeared in the columns. For specimens 3CMD12 and 3SMD12, it can be seen that the

experimental results were predicted by the proposed procedure with reasonable accurate.

Moreover, the ultimate displacement corresponding to 80% of the peak load exceeded the
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axial failure limit. In this case, not only the effect of the column axial failure was con-

sidered but the column post peak behaviour was also modified. As a result, with regard to

obtained results, in order to be conservative, the axial failure limit proposed by Elwood and

Moehle (2005) can be useful.

5.3 Tests by Sezen (2002)

Sezen (2002) conducted tests on RC columns under constant and varying axial load. The

chosen specimen is Specimen-3, which was tested under varying axial load. The concrete

compressive strength was measured as 20 Mpa. The yield strengths of the longitudinal bars

and transverse reinforcements in the tested column were reported as 441 and 469 MPa,

respectively. The initial axial load on column was reported as 25% of its axial load

carrying capacity and for simulating the varying axial load in a medium-rise building, the

axial load factor, K, was taken as 5.83 and -4.67 for positive and negative directions,

respectively. Failure mode for column tested by Sezen (2002) was reported as shear failure.

Complete details of tested specimen are given by Sezen (2002). For the aforementioned

column, two types of analytical analysis were carried out, one taking into account the

effect of axial load variations and another neglecting this effect. Figure 12 compares the
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load–displacement curves obtained from analytical analysis and reported from the

experiment (Sezen 2002).

As can be seen, good agreement between experimental and numerical curves confirms

the reliability of the proposed procedure for determining response of RC columns

including shear behaviour under varying axial loading histories. On the other hand,

neglecting the effect of the axial load variations, for the both positive and negative

directions, a higher column strength was predicted than the analytical analysis taking into

account this effect. Moreover, in case of K = 0, the response of RC column in term of

ductility was on conservative side. As a result, the analytical analysis neglecting the effect

of the axial load variations, misleading results in terms of the prediction of the seismic

performance of a RC column can be obtained.

5.4 Tests by Abrams (1987)

Abrams (1987) conducted tests on four RC columns under two different axial load paths.

For the specimens C4 and C8, the concrete strength was reported as 33.4 and 45.9 MPa,

respectively. The yield strength of the longitudinal reinforcements was reported as

423 MPa. For the specimen C4, axial load was considered to vary in proportion to flexural

moment. In order to use Eq. (23), in current study, the proportionality coefficient was

converted to the axial load factor K depending on the lateral load. Therefore, K was taken

into account equal to 2.63 9 L (L is the column height in m). Moreover, an initial axial

load equal to 0.11 9 f0c 9 Ag was applied to the test specimen. For the specimen C8, the

axial load was considered to change linearly with lateral displacement up to a maximum or

minimum value corresponding to twice the yield displacement (2Dy). At this stage, the

proportionality coefficient, K0, was taken into account to equal to 13.73 kN/mm. In this

study, in order to consider the effects of the variations of axial load, the natural axis can be

computed by Eqs. (26) and (27), respectively.

X
fc xð Þbwts þ

X
Fsi � K 0 �

uiL
2
eff

3

" #
¼ Ng for Di �Dy ð26Þ

X
fc xð Þbwts þ

X
Fsi � K 0 �

uyL
2

3
þ ui � uy

� �
Lp Leff � 0:5Lp
� �� �

¼ Ng

for Dy �Di � 2Dy

ð27Þ

where Di is the lateral displacement. For Di[ 2Dy, the axial load was considered to be

constant corresponding to 575 and 45 kN for push and pull directions, respectively.

Therefore, the natural axis can be determined using Eq. (3). For the specimen C8, an initial

axial load equal to 0.1 9 f0c 9 Ag was applied to the test specimen. The failure mode for

columns tested by Abrams (1987) was reported as flexural failure. Complete details of

tested specimens are given by Abrams (1987). Figure 13 describes the comparison of the

load–displacement curves obtained from analytical analyses and reported from the

experiments (Abrams 1987). As can be seen, for the specimen C4, the analytical estimation

of the load–displacement response is in reasonably good agreement with the experimental

counterpart. For the specimen C8, although the axial load path considered in the analytical

model match successfully with the axial load path followed in the test, the proposed

analytical procedure slightly underestimated the column flexural strength and overesti-

mated the displacement ductility capacity of the column. It is noteworthy that the specimen

C8 was chosen as an example for the worst estimation.
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6 Validation of the proposed approach at structural level

In order to assess the performance of the proposed method at structural level, two shear and

flexure-critical reinforced concrete frames tested by Duong et al. (2007) and Vecchio and

Emara (1992) were chosen and the results predicted by the proposed model were compared

with the one captured from the experiments. The failure mode of the frame tested by

Duong et al. (2007) was reported as shear failure. In this case, the pushover analysis was

carried out in various cases in order to assess the importance of considering the effects of

shear in RC members. On the other hand, in the flexure-critical reinforced concrete frame

tested by Vecchio and Emara (1992), the ability of the proposed method to predict the

flexural behaviour of the members was investigated.

6.1 Test by Duong et al. (2007)

A single-span, two-storey RC frame with a fixed base condition was tested by Duong et al.

(2007). Figure 14 shows the details of the frame and the nonlinear characteristics of the

plastic hinges defined by the proposed procedure. The test frame was subjected to a lateral
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displacement to the second storey beam. The concrete compressive strength was measured

as 42.9 MPa. Complete details are given by Duong et al. (2007). In order to accurately

assess the proposed procedure with the experiment results, two sets of settings for the

rotational spring of the RC members were used in nonlinear analysis, (1) with no simu-

lating the effects of shear with the common assumption that shear failure of the members

can be neglected in the analysis, (2) simulating the shear effects adopting the procedure

proposed in the current study. The comparison of numerical and experimental load–dis-

placement curves are given in Fig. 15. A good agreement can be observed between the

load–displacement curves derived from the numerical analysis and reported from the test

when the shear effect was simulated.

Moreover, as can be seen in Fig. 15, the response of the frame both in terms of strength

and ductility is inaccurately predicted when the shear effect is not simulated. Reported

failure modes, namely shear failure of the beams and flexural cracks at the column, can be

successfully predicted considering the shear effects (see Fig. 14).

6.2 Test by Vecchio and Emara (1992)

A single-span, two-storey RC frame with a fixed base condition was tested by Vecchio and

Emara (1992). The test frame was subjected to a lateral displacement to the second storey

beam. The concrete compressive strength was reported as 30 Mpa. Figure 16 shows the

details of the frame and the nonlinear characteristics of the plastic hinges defined by the

proposed procedure. Even though some shear cracks were observed in the members, the

frame predominantly failed in flexural. Complete details are given by Vecchio and Emara

(1992). To accurately investigate the proposed pushover procedure with the experiment

results, two sets of settings for the plastic hinge of the RC members were used in pushover

analysis, (1) using the values recommended by the FEMA-356 guidelines (ASCE 2000) to

define plastic hinges, (2) using the proposed procedure to define plastic hinges. In Fig. 17,

the comparison of experimental and numerical load–displacement curves is shown. Good

agreement can be observed between the load–displacement curves extracted from the

numerical analysis and experimental results when the plastic hinge were defined by the

proposed procedure.

Moreover, the typical failures observed in the experiment, namely flexural hinges in

beams and columns can be successfully replicated in the nonlinear analysis (see Fig. 16).

On the contrary, using the values recommended by the FEMA-356 guidelines (ASCE
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2000) for defining plastic hinge, the pushover analysis provides a conservative estimate of

less than half of the displacement capacity reported from test.

7 Summary and conclusions

In current study, in order to simulate RC members taking into account flexural and shear

behaviours in a numerical analysis a model including rotational springs was developed. In

order to compute the nonlinear properties of RC members, moment–curvature analysis of

section can be used based on the principles of strain compatibility and equilibrium and

material constitutive relations for concrete and steel. Moreover, the effect of the buckling

of longitudinal bars was considered in the model through controlling the ultimate rotation.

According to the material failure criteria of concrete, in the compression zone of the RC

cross-section, the shear capacity contribution due to concrete was determined as a function

of the inelastic deformation. Moreover, the relationship between applied axial load on
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column and the drift at axial failure was considered in the shear model. Considering

interaction between shear and flexural behaviours, failure mode of RC beams and columns

including flexural, shear–flexural and shear failure can be detected through the comparison

of the values of shear and flexural moment. During earthquakes, columns, especially the

exterior ones, can be subjected to variable axial loads. In order to take into account this

effect, a simplified methodology was developed so that the applied axial load on the

column was varied around the gravity load value proportionally to the lateral load acting

on the column. The proposed analytical model was applied to experiments available in the

literature at sub-assembly level under cyclic loading as well as at structural level under

lateral loading. The result proved that the model is able to estimate the nonlinear behaviour

of the RC members under constant or varying axial load with reasonable precision. The

developed model is also suitable enough to be adopted in the software programs such as

SAP2000 (2008).

A parametric analysis were also carried out in order to highlight the effect of the

variations of axial load on nonlinear response of RC columns. The results showed that

ignoring the axial load variation effects, the column response obtained from analytical

analysis leads to misleading results in terms of predicting flexural and shear capacities,

strength, deformation capacity and stiffness.
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