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Abstract This article introduces an analytical model to compute the monotonic force–

displacement response of in-plane loaded unreinforced brick masonry walls accounting for

walls failing in shear or flexure. The masonry wall is modelled as elastic in compression

with zero tensile strength using a Timoshenko beam element. Its cross-section properties

(moment of inertia and area) are continuously updated to capture the non-linearity that

results from flexural and shear cracking. For this purpose, diagonal cracking of shear

critical walls is represented by one Critical Diagonal Crack. The ultimate drift capacity of

the wall is determined based on an approach evaluating a plastic zone at the wall toe.

Validation against results of cyclic full-scale tests of unreinforced masonry walls made

with vertically perforated clay units shows that the presented formulation is capable of

accurately predicting the effective stiffness, the maximum strength and the ultimate drift

capacity of the wall. It outperforms current empirical code equations with regard to

stiffness and ultimate drift capacity estimates and yields similar results concerning strength

prediction.

Keywords Unreinforced brick masonry wall � Shear failure � Flexural failure � Analytical

model � Force–displacement behaviour

List of symbols

Forces
M Global bending moment (Nm)

Me Bending moment at which decompression in overall cross section occurs (Nm)
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Me,i Bending moment at which decompression in cross section part i (for i [ {1, 2})

occurs (Nm)

Mi Bending moment in cross section part i (for i e {1, 2}) (Nm)

N Global normal force (N)

Ni Normal force in cross section part i (for i e {1, 2}) (N)

N1,2,3 Normal forces for calculation of residual strength (N)

V Global shear force (N)

Vcr Shear force at which diagonal crack formation starts (N)

VCP Shear force triggering failure in flexural walls (N)

VP Peak shear resistance (N)

VR Residual strength (N)

V1,2,3 Shear forces for calculation of residual strength (N)

Stresses
r0 Normal force divided by full cross sectional area of the wall (N/m2)

rM Normal stresses due to global moment (N/m2)

rN Normal stresses due to normal force (N/m2)

rT Normal stresses due to torque moment (N/m2)

rxx Normal stresses in a cross section (N/m2)

sxy Shear stresses in a cross section (N/m2)

Displacements
u Horizontal displacement (m)

ufl Horizontal displacements due to flexure (m)

ush Horizontal displacements due to shear (m)

w Axial displacement (m)

d Horizontal drift (-)

dP Horizontal drift at peak shear resistance (-)

dult Ultimate drift (-)

h Rotation (rad)

hult Rotation at ultimate drift (rad)

Strains
eu Normal strain masonry is able to sustain at the wall toe (-)

exx Normal strains in cross section (-)

e2 Normal strain in crushed zone dependent on axial loading (-)

v Curvature of a cross section (m-1)

vcr Curvature on bottom crushed zone in shear walls (m-1)

v1,2 Curvature at ultimate failure in 1st and 2nd bed joint respectively in flexure

dominated walls (m-1)

Material parameters
E Modulus of elasticity (N/m2)

G Shear modulus (N/m2)

fB,c Compressive strength of brick (N/m2)

fB,t Tensile strength of brick (N/m2)

fu Compressive strength of masonry (N/m2)

l Local coefficient of friction (-)
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l Global coefficient of friction (-)

c Local cohesion (N/m2)

c Global cohesion (N/m2)

Geometrical parameters
A Cross sectional area of overall cross section (m2)

H Height of wall (m)

H0 Shear span of wall (m)

Hcrit Height where the diagonal crack is presumed to commence (m)

HM Height where normal stresses due to moment at diagonal crack turn negative

(tensile stresses) (m)

hB Height of brick (m)

hcr Height of crushed zone at wall toe (m)

hd Height along which decompression occurs (m)

I Moment of inertia of overall cross section (m4)

Ieig,i Moment of inertia corresponding to centre of gravity of cross section part i (for

i e {1, 2}) (m4)

Ieig Sum of moments of inertia corresponding to respective centres of gravities of parts

of cross section (m4)

Ist Sum of moments of inertia corresponding to parallel axis theorem of parts of cross

section (m4)

L Length of wall (m)

Lc Compressed length of overall cross section (m)

Lc,i Compressed length of cross section part i (for i e {1, 2}) (m)

Lc,v Virtual compressed length (m)

Li Length of wall part i (for i e {1, 2}) (m)

Li,v Auxiliary length for computation of shear stress distribution in section part i (for

i e {1, 2}) (m)

LP Length of plastic normal stress distribution at toe crushing (m)

lB Length of brick (m)

lcr Length of crushed zone at wall toe (m)

lcor,i Length of corner i (for i e {1, 2}) (m)

T Thickness of wall (m)

yCDC Horizontal distance from wall edge to CDC (m)

Further parameters
x Location variable along wall height (m)

y Location variable along wall length (m)

y* Auxiliary location variable along wall length (m)

Dl Discrete step along wall height (m)

c Deformation constraint factor (-)

1 Introduction

1.1 Current design practice

Many residential buildings in regions of low to moderate seismicity are constructed using

unreinforced masonry (URM) walls and reinforced concrete (RC) slabs (Fig. 1a). Under
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earthquake loading, when considering forces that act in the plane of the wall, the masonry

walls of the bottom storey are typically critical as the acting forces are largest.

URM walls show a highly non-linear force–displacement behaviour when subjected to

in-plane loading. This behaviour can be classified as (1) flexure dominated if it is char-

acterised by rocking of the wall with toe crushing as failure mode (Fig. 2a) or (2) con-

trolled by shear if characteristic diagonal cracks form (Fig. 2b). After reaching the peak

shear force, the deformations of shear-controlled walls tend to concentrate in a single

diagonal crack and the force–displacement response often shows a pronounced post-peak

behaviour (Petry and Beyer 2015a). Typical shear force–horizontal displacement curves

for walls showing these two behaviour types are presented in Fig. 2c. In addition, hybrid

modes that comprise characteristics of both types are quite common too. The walls that

determine the displacement capacity of a building are in general shear-controlled walls,

since they fail at a distinctively lower horizontal displacement than flexure dominated

walls.

concrete slab

masonry wall composite material brick masonry

N
M
V

θ
wu

(a) (b)

Fig. 1 a Schematic drawing of a 2D system of walls and slabs, b storey-high wall element with considered
degrees of freedom at its top (u—horizontal displacement, w—axial displacement, h—rotation) and
corresponding cantilever system subjected to an axial force (N), a moment (M) and a shear force (V)

V

u

linear-elastic

flexure 
dominated
response

shear 
dominated 
response

(c)
flexure dominated wall shear dominated wall

(b)(a)

Fig. 2 a Photo of wall failing in flexure (Petry and Beyer 2014), b photo of wall failing in shear (Petry and
Beyer 2014), c shear force–horizontal displacement curves qualitatively representing typical flexure and
shear response of an in-plane loaded URM wall
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For the seismic assessment, the non-linear force–displacement response of URM walls

loaded in-plane is often approximated by a bi-linear curve. These curves are defined by the

effective stiffness, the peak strength and the ultimate drift capacity of the wall; the drift is

the horizontal displacement at the top of the wall divided by the wall height. The effective

stiffness is typically estimated as a percentage of the gross sectional stiffness and estimates

of the peak strength have long been established and included in codes. Recent codes

contain also empirical drift capacity models for URM walls [e.g. Eurocode 8 (CEN 2005a),

the Italian Code (NTC 2008), the New Zealand Code (NZSEE 2011) and the Swiss Code

(SIA 2011)]. Typically, the drift capacity for walls is determined with empirical relations

that depend on the failure mode (shear vs. flexure). Past studies have shown that such

empirical drift capacity models lead to a large scatter when compared to tests (Petry and

Beyer 2015a). New formulations of empirical drift capacity models that account for other

parameters than the failure mode can slightly improve the fit (Lang 2002; Petry and Beyer

2014; Salmanpour et al. 2015).

To improve the prediction of the drift capacity, analytical formulations of the load–

displacement behaviour of URM walls could be a remedy. So far, a number of formula-

tions have been developed, either to be used as standalone beam element models to predict

the response of single walls or to be used in equivalent frame analysis of buildings. Some

of the most recently developed models are formulations by Benedetti and Steli (2008),

Chen et al. (2008), Belmouden and Lestuzzi (2009), Caliò et al. (2012), Penna et al. (2014),

Raka et al. (2015), Petry and Beyer (2015b). However, none of these models fully

describes the load–displacement behaviour of shear critical URM walls including an

estimate of the ultimate drift capacity, either since the formulation is only valid for flexure

dominated walls or because only stiffness and strength but not the drift capacity are

predicted.

The objective of this article is to fill this gap and to present an analytical model that

describes the monotonic load–displacement behaviour of in-plane loaded URM walls

developing a shear, flexure or a hybrid mode. The model which will be introduced in the

following, is developed for walls constructed with modern vertically perforated clay units

and normal strength cement mortar with bed joints of about 1 cm in thickness. The walls

considered in this article are storey-high elements (Fig. 1a, b), which are supported at the

top and bottom by RC slabs.

1.2 The force–displacement response of URM walls

The stages of the force–displacement response of URM walls that are considered as most

characteristic are briefly introduced (Fig. 3a). The model presented herein is based on the

Timoshenko beam theory (Sect. 2) and represents those stages by means of mechanical

considerations.

In the very beginning, the wall behaves linear elastically until either flexural cracks in

the bed joints (Fig. 3b) or diagonal stair-stepped shear cracks start to form (Fig. 3c). Which

of these two mechanisms occurs first and is more prevalent mainly depends on the

geometry of the wall and the applied static and kinematic boundary conditions. The cracks

lead to a softening of the wall and its non-linear response before reaching the wall’s peak

strength. The presented model captures the softening by reducing the section properties

(moment of inertia and cross sectional area). Flexural cracking of the wall is accounted for

using the approach already employed by Benedetti and Steli (2008) and Petry and Beyer

(2015b); the influence of shear cracking is simulated by a novel analytical approach, which

is introduced in Sect. 3.
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The peak shear resistance represents the point where the maximum flexural or shear

capacity of the wall is reached (see also Fig. 3a). This paper presents innovative approa-

ches for predicting the wall’s shear force capacity that are based on local rather than global

demand and capacity parameters (Sect. 4.2). It is assumed that the wall will, subsequently,

either show a pronounced post-peak load–displacement behaviour (shear controlled

behaviour) or a sudden failure at peak shear force (flexure controlled). Walls experiencing

a shear controlled behaviour show a concentration of the deformations in one critical

diagonal crack when pushed beyond their peak shear resistance (Petry and Beyer 2014).

The strength of the shear controlled wall then degrades and the wall ultimately fails at a

certain residual strength. In Sect. 5, a novel concept for predicting the ultimate drift

capacity of URM walls based on a plastic zone approach is presented.

The paper concludes with a validation of the model against 32 full-scale masonry walls

that were tested under quasi-static cyclic loading (Sect. 6). The comparison shows that the

presented model is capable of predicting well the effective stiffness, the peak strength and

the ultimate drift capacity of the wall. The results are better than those obtained with the

approaches included in current codes.

2 Timoshenko beam theory

The model that is presented in this paper is based on the Timoshenko beam theory, which

assumes that plane sections remain plane but not orthogonal to the beam axis. The

Timoshenko beam theory was already applied by Benedetti and Steli (2008) and Petry and

Beyer (2015b) for the computation of the force–displacement curve of URM walls. The

following sections summarise the principal equations and outline the limitations of this

approach when applied to URM walls.

2.1 Formulation

The considered static system is a wall that is fixed at the base and subjected to a moment

M, a shear force V and an axial force N at its top. The deformations at the top of the wall

(horizontal displacement—u, rotation of a cross section—h, vertical displacement—w, see

Fig. 1c) are obtained by numerically integrating the curvatures, the normal strains and the

(c)

(b)

(b)

u    u    

residual
strength

peak shear 
resistance

onset of 
flexural decompression

can also be switched

(b)+(c)

completion of 
crack growth

onset of 
diagonal cracking

(a)
V

u

Fig. 3 Horizontal force–displacement behaviour of an URM wall; a force–displacement curve with
different stages of the loading process, mechanisms that cause the softening of the wall, b flexural cracking
(decompression) of bed joints, c diagonal shear cracking in the wall
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shear strains along the wall height. Assuming that the modulus of elasticity and the shear

modulus are constant along the wall height, the rotation at the top of the wall is:

h ¼
ZH

0

MðxÞ
EIðxÞ dx ffi

Xn
i¼1

Mi

EIi
Dl ð1Þ

where n is the number of discrete points used for the numerical integration (n = H/Dl). The

lateral displacement u at the top of the wall is computed as the sum of the flexural

displacement ufl and the shear displacement ush:

u ¼ ufl þ ush ð2Þ

ufl ¼
ZH

0

h xð Þdx ffi
Xn
i¼1

hiDl ð3Þ

ush ¼
ZH

0

j
V xð Þ
GA xð Þ dx ffi

Xn
i¼1

j
Vi

GAi

Dl ð4Þ

where j = 6/5 is the shear factor for a rectangular homogeneous cross sections. The axial

displacement is obtained by integrating the normal strains along the centre line of the cross

section over the wall height:

w ¼
ZH

0

exx y ¼ L

2
; x

� �
dx ffi

Xn
i¼1

exx;i y ¼ L

2

� �
Dl ð5Þ

If the wall is uncracked, the moment of inertia I(x) and the cross sectional area A(x)

correspond to the gross section properties of the wall. The effect of flexural cracks and

shear cracks on the stiffness of the wall is accounted for by modifying the section prop-

erties I(x) and A(x) based on simple mechanical models that are described in the following

sections. Flexural cracks cause a partial decompression of the section. Its influence on the

flexural stiffness was already accounted for by Benedetti and Steli (2008), Penna et al.

(2014) and Petry and Beyer (2015b) and its effect on the shear stiffness by Petry and Beyer

(2015b). The method for capturing the impact of the formation of diagonal shear cracks on

the force–displacement response is new.

2.2 Limitations of beam theory

The simulated load–displacement response of an URM wall is derived from beam theory,

which is, strictly speaking, only applicable to structural elements with length to width

ratios larger than approximately two. URM walls have, however, mostly smaller aspect

ratios, which will limit the achievable accuracy of results with beam element models. An

advantage of beam theory is its simplicity when compared to membrane theory and its

suitability for engineering practice.
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3 Pre-peak response

3.1 The critical diagonal crack

The crack pattern of shear critical URM walls is characterised by the appearance of

diagonal cracks. The effect of these cracks is in the following modelled by a single virtual

crack, which is called the Critical Diagonal Crack (CDC). It is assumed that the CDC

starts to form as soon as a certain shear force Vcr is exceeded. It grows in length as the

shear force V increases until it extends over the entire wall height. The crack divides the

wall into two parts and therefore reduces the wall stiffness. The CDC model captures this

decrease in stiffness by a reduction of the cross section values of the wall [A(x), I(x)]—in

the cracked state, the wall is modelled as two parallel beams with varying cross sections

representing the wall sections left and right of the CDC. This approach is combined with a

further reduction of the cross sectional values as soon as flexural decompression in a wall

section occurs.

For the sake of clarity, the following terminology is adopted: A cross section that is

crossed by the CDC and thus divided by the shear crack in two sections is referred to as

cracked. A section that undergoes flexural cracking (partial decompression of a cross

section) is mentioned as decompressed.

3.1.1 Principal assumptions

One principal assumption of the CDC model concerns the positioning of the diagonal

crack, which is determined from the geometry of the wall and the size of the masonry units.

For the sake of simplicity, the CDC is modelled as linear and not as stair-stepped. It is

assumed that with increasing lateral force V, the CDC only grows in length but does not

rotate and thus the crack inclination is constant throughout the loading process. For short

walls, the crack is assumed to span diagonally from corner brick to corner brick. Excluded

are the top and bottom brick row, which cannot rotate due to constraints imposed by the

adjacent reinforced concrete slabs (see Fig. 4b). For long walls, the CDC is assumed to

have an inclination of 45� (Fig. 4b). Furthermore, the base corner (lcor,1) is assumed to

yCD

(a)

C(x)

L

w
u

θ

lcor,1 lcor,

yCDC(x)

(b)
lcor,12

H-2hB

w
u

θ

L

H-2hB

lcor,2

hB

hB

H0

H-H0

H

x

(c)
M(x)

Fig. 4 CDC Model: geometry of the fully emerged CDC for loading in the positive direction (grey hatch
represents decompressed part of cross sections); a short walls, b long walls, c moment profile along the wall
height for a given shear span
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have the length of one brick. Both assumptions are based on observations from tests of long

walls (Ganz and Thürlimann 1984; Bosiljkov et al. 2006). The length of the upper corner

lcor,2 and the geometry of the CDC, yCDC(x), can be described by the following equations

(applicable to short and long walls):

lcor;1 ¼ lB ð6Þ

lcor;2 ¼ lB for L� 2lB �H � 2hB
L� H � lB þ 2hB for L� 2lB [H � 2hB

�
ð7Þ

yCDC xð Þ ¼ L� lcor;1 � lcor;2

H � 2hB
x� hBð Þ þ lcor;1 ð8Þ

Further assumptions concern the material behaviour of masonry. It is assumed that (1)

masonry has zero tensile strength and behaves linear elastically in compression; (2) head

joints are stress-free; (3) shear stresses are only transferred by bed joints that are in

compression; (4) the wall can be analysed as a 2D-problem, i.e., the influence of out-of-

plane bending is not considered.

3.1.2 Formation of the CDC

It is assumed that the shear force that triggers diagonal cracking can be computed by a

modified Mann and Müller criterion. Mann and Müller (1982) used the criterion to estimate

the peak shear strength of masonry walls; in the following their criterion is modified to

capture the onset of shear cracking. This criterion formulates equilibrium of a single brick

to estimate the normal stress distribution in the bed joints. It is based on the assumption

that head joints do not transfer stresses and, consequently, the shear force is transmitted

solely by the bed joints (Fig. 5). The resulting torque moment has to be equilibrated by

additional vertical stresses in the bed joints (rT), which lead to decompression over half the

brick length and thus to the appearance of local cracks. The vertical stresses in the bed

joints are therefore the sum of the stresses that result from the axial force (rN), the bending

moment (rM) and the torque moment (rT). It is assumed that a crack forms when the sum

of these vertical stresses is equal to zero.

The following paragraphs outline the simulation of the formation of the CDC from its

onset at the shear force Vcr until it has formed completely and spans over the entire wall

height (leaving out the bottom and top brick rows). An assumption of the vertical stress

distribution in the bed joints due to the torque moment is required which is discussed

first.

V

V

V

V

V

V

V

V

(a) (b) (c) (d)

σT

σT

τxy

τxy

Fig. 5 Different distributions of the normal stresses (rT) on the bricks due to the torque moment, after
Elsche (2008)
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3.1.2.1 Vertical stresses due to torque moment The vertical normal stress distribution in

bed joints induced by the torque moment was presented by several researchers (Schneider

et al. 1976; Atkinson et al. 1990; Lourenço 1996; Elsche 2008). They showed by means of

finite element simulations that the actual stress distribution is non-linear and follows

qualitatively the distribution shown in Fig. 5a. For analytical models, this stress distri-

bution is typically approximated by simpler ones. The usual assumption of a linear stress

distribution (Fig. 5b) cannot be employed because the stresses above and below a bed joint

would not be in equilibrium (Elsche 2008). An alternative distribution satisfying equi-

librium has been proposed by Mann and Müller (1982), who assume that the vertical

stresses due to the torque moment are constant over half the brick length (Fig. 5c). In the

following, distribution d, which was suggested by Elsche (2008), is used to approximate

distribution a.

For the distribution shown in Fig. 5d, the relationship between the shear stress sxy and

the resulting maximum vertical stress on a brick due to the torque moment is:

rT ;max ¼
4sxyhB
lB

ð9Þ

Test results (Petry and Beyer 2015a) and finite element simulations (Zhang et al. 2014)

showed that the shear strains in a cross section are largest at the position of the future CDC.

Assuming, thus, a skew parabolic shear stress distribution with its peak at the CDC (see

Fig. 6b) results in maximum shear stresses of:

sxy x; yCDC xð Þð Þ ¼ sxy;max ¼
3

2

V

A
ð10Þ

The maximum torque stress at the CDC is therefore (inserting Eq. (10) into (9)):

rT ;max ¼
6VhB

AlB
ð11Þ

3.1.2.2 Vertical stresses due to axial force and moment Assuming that plane sections

remain plane, the vertical stresses in a wall cross section due to axial force and moment

(rxx(x,y)) are:

N
M
V

N
M
V

(c)(b)(a)

(1) (2)

σT

σT

τxy

τxy

σM

σN

σN

lB

σT

σT

τxy

τxy

σM

σM

σN

σN

σM

lB

x

τxy(y)

τxy(y)

τxy(y)

hB

σM(y) (1)

(2)

σM(y)

σM(y)

(1)

(2)
H0

H-H0

Hcrit

H
2

H
2

L
y

L
y

HM

Fig. 6 a Distributions of normal stresses due to moment, b distribution of shear stresses, c assumed stress
distribution on the bricks that determine Vcr (1) and the shear force at the completion of cracking (2)
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rxx x; yð Þ ¼ rN þ rM x; yð Þ ¼ N

A
þM xð Þ

I

L

2
� y

� �
ð12Þ

The vertical stresses at the location of the CDC along the wall height are obtained by

replacing the coordinate y in Eq. (12) with Eq. (8), which describes the geometry of the

CDC.

3.1.2.3 Computation of Vcr It is assumed that the CDC starts to form at the height where

the vertical stresses due to axial force, moment and torque moment along the CDC are first

equal to zero (x = Hcrit, y = yCDC(Hcrit), see Fig. 6). Since the shear force is constant over

the wall height, the maximum vertical stresses due to the torque moment (rT,max) are also

constant (for fully compressed cross sections). The same applies to the axial force N and

the resulting stresses rN.

The crack starts, therefore, to form at the height x = Hcrit where the tensile stresses due

to the moment alone along the CDC are largest:

orM xð Þ
ox

����
x¼Hcrit

¼ o

ox

M xð Þ
I

L

2
� yCDC xð Þ

� �� �
x¼Hcrit

¼ 0 ð13Þ

Equation (13) leads to:

Hcrit ¼

H0

2
þ HM

2
for H0 �H

H

2
þ HM

2
for H0 [H

8><
>: ð14Þ

where HM is the smallest value of x for which the CDC is subjected to tensile stresses when

considering stresses due to the moment M alone:

HM ¼ min
L
2
� lcor;1

� 	
H � 2hBð Þ

L� lcor;1 � lcor;2
þ hB;H0

� �
ð15Þ

As discussed above, the torque stresses vary along the length of a brick; for the sake of

simplicity the maximum value of rT is considered throughout [value given by Eq. (11)].

Vertical equilibrium leads to the following equation (Fig. 6c1):

rxx Hcrit; yCDC Hcritð Þð Þ � rT ;max ¼ rN � rM Hcrit; yCDC Hcritð Þð Þ � rT ;max ¼ 0 ð16Þ

Solving Eq. (16) yields the shear force Vcr that triggers the formation of the CDC:

Vcr ¼
N

6hB
lB

þ m
ð17Þ

with:

m ¼ 12

L2
H0 � Hcritð Þ lcor;1 þ

L� lcor;1 � lcor;2

H � 2hB
Hcrit � hBð Þ � L

2

� �
ð18Þ

3.1.2.4 Propagation of the CDC When the wall is loaded beyond Vcr the CDC propa-

gates towards the two corners. The growth of the CDC is simulated by applying the

Bull Earthquake Eng (2017) 15:2201–2244 2211

123



approach described in the previous section to all wall cross sections along the CDC. A

cross section cracks if the sum of the vertical stresses at the location of the CDC is zero:

rxx x; yCDC xð Þð Þ � rT ;max ¼ 0 ð19Þ

Once the formation of the CDC in a cross section is triggered, it splits the section into

two parts with lengths L1(x) and L2(x) (see Fig. 7a) respectively, which correspond to the

wall length on either side of the CDC:

L1 xð Þ ¼ L� lcor;1 þ
lcor;1 þ lcor;2 � L

H � 2hB
x� hBð Þ ð20Þ

L2 xð Þ ¼ lcor;1 þ
L� lcor;1 � lcor;2

H � 2hB
x� hBð Þ ð21Þ

3.1.2.5 Internal forces in wall parts In the two wall parts that are created by the for-

mation of the CDC, it is assumed that that the normal force N is distributed proportional to

the respective lengths (L1(x), L2(x)) on either side of the CDC (Fig. 7c):

NiðxÞ ¼
Li xð Þ
L

for i 2 f1; 2g ð22Þ

At a height x, the moment M(x) is split between the two parts of the cross section in

proportion to the moments of inertia of the sections with respect to their respective centre

of gravity (Ieig,1(x), Ieig,2(x)) (neglecting the parallel axis theorem part):

Mi xð Þ ¼ M xð Þ Ieig;i xð Þ
Ieig;1 xð Þ þ Ieig;2ðxÞ

¼ M xð Þ L3
i ðxÞ

L3
1ðxÞ þ L3

2ðxÞ
for i 2 f1; 2g ð23Þ

It shall be noted that—to avoid any iterations—the internal forces Mi(x) and Ni(x) are

distributed between cross section parts 1 and 2 based on their gross section properties

neglecting the effect of decompression on the distribution of the internal forces.

V

L2(x)

y

σxx(y)

N
M

(c)(b)(a)

(1)

(2)
M2(x)

M2(x)

N2(x)

N2(x)

Lc,2(x)

L2(x)

0.5Lc,2

M(x) N(x)

H

N1(x)

N2(x)M2(x)

M1(x)

H0

H-H0

L

Lc,2(x)
x

σxx(y)

Wall part 2Wall part 1

(1)

(2)

L2(x)L1(x)

Fig. 7 a Fully cracked wall undergoing decompression (grey hatch represents decompressed parts of
sections), b-(1) normal stresses in wall part 2 at M2 = Me,2, b-(2) normal stresses in wall part 2 in
decompression, c internal force distributions in wall
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3.2 Decompression of a wall section

A cross section becomes partially decompressed as soon as the combined normal stresses

due to the axial force N and the moment M would result in tension at one edge of the cross

section. Since it is assumed that mortar joints cannot transfer tension, the decompressed

area no longer transfers shear or normal stresses and therefore the effective cross section

and bending stiffness is reduced.

For the sake of simplicity, it is assumed that decompression can occur only in wall part

2 for 0 B x B H0 and in wall part 1 for H0\ x B H while the other wall section is always

considered with its gross section properties. The numbering of the wall parts is shown in

Fig. 7a. Considering decompression in the shorter wall section would have merely a small

influence on the overall wall stiffness, since it would only occur near one of the wall

corners where the section is very short and, hence, the effect on the overall moment of

inertia I(x) is negligible.

Assuming a linear vertical stress distribution, the moment for which decompression

occurs at a height x can be calculated as follows (see Fig. 7b1):

Me;iðxÞ ¼
Ni xð ÞLi

6
ð24Þ

where i denotes the number of the wall part (wall part 1 and wall part 2). If the moment is

increased, partial decompression takes place. The compressed length Lc,i can be deter-

mined from moment equilibrium of the reduced cross section (see Fig. 7b-2). It leads to

Eq. (25) with the subscript i, again, denoting a wall part:

Lc;i xð Þ ¼ 3
LiðxÞ

2
� jMi xð Þj

Ni xð Þ

� �
ð25Þ

The curvature vi of a wall section part i undergoing partial decompression is (see

Fig. 7b-2):

viðxÞ ¼
Mi xð Þ
EIi xð Þ ¼

rxx x; y ¼ 0ð Þ
ELc;iðxÞ

¼ 2NiðxÞ
L2
c;i xð ÞTE ð26Þ

The corresponding moment of inertia of a section part undergoing decompression is

thus:

Ii xð Þ ¼
Mi xð ÞL2

c;i xð ÞT
2NiðxÞ

ð27Þ

3.3 Cross sectional values of a wall section

The computation of the non-linear force–displacement response by means of an elastic

Timoshenko beam element requires the continuous updating of the cross section properties,

i.e., of the moment of inertia I(x) and the area A(x), in order to account for the effect of

decompression and shear cracking with increasing shear force. The computation of these

properties based on the previously introduced concepts is described in this section.
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3.3.1 The moment of inertia of a wall cross section

The moment of inertia of a cross section reduces when the section is cracked (i.e., when the

CDC passes through the section) and/or when the section becomes partially decompressed.

The next paragraphs summarise the procedure to obtain the moment of inertia of a wall

cross section dependent on its state.

3.3.1.1 Uncracked and fully compressed section If neither shear cracking nor global

decompression have yet occurred, the moment of inertia is calculated according to elastic

beam theory taking into account the full gross section properties of the wall.

Criteria

No decompression:MðxÞ\Me

No shear cracking: rxxðx; yCDCðxÞÞ � rT ;max [ 0

Corresponding moment of inertia

I ¼ L3T

12
ð28Þ

3.3.1.2 Uncracked and partially decompressed section For a cross section that is not yet

split in two by the CDC but that undergoes partial decompression, the moment of inertia is

determined by Eq. (27) in Sect. 3.2 (without considering the subscripts since the section is

not yet cracked in shear) and Eq. (29) respectively.

Criteria

Decompression:MðxÞ[Me

No shear cracking: rxxðx; yCDCðxÞÞ � rT ;max [ 0

Corresponding moment of inertia

I ¼ ML2
cT

2N
ð29Þ

3.3.1.3 Cracked and fully compressed section Wall cross sections that are split in two by

the CDC but that are still fully compressed are assumed to have a moment of inertia

corresponding to the sum of the moment of inertias of the two cross section parts with

respect to their respective centres of gravity.

Criteria

for x\H0 for x[H0

M2 xð Þ\Me;2 M1 xð Þ\Me;1

rxx x; yCDC xð Þð Þ � rT ;max ¼ 0 rxx x; yCDC xð Þð Þ � rT ;max ¼ 0

Corresponding moment of inertia

I ¼ Ieig;1 þ Ieig;2 ¼ L3
1T

12
þ L3

2T

12
ð30Þ
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3.3.1.4 Cracked and partially decompressed section The moment of inertia of shear

cracked and decompressed cross sections is obtained by adding the moment of inertias of

both parts. Decompression is considered using Eq. (27) but for the sake of simplicity it is

only accounted for in one of the two parts, i.e., for part 2 if x\H0 and part 1 if x[H0 (as

discussed in Sect. 3.2). The total moment of inertia corresponds to the sum of the moments

of inertia of the two cross section parts with respect to their respective centres of gravity.

Criteria

for x\H0 for x[H0

M2 xð Þ[Me;2 M1 xð Þ[Me;1

rxx x; yCDC xð Þð Þ � rT ;max ¼ 0 rxx x; yCDC xð Þð Þ � rT ;max ¼ 0

Corresponding moment of inertia

I ¼ L3
1T

12
þ
M2L

2
c;2T

2N2

for x\;H0 ð31Þ

I ¼ L3
2T

12
þ
M1L

2
c;1T

2N1

for x[ ;H0 ð32Þ

3.3.1.5 Introducing a deformation constraint in the CDC It was assumed that the CDC

does not restrain the relative movement of the two wall parts. This was reflected in

considering only the two terms Ieig,1 and Ieig,2 and neglecting the moment of inertia that

results from the parallel axis theorem. This modelling approach represents two beams that

can bend freely with respect to each other (see Fig. 8b). In reality, the relative movement

of the two wall parts along the CDC will not be completely unrestrained. The restraint will

be stronger the larger the curvature of the cross section at a certain load level. This partial

restraint will lead to additional forces to be transferred by the CDC and will increase the

stiffness of the wall. The effect can be captured by considering a fraction of the moment of

inertia resulting from the parallel axis theorem (in the following referred to as Steiner’s

component of the moment of inertia—Ist).

This partial restraint can be modelled by the c-method (Möhler 1956). It was originally

derived for parallel timber beams connected by discrete fasteners. As the name suggests,

the method introduces a factor c to reduce Steiner’s component of the moment of inertia in

order to account for the fact that the fasteners provide only a partial restraint along the

interface. Thus, the total moment of inertia can be written as:

= dx (+γ 1-γ)

(b)(a) (c)

Fig. 8 Graphical representation of the concept of superposition of states; a full cross section, b two sections
that can deform freely (no coupling), c system of two elastically bonded sections where shear stresses
(arrows) can be used to represent the constrained deformation and hence increase in flexural stiffness
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I xð Þ ¼ Ieig þ cIst ð33Þ

with:

0� c� 1 ð34Þ

If c = 0, the stiffness corresponds to the stiffness of two parallel beams that deform

without any restraint along the interface (see Fig. 8b). A factor c = 1 represents the case

where relative displacements along the interface are fully restrained, i.e., when the two

beams act as one (Fig. 8a). The latter case corresponds to flexural walls where the influ-

ence of any diagonal cracking on the load–displacement behaviour of the wall is

negligible.

Equation (33) is rewritten to reflect that any condition of deformation constraint

between the two wall parts separated by the diagonal crack can be interpreted as a linear

combination of the states no crack at all (thus full deformation compatibility, Fig. 8a) and

crack without deformation constraint (hence free flexural deformation of the two parts with

respect to each other, Fig. 8b):

I xð Þ ¼ c Ieig xð Þ þ Ist xð Þ
� 	

þ 1 � cð ÞIeig xð Þ ð35Þ

The first term of Eq. (35)—Ieig(x) ? Ist(x)—represents the contribution of the

uncracked system (Fig. 8a) to the flexural stiffness of the wall. This stiffness can be easily

determined by neglecting the influence of the CDC and just considering the effect of

decompression by means of Eq. (28) and (29). The stiffness obtained with this approach

corresponds exactly to the model by Petry and Beyer (2015b) for URM walls controlled by

flexure. The second term of Eq. (35)—Ieig(x)—describes the stiffness of a wall for which

the movement along the CDC is not restrained (Fig. 8b). This stiffness corresponds to the

moment of inertia employing the full set of equations given above [Eqs. (28)–(32)].

3.3.1.6 The factor c It can be shown by means of linear elastic analysis that the c-factor

varies slightly along the wall height and depends on the shear span and geometry of the

wall. For the sake of simplicity and based on comparisons with test results (Sect. 6), it is,

however, suggested to use a constant value for the c-factor along the wall height. The

choice of the c-factor should reflect that the deformations in the CDC are less constrained

for shear critical walls than for flexural dominated walls. The factor c should, therefore, be

a function of a variable that distinguishes between shear and flexure dominated walls.

Tests indicate a dependency of the type of wall behaviour (shear or flexure controlled)

on the applied axial load, the shear span and the wall geometry [e.g. Bosiljkov et al.

(2006); Salmanpour et al. (2015); Petry and Beyer (2015a)]. Thus, a criterion to explicitly

distinguish a flexural from a shear dominated behaviour should take these influences into

account.

For this purpose, it is proposed to consider the ratio between the height over which

flexural decompression of the bed joints occurs (hd) and the half wall height (H/2). The

height hd is computed for a reference shear force Vref = cLT (see Fig. 9b):

hd ¼ max H0 �
NL

6Vref

; 0

� �
ð36Þ
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Substituting N with r0 LT and dividing Eq. (36) by H/2 leads to

2hd

H
¼

2H0 � r0L
3c

H
ð37Þ

The formulation of the reference shear force Vref as the local cohesion times the wall

section area is chosen in order to uncouple it from the applied axial load and shear span and

to only capture the influence of the geometry of the wall cross section. Applying this force

on a wall and changing the boundary conditions shear span and axial load, yields the

influence of the aforementioned parameters on the behaviour of the wall in terms of

decompressed height to wall height.

To verify whether the ratio 2hd/H is indeed suitable for distinguishing between walls

that fail in shear and walls that fail in flexure, it is applied to 32 tests for which the

behaviour types are known (see Table 2 in ‘‘Appendix 1’’). Shear dominated walls are

assigned c = 0 and walls that are flexure controlled c = 1. Figure 9a shows that the ratio

2hd/H allows to distinguish between these two types of behaviours.

For a value of 2 hd/H\ 1, the walls tend to show a shear controlled behaviour in tests

whereas for values larger than one, the walls exhibit a behaviour controlled by flexure.

Based on this finding, a distribution for the factor c is suggested as presented in Eq. (38)

and Fig. 9a, accounting for a transition zone for walls showing a hybrid behaviour as well.

c ¼

0 for
2hd

H
\0:5

2 � 1

2
þ 2hd

H

� �
for 0:5� 2hd

H
� 1

1 for
2hd

H
[ 1

8>>>>><
>>>>>:

ð38Þ

The approach to distinguish the wall behaviour types according to EC8—part 3

(CEN2005)—along with other code approaches doing it in a similar manner [e.g. FEMA

356 (ASCE 2000); NZSEE (NZSEE 2011)]—would be to take the minimum of the two

equations describing the shear force capacity of the wall (one for flexure and one for shear

failure). However, both are similarly sensitive to the applied axial load—increasing axial

load increases the shear force capacity of a wall in a similar order of magnitude for both

equations up to a certain point [see Eqs. (48), (54)]. Moreover, both equations show a

Vref

hd

N
M(b)

Htransition zone

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

γ
[-

]

2 hd / H [-] 

(a)

     Tests:
0 - Shear dominated
1 - Flexure dominated

γ = f (2 hd / H)

Fig. 9 a Representation of suggested distribution of the factor c dependent on the variable 2hd/H along with
depiction of tests that showed a shear dominated behaviour and tests controlled by flexure, b sketch of
decompressed height in wall at a reference shear force (grey hatch represents the decompressed area in the
wall)
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certain negative influence of the shear span on the shear load capacity. This means that the

sensitivity towards the influence of the axial load and the shear span on the—to-be-

predicted—type of load–displacement behaviour is reduced.

Furthermore, the mechanism of failure does not necessarily reflect the type of load–

displacement behaviour of a wall—e.g. a shear wall failing due to compression at the wall

toe would be graded a flexure dominated wall according to EC8. In this article, the failure

mode and behaviour type of a URM wall are assumed to be closely related but not the

same. A failure mechanism is in many cases a direct result of the behaviour type but a

failure mode such as toe crushing can be preceded by a flexure controlled or a shear

dominated behaviour. Yet, many code approaches do not make this distinction and treat

failure mode and behaviour type as an equivalent. In order to avoid this, the wall load–

displacement behaviour type in the CDC model is characterised using a variable (hd/

H (Vref)) directly distinguishing flexure dominated and shear controlled walls without

deriving it from a governing failure mechanism.

3.3.2 The area of a wall cross section

The cross sectional area A(x) that is required for computing the wall’s shear stiffness, is

calculated by introducing a virtual compressed length Lc,v, which varies along the wall

height reflecting the cracking state of the respective cross sections. It is referred to as

virtual length since it does not only account for the effect of decompression but also for the

effect of shear cracking on the wall stiffness. The area of the wall cross section at height x

is:

A xð Þ ¼ Lc;v xð ÞT ð39Þ

In the following, the virtual compressed length is defined and its properties discussed.

3.3.2.1 The virtual compressed length According to Sect. 3.2 and Eq. (26), the curvature

of a section that is partially decompressed but uncracked in shear (hence no subscript i) is:

vðxÞ ¼ MðxÞ
EIðxÞ ¼

2N

EL2
c;vðxÞT

ð40Þ

Solving for Lc,v(x) yields:

Lc;vðxÞ ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NI xð Þ
M xð ÞT

s
; L

" #
ð41Þ

The moment of inertia I(x) is computed as introduced in Sect. 3.3.1. For a cross section

that just undergoes decompression without being cracked in shear, Lc,v corresponds to the

real compressed length Lc as introduced in Eq. (25). A cross section that is just cracked in

shear but fully compressed, however, will also experience a reduction in shear stiffness,

which is captured by this approach (Lc,v(x) reduces since I(x) reduces due to diagonal

cracking). This reduced shear stiffness would not be captured if the shear stiffness were

computed based on the area of the compressed cross section alone. In this case, the area

and therefore the shear stiffness would stay the same. To conclude, the approach of the
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virtual compressed length allows to capture not only a decrease in the flexural stiffness

EI(x) but also in the shear stiffness GA(x) once decompression and/ or shear cracking

occurs.

3.4 Stress distributions in a wall section

Computing the normal and shear stress distributions throughout the wall requires some

assumptions in order to account for the effect of the CDC, which represents a point of

discontinuity. The approximate solution proposed in the following makes, again, use of the

virtual compressed length Lc,v that was introduced in Sect. 3.3.1.6. The stress distributions

are used, in further course, to determine the axial displacement and the peak shear resis-

tance of the wall.

3.4.1 Normal stresses

It is assumed that the normal stress distribution is linear along Lc,v and that there is no

discontinuity in normal stresses at the CDC. The entire section is therefore subjected to a

mean curvature. Using plane section analysis and a section length Lc,v(x), the compressive

stresses can be calculated for each cross section along the wall height. Figure 10 shows the

distribution of compressive stresses for wall configurations corresponding to (a) a shear-

controlled wall, (b) a hybrid wall and (c) a wall dominated by flexure.

As shown in Fig. 10a there is a jump in the decompressed wall area at the height of the

first brick row—the decompressed length is lower in the first row of bricks than directly

above. This is due to the application of the virtual compressed length Lc,v. To account for

the confinement effect, the CDC is assumed not to cut through the first and last rows of

bricks and in these rows the compressed length accounts, therefore, only for the effect of

decompression. In between, the virtual compressed length represents both the influence of

flexural decompression as well as diagonal shear cracking of sections.

3.4.2 Shear stresses

The shear stress distribution is computed assuming a skew parabolic distribution with the

maximum stresses (sxy,max) generally occurring at the CDC (see Fig. 11b). As proposed in
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Fig. 10 Assumed distribution of compressive stresses within the wall; a shear wall, b wall exhibiting a
hybrid mode, c wall controlled by flexure
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Petry and Beyer (2015b), no shear stress is transferred in the decompressed parts of the

cross section.

For one particular configuration the maximum peak shear stress is assumed not to occur

at the CDC: this is the case when, in a cracked cross section undergoing decompression,

the available length on the side of the CDC where decompression occurs (Lc,v-L1(x), see

Fig. 11b2) is smaller than the length on the side of the CDC that does not undergo

decompression (L1(x)). In this case it is assumed that the shear stress follows a symmetric

parabolic distribution with its maximum (sxy,max) not at the CDC but at the midpoint of Lc,v.

Figure 12 shows the resulting shear stress distributions of the wall configurations for which

the normal stresses were plotted in Fig. 10.

The functions employed to calculate the shear stress distribution per cross section have

to satisfy the following condition:
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Fig. 11 Determination of shear stresses and axial strains; a system under virtual decompression (i.e.
decompression and/ or cracking, grey hatch represents the virtually decompressed parts of sections)
including indication of assumed shear stress distributions in selected cross sections, b more detailed view of
shear stress distributions, c sketch of the corresponding axial strain distributions
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V ¼
ZLc;vðxÞ

0

sxyðx; yÞdy ð42Þ

The skew parabolic shear stress distribution can be described by the following function:

sxy;i x; y
�ð Þ ¼ sxy;max xð Þ 1 � y�2

Li;v xð Þ2

 !
for i 2 f1; 2g ð43Þ

where y* is the horizontal coordinate measured from the CDC. The maximum shear stress is:

sxy;maxðxÞ ¼ 1:5
V

Lc;vðxÞT
ð44Þ

3.5 Computing the axial displacement

Since the material is assumed to be linear elastic in compression, the normal strains are

directly proportional to the normal stresses (see Fig. 11c). If the section is uncracked in

shear and fully compressed, the normal strains at the centre line of the wall can be

determined as:

exx x; y ¼ L

2

� �
¼ � N

EA
ð45Þ

If decompression and/or shear cracking of the wall occurs, the normal strains at the

centre line of the wall can be computed via the virtual compressed length using Eq. (46).

The resulting axial displacement can be obtained by numerically integrating the normal

strains according to Eq. (5).

exx x; y ¼ L

2

� �
¼ 2N

EL2
c;vðxÞT

L

2
� Lc;vðxÞ

� �
ð46Þ

4 Peak shear resistance

Ensuing, different approaches from literature for estimating the peak shear resistance of

URM walls are reviewed. Furthermore, a new method for determining the peak shear

capacity of shear dominated walls based on local demand and capacity parameters is

presented. Finally, different failure mechanisms for flexure dominated walls based on the

development of a crushed zone at the wall toe are introduced.

4.1 Existing models

4.1.1 Shear failure of a bed joint

In EC8—part 3 (CEN 2005a), the shear force capacity of walls controlled by shear is

estimated based on a Mohr–Coulomb criterion [Eq. (47)]. In EC8 design values are used

for the material parameters c and l while in this paper expected (mean) values will be used.
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VP ¼ cþ l
N

LcT

� �
LcT ¼ fVLcT ð47Þ

where fv B 0.065 fB,c. Failure would occur at the wall toe where the compressed length is

smallest. If the expression for Lc as given in Eq. (25) (without subscripts) is inserted into

Eq. (47), it reads

VP ¼
1:5cLT þ lN

1 þ 3
N
cH0T

ð48Þ

The same criterion can also be found in EC6—part 1 (CEN 2005b) for determining at

the ultimate limit state the design value of the shear load applied to the masonry wall.

Originally, the Mohr–Coulomb friction criterion to assess the in-plane shear force capacity

of masonry was introduced in slightly different form by Mann and Müller (1982) and was

modified to the presented approach by Magenes and Calvi (1997).

The global material parameters c and l in Eqs. (47) and (48) differ from local values

that are typically derived from triplet tests. By formulating equilibrium on a single brick,

Mann and Müller (1982) derived the following relationship between local and global

parameters:

l ¼ l
1

1 þ 2l hB
lB

ð49Þ

c ¼ c
1

1 þ 2l hB
lB

ð50Þ

As an alternative approach, this paper proposes a friction criterion that is based on local

stresses and the local material values c and l which can be directly derived from triplet

shear tests (Sect. 4.2.1).

4.1.2 Tensile failure of a brick

Mann and Müller (1982) suggest a further criterion to account for the tensile failure of a

brick:

VP ¼ s
LT

n
¼ fB;tLT

2:3 n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ r0

fB;t

r
ð51Þ

The factor 2.3 originates from the fact that the maximum shear stress in the centre of the

brick is 2.3 times the average shear stress on the brick (Mann and Müller 1982). Newer

studies yield slightly different values [e.g. 2.13 for a brick with an aspect ratio of hB/

lB = � in Elsche (2008)].

When applied to entire walls rather than single bricks, r0 is taken as the average axial

stress on the wall although the axial stress varies significantly along the wall length and

over the wall height. The smallest shear capacity would be obtained if one applies the

criterion to a point in the wall where the section is decompressed (r0 = 0 MPa). However,

experimental results have shown that in the decompressed area the shear strains and,

therefore, stresses are near zero (Petry and Beyer 2015b).
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4.1.3 Crushing of the wall toe

Petry and Beyer (2015b) present failure criteria for walls failing in flexure. Such walls

exhibit a toe crushing due to the exceedance of the compressive strength of the brick (fB,c)

or the masonry as a whole (fu). Two different possible positions of failure due to crushing

are considered.

Test observations showed that the first splitting cracks initiate from the second bed joint

at a half-brick inwards from the external fibre (Petry and Beyer 2015b). This is attributed to

the confining effect of the foundation slab increasing the strength of the bottom brick row.

The first criterion checks therefore the compressive strength of the masonry at x = hB and

y = lB/2. It is further assumed that at this instant the distribution of compressive stresses is

still linear. Thus, the stresses at the edge of the brick have already exceeded the masonry

compressive strength before failure occurs.

VP ¼
N L

2
� Nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2�NfuTlB

p
3fuT

� �

H0 � hBð Þ ð52Þ

The criterion only applies if fuTlB\N. In Petry and Beyer (2015b), Eq. (52) is used to

determine the onset of splitting of bricks at the wall toe and the beginning of the plastic

branch of the load–displacement curve. Peak strength is assumed to be attained soon

afterwards.

The second criterion assesses the strength of the bottom row of bricks. In the absence of

a simple model that accounts for the confinement effect by the foundation, it is assumed

that the bottom brick row can reach the full compressive strength of the brick (fB,c) at the

extreme fibre of the section.

VP ¼ NL

2H0

1 � 4N

3LTfB;c

� �
ð53Þ

In EC8—part 3 (CEN 2005a) the load carrying capacity of walls controlled by flexure is

determined using a stress block model assuming that the critical section is the base joint

which has a similar form as Eq. (53).

VP ¼ NL

2H0

1 � 1:15
N

LTfu

� �
ð54Þ

4.1.4 Further approaches

Further analytical approaches to determine the shear force capacity of URM walls loaded

in-plane can be found in Ganz (1985) and Turnsek and Cacovic (1971). They are not

discussed here as the failure criteria introduced in Sect. 4.2 do not build on these

approaches.

4.2 Estimating the peak strength using local criteria

The failure criteria developed in the following are based on the CDC model as introduced

in Sect. 3. The approaches assess local stress and strain states to retrieve the peak shear

resistance of URM walls loaded in-plane. To start with, shear and flexure dominated walls
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are distinguished by applying different failure criteria according to their pre-peak beha-

viour. The reasons for this methodology are explained in the following paragraphs.

4.2.1 Walls dominated by shear

In walls showing a behaviour controlled by shear, the response before and after reaching

the peak strength VP differs significantly (Fig. 13c). In the pre-peak phase, damage to the

wall is largely limited to relatively fine cracks. In the post-peak phase, however, the

diagonal crack starts degrading significantly and the shear force that the wall can sustain

reduces with increasing displacement. Eventually, once the shear strength has dropped to

the residual shear strength VR, the wall ultimately fails.

It is assumed that the peak strength is reached as soon as one of two local failure modes

occurs; shear failure at a point in the wall where the shear stresses reach the respective

shear strength or compression failure of the outermost fibre in the second bed joint

(Fig. 13a, b). Whichever stress limit is attained first is assumed to represent the point of

transition from the pre- to the post-peak response.

In the CDC model, walls that develop a hybrid behaviour according to the criterion

introduced in Sect. 3.3.1 (0.5\ c\ 1), are subjected to a significant amount of flexural

decompression but also diagonal cracking. In order to account for the influence of the

diagonal crack, their peak shear resistance is evaluated according to the same criteria as for

shear dominated walls.

4.2.1.1 Shear failure To assess the shear strength within the wall, a Mohr–Coulomb

criterion is used, employing parameters characterising the local cohesion and local coef-

ficient of friction [Eq. (55)]. These parameters can be obtained directly from triplet tests.

fv x; yð Þ ¼ cþ lrxxðx; yÞ ð55Þ

It is not possible to determine a priori the position where failure will occur since the

shear strength depends on the normal stress distribution rxx(x,y). Wherever the ratio of

shear stresses to shear strength (with shear and normal stresses obtained as presented in

Sect. 3.4) approaches unity, shear failure is triggered, implicitly yielding a prediction of

(a)

hB

(1)

(2)

y

yf

xf

VP

M
N

x
fu

τxy(xf ,yf ) ≥ 

Lc,v(x

σxx

(2)

(1)

(b)

 fv(xf ,yf )

=hB)

(x=hB, y)

(c)

V

up

VP

VR

uposre
uult

ut

Fig. 13 a Wall dominated by shear at peak shear resistance with graphical representation of both
considered failure modes, b1 criterion for shear failure, b2 criterion for compression failure in second bed
joint, c qualitative shear force–horizontal displacement curve indicating the point of peak shear resistance
(VP)
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the position where failure occurs (x = xf, y = yf – see Fig. 13a1, b1). It is assumed that the

peak shear resistance of the wall (VP) is attained as soon as the shear stress reaches the

shear strength in a single point only.

4.2.1.2 Compression failure in the second bed joint Corresponding to the approach

chosen in Petry and Beyer (2015b), the compressive strength of a brick (fB,c) is assigned to

the first and last row of bricks respectively. This is done to account for the confinement by

the adjacent concrete slabs, which locally increases the masonry strength. All other brick

rows are assigned the compressive strength of masonry (fu).

The confinement effect needs to be revisited if a wall is modelled that spans only over

parts of the storey height (i.e., a wall framed by spandrels). Furthermore, the boundary

conditions that cause the confinement effect might differ between laboratory tests and

actual buildings. It can be influenced by several factors such as, for example, the material

of the supporting elements or slabs. Due to a lack of models that quantify these influences,

the focus herein lies on a representation of laboratory tests.

Compressive failure in walls that are shear controlled or show a hybrid mode (c\ 1) is

assumed to be triggered in the second row of bricks in the outermost fibre (x = hB, y = 0)

as soon as the unconfined masonry strength fu is reached as represented graphically in

Fig. 13a2, b2.

4.2.2 Walls dominated by flexure

The peak shear resistance in flexure controlled walls is assumed to directly represent the

point of ultimate failure (Fig. 14c), since tests, e.g. Petry and Beyer (2015a), show that

such walls usually do not exhibit a pronounced post-peak behaviour.

Due to the confinement effect of the foundation, the first and second row of bricks show

different compressive strengths as already discussed above. This, however, leads to the

possibility of various crushing mechanisms at the wall toe depending on geometrical and

loading conditions which are discussed in the following (see Fig. 14b1.1–1.3). The esti-

mation of the ultimate drift for walls showing a flexure dominated behaviour as presented

in Sect. 5.2 will depend upon the assumed respective mechanism.

4.2.2.1 Crushing of second row of bricks Experimental evidence shows that in flexure

dominated walls splitting cracks often start to form in the second row of bricks. These

cracks, however, do not instantly lead to failure but the shear force can still be increased

(Petry and Beyer 2015a). The shear force at the onset of this crushing can be determined

considering an elastic normal stress distribution in the second bed joint (x = hB), reaching

the masonry compressive strength in the outermost fibre as shown in Fig. 14b1.1.

V rxx x ¼ hB; y ¼ 0ð Þ ¼ fuð Þ ¼ NL

2 H0 � hBð Þ 1 � 4

3

r0

fu

� �
ð56Þ

The tangent stiffness of the load–displacement curve at the point where crushing in the

second row of bricks commences is usually already rather low, see Fig. 14c, which gives

rise to the concept of considering the area where this preliminary crushing occurs as zone

with a certain plastic deformation capacity [same concept as in Petry and Beyer (2015b)].

As the shear force further increases, the length Lp of a plastic part of the normal stress

distribution increases as well (see Fig. 14b1.2). It is assumed that failure is reached when
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the length Lp comprises the whole compressed length Lc and a fully plastic stress block has

formed (Fig. 14b1.3). The corresponding shear force is:

V Lc x ¼ hBð Þ ¼ Lp x ¼ hBð Þ
� 	

¼ NL

2 H0 � hBð Þ 1 � r0

fu

� �
ð57Þ

4.2.2.2 Compression failure at the wall toe For walls with a rather high hB/H ratio and/or

a low level of axial loading (r0), the compressive stresses at the wall toe (x = 0, y = 0)

can exceed the compression strength of the brick fB,c before the plastic zone in the second

brick row has built up (Fig. 14b2). This is assumed to instantly cause failure of the wall. To

consider this failure mode, Eq. (53), as presented in Sect. 4.1.3, is employed and is

repeated here for convenience.

V rxx x ¼ 0; y ¼ 0ð Þ ¼ fB;c
� 	

¼ NL

2H0

1 � 4

3

r0

fB;c

� �
ð58Þ

4.2.2.3 Determination of crushing mechanism All aforementioned conditions to deter-

mine the state of the normal stress distributions in the crushed zone in the second row of

bricks at the onset of failure are summarised in Eq. (59).

State !
elastic if V rxx 0; 0ð Þ ¼ fB;c

� 	
\V rxx hB; 0ð Þ ¼ fuð Þ

partly plastic if V rxx hB; 0ð Þ ¼ fuð Þ\V rxx 0; 0ð Þ ¼ fB;c
� 	

\V Lc hBð Þ ¼ Lp hBð Þ
� 	

fully plastic if V rxx 0; 0ð Þ ¼ fB;c
� 	

[V Lc hBð Þ ¼ Lp hBð Þ
� 	

8><
>:

ð59Þ

This state determines the procedure adopted for determining the ultimate drift capacity

of the wall, which will be introduced in Sect. 5.2. The shear force at the onset of flexural

failure, VCP, can be estimated according to Eq. (60).

(a)

V

uupre
uult

VP

(c)

hB

(1.1-1.3)

(2)

(1.1)

fB,c

Lc(x=0)(2)

x

y
VP

M
N

(b)

fu

Lc(x=hB)

fu

Lc
(1.2)

fu

Lc=Lp
(1.3)

Lp
VCP

Fig. 14 a Wall dominated by flexure at peak shear resistance with graphical representation of crushed wall
toe and flexural cracks in bed joints, b1.1 elastic stress distribution at the onset of crushing in the second
brick row, b1.2 assumed stress distribution for partly crushed zone in compressed second brick row, b1.3
corresponding assumed stress distribution for fully crushed compressed zone, b2 criterion for compression
failure at wall toe, c qualitative shear force–horizontal displacement curve indicating the point of peak shear
resistance (VP) and shear force at the onset of failure (VCP)

2226 Bull Earthquake Eng (2017) 15:2201–2244

123



VCP ¼ min V rxx 0; 0ð Þ ¼ fB;c
� 	

;V Lc hBð Þ ¼ Lp hBð Þ
� 	� �

ð60Þ

Observe that VCP—the shear force at the onset of flexural failure—will be close to the

peak shear resistance (VP), which represents the shear force at the ultimate drift of the wall.

The difference is small since the tangent stiffness at this point is already low for flexure

dominated walls (see Fig. 14c). This is discussed in more detail in Sect. 5.2.

5 The ultimate drift capacity

The force–displacement relationship of many walls that were tested in a displacement-

controlled manner and fail in a shear or a hybrid mode feature a marked post-peak branch.

This is less common for walls failing in flexure of which the force–displacement rela-

tionship is typically characterised by a curve with a tangent stiffness near zero towards the

point of failure. However, both types of walls develop a extended crushed zone at the wall

toe upon reaching ultimate failure. This leads to the concept of determining the ultimate

drift capacity by means of a plastic zone model, with very large curvatures in a confined

zone at the wall toe. Yet, the approach of calculating these curvatures differs between shear

and flexure dominated walls.

5.1 Walls dominated by shear

The post-peak behaviour of walls failing in a shear or hybrid mode is characterised by the

ability of the wall to sustain a decreasing amount of horizontal force with increasing

displacement demand until at a certain point a sudden drop in force and hence ultimate

failure occurs. To describe this behaviour, first a model for the residual strength VR at

ultimate failure is developed (Fig. 15). Second, a plastic hinge approach is introduced to

determine the displacement at ultimate failure. Finally, the load–displacement behaviour in

the post-peak range is described in between the peak strength (VP) and the residual strength

(VR) by means of an interpolation function.

5.1.1 Concept of residual strength

It is assumed that the residual strength is reached when the CDC has degraded to a point

where it cannot transfer any shear or axial force (Fig. 15).

V3 ¼ N3 ¼ 0 ð61Þ

Thus, the internal forces have to be transmitted by the two corners as shown in Fig. 15.

It is further assumed that a plastic load distribution can take place for both corners to reach

their full capacity. The maximum load carrying capacity per corner can be determined

using Eq. (51) which describes the tensile failure of a brick due to shear stresses in the bed

joints (Mann and Müller 1982) and is repeated here with a slightly different notation for

convenience:

Vi ¼
fB;tlcor;iT

2:3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Ni

fB;tlcor;iT

s
for i 2 f1; 2g ð62Þ
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To satisfy horizontal and vertical equilibrium, the following equations apply:

VR ¼ V1 þ V2 ð63Þ

N ¼ N1 þ N2 ð64Þ

The moment at the centre of the top section is (Fig. 15):

M ¼ V1 þ V2ð Þ H0 � Hð Þ ð65Þ

Moment equilibrium around the centre of the top section leads to:

M ¼ N1

1

2
L� lcor;2
� 	

þ V1hB þ V2 H � hBð Þ � N2

1

2
L� lcor;1
� 	

ð66Þ

The five unknowns (N1, N2, V1, V2, VR) can be computed by solving the system of

Eqs. (62)–(66) (note that Eq. (62) yields one equation for the bottom and one for the top

corner). If the residual strength VR is larger than the peak strength Vp, it is assumed that

there is no post-peak branch and that failure occurs at a load level corresponding to peak

strength.

5.1.2 Determination of ultimate displacements

To obtain an estimate of the ultimate displacement capacity of an URM wall, a plastic

hinge approach is adopted. In tests it has been observed that at ultimate failure a more or

less well defined zone at the wall toe always crushes as shown graphically in Fig. 16a.

In the following, it is assumed that this crushed corner is responsible for the majority of

displacements at ultimate failure. Hence, an equivalent system is introduced, which con-

sists of a deformable zone at the wall toe defined by its crushed height (hcr) and length (lcr).

It is assumed that the curvature distribution is linear over hcr (Fig. 16b). At failure, the base

curvature (vcr) is dependent on the maximum compressive strain (eu) of masonry as well as

a strain (e2) taking into account the influence of the axial load. The curvature can be given

as:

y

(a)
N

N3=

L

N1

V1

lcor,1 VR

M

N2

V3=0
0

V2

(b)

lcor,2
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M
N

H-2hB

N3=0
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V3=0
H-2hB
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V2
N2

hB
x

H

hB

Fig. 15 System at vertical failure with fully degraded diagonal crack; a system for short walls, b system for
long walls
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vcr ¼
eu � e2

lcr
ð67Þ

Furthermore, it is assumed that this curvature tends to zero for x = hcr (Fig. 16b).

Curvatures above the crushed zone are assumed to be small compared to the one at the wall

toe and hence neglected. Moreover, shear displacements are assumed to be small compared

to the flexural displacement components at ultimate failure and omitted as well.

For masonry with vertically perforated clay units, which is considered here, the ultimate

strain capacity is estimated to correspond to the ratio of the compressive strength of a brick

and the elastic modulus of the material masonry, however, limited to a maximum strain of

7 %, as described in Eq. (68).

eu ffi min
fB;c

E
; 0:007

� �
ð68Þ

The strain e2 at y = lcr, as shown in Fig. 16b, is determined from vertical equilibrium

and linear-elastic material behaviour.

e2 ¼ 2r0L

Elcr
� eu ð69Þ

Based on test observations, the length of the crushed zone is chosen to be the length of a

brick. Hence:

lcr ¼ lB ð70Þ

The height of this crushed zone is assumed to be dependent on the shear span, i.e., the

higher the shear span ratio, the higher the crushed zone:

hcr ffi hB
1

2
þ H0

H

� �
ð71Þ

Based on the abovementioned assumptions, the rotation at the wall top, which is

approximately equivalent to the ultimate horizontal drift (since the shear component and

elastic flexural deformations are neglected), can be given as:

(a)

wu
θ

wu
θ

hcr

εu

lcr

H

(b)
χ(x)

(c)

V

upostupre

uult

VP

VR

x

ε2
χcr u

Fig. 16 a Brick crushing in shear dominated wall at ultimate failure, b the considered equivalent system to
determine the ultimate flexural displacements including assumed curvature profile, c shear force–horizontal
displacement curve, indicating point of ultimate failure
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hult ffi dult ¼
1

2
ðeu � e2Þ

hcr

lcr
1 � hcr

3H

� �
ð72Þ

The above-derived model indicates that the larger the axial stress, the smaller is the

ultimate drift. This is in agreement with observations form experimental tests (Ganz and

Thürlimann 1984; Bosiljkov et al. 2006; Petry and Beyer 2015a). It also shows that the

ultimate drift increases with increasing shear span, which has also been confirmed by

experimental tests (Petry and Beyer 2014). The mechanical model further indicates that the

brick aspect ratio influences the ultimate drift. This is a point that could not yet be

confirmed experimentally since it is difficult to vary the aspect ratio of bricks in tests

systematically while keeping all other parameters the same.

5.1.3 Describing the post-peak branch of the load–displacement response

To connect the points of peak shear resistance (VP, dP) and ultimate failure (VR, dult), an

interpolation function (Fig. 17) is suggested.

d Vð Þ ¼ dP þ V
exp
P � Vexpð Þ dult � dP

V
exp
P � V

exp
R

ð73Þ

The shape of the post-peak branch can be alternated by varying the exponent (exp) in

Eq. (73). Based on test results, it is proposed to use exp = 6.

5.2 Walls dominated by flexure

Unlike shear dominated walls, flexure controlled walls usually do not develop significant,

the load–displacement behaviour influencing, diagonal cracks. They exhibit, however,—as

shear walls do—a crushed zone at the wall toe upon reaching ultimate failure. In the

following, the influence of the crushing (see Sect. 4.2.2) on the curvature profile is dis-

cussed. Figure 18 shows the assumed curvature profiles along the wall height for the three

different considered cases. It is, once again, assumed that the curvatures above the crushed

zones are negligible and that shear displacements can be disregarded as well.

Sh
ea

r F
or

ce

δP

VR

VP

exp = −3 

Horizontal Dr

exp = 6 

ift δult

Fig. 17 Graphical
representation of Eq. (73) with
the exponent varying
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Petry and Beyer (2015b) already proposed a criterion to assess the ultimate drift

capacity of flexural walls based on a consideration of a plastic deformability at the wall toe.

However, while Petry and Beyer (2015b) limit the plastic potential that can be exploited,

the approach presented herein permits a full plastification of the normal stress distribution

in the 2nd bed joint (see Sects. 4.2.2 and 5.2.3).

5.2.1 Elastic normal stress distribution in the second bed joint

If Eq. (58) (Sect. 4.2.2)\Eq. (56): The first case to be considered occurs if the brick

compressive strength at the wall toe (x = 0, y = 0) is reached before the masonry com-

pressive strength in the second bed joint is attained (x = hB, y = 0). Thus, the second row

of bricks at the point of failure is still fully elastic. This is reflected in a linear curvature

profile over hcr (Fig. 18b). The resulting ultimate drift is therefore [the crushed height hcr
can be estimated corresponding to Eq. (71)]:

dult ¼ v1

hcr

2
1 � hcr

3H

� �
ð74Þ

With the curvature at the wall base being [the maximum strain eu can be determined

according to Eq. (68) and the shear force at crushing VCP corresponding to Eq. (60)]:

v1 ¼ eu
Lc x ¼ 0;V ¼ VCPð Þ ð75Þ

5.2.2 Partly plastic normal stress distribution in the second bed joint

If Eq. (56) (Sect. 4.2.2)\Eq. (58)\Eq. (57): At the attainment of the compressive

strength of a brick at the wall base (x = 0, y = 0), the masonry compressive strength in the

outermost fibre in the second bed joint (x = 0, y = hB) has already been exceeded, but the

normal stress distribution in the second bed joint does not yet correspond to a plastic stress

block. Hence, the second row of bricks is only partly plastic, which results in an assumed

curvature profile as shown in Fig. 18c. The resulting ultimate drift can be estimated as:

(a)
y

wu
θ χ(x)

(b)

εu

hcrx
χ1

Lc

χ1

χ(x)

(c)

fu
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hB
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χ2
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Lp
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Lc

χ1

χ(x)

(d)

χ2

χ2

χ2
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Lp χ2

Fig. 18 a Brick crushing at wall toe and flexural cracks in bed joints in flexure dominated wall at ultimate
failure, b assumed curvature profile of equivalent system if second row of bricks remains elastic, c curvature
profile if second row of bricks is partly plastic, d curvature profile if second row of bricks is fully plastic
stress block

Bull Earthquake Eng (2017) 15:2201–2244 2231

123



dult ¼ v1

hB

2
1 � hcr

H
þ 2hB

3H

� �
þ v2

hcr

2
1 � hcr

H
þ 2

3H

h2
cr � h2

B

hcr � hB

� �� �
ð76Þ

In this equation, the curvature at the wall base (v1) is calculated according to Eq. (75)

and the one at the second bed joint (v2) as:

v2 ¼ min
fu

E Lc x ¼ hB;V ¼ VCPð Þ � Lp x ¼ hB;V ¼ VCPð Þ
� 	 ; ecr

Lc x ¼ hB;V ¼ VCPð Þ

" #
ð77Þ

The length along which a plastic stress distribution has already built up (Lp) can be

determined, based on vertical and moment equilibrium at the cross section (see also

Fig. 14b1.2), as:

Lp x ¼ hB;V ¼ VCPð Þ ¼ N �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3N2 þ 3fuLTN � 6fuVCP H0 � hBð ÞT

p
fuT

ð78Þ

The complete compressed length can be determined as:

Lc x ¼ hB;V ¼ VCPð Þ ¼ 2N

fuT
� Lp x ¼ hB;V ¼ VCPð Þ ð79Þ

5.2.3 Fully plastic normal stress distribution in the second bed joint

If Eq. (58) (Sect. 4.2.2)[Eq. (57): If a full plastic stress block in the second bed joint has

emerged before the compressive strength of a brick at the wall base is reached, the assumed

curvature profile and the strain distribution for its determination are depicted in Fig. 18d.

The ultimate drift can be obtained according to:

dult ¼ v2

hB

2
1 � hcr

H
þ 2hB

3H

� �
þ v2

hcr

2
1 � hcr

H
þ 2

3H

h2
cr � h2

B

hcr � hB

� �� �
ð80Þ

The curvature in the second bed joint can be estimated as:

v2 ¼ ecr
Lc x ¼ hB;V ¼ VPð Þ ð81Þ

The length of the stress block at x = hB is:

LP x ¼ hB;V ¼ VPð Þ ¼ Lc x ¼ hB;V ¼ VPð Þ ¼ N

fuT
ð82Þ

5.2.4 Combining plastic zone and pre-peak approach

Section 5.2 presents an approach to determine the ultimate drift of flexure dominated walls

based on a plastic hinge approach. The force–displacement curve, which is computed

according to Sect. 3, is simply cut at the ultimate drift as predicted by the plastic hinge

approach. The corresponding shear force is considered to be the peak shear capacity of the

wall. Hence:

VP ¼ V d ¼ dultð Þ ð83Þ
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The peak shear force VP will be very close to but slightly higher than VCP [as introduced

in Sect. 4.2.2; Eq. (60)], which is used to determine the compressed lengths (Lc, Lp) and

curvatures (v1, v2) in the previous sections. The difference is very small since, as already

highlighted earlier, the tangent stiffness close to the point of ultimate failure is generally

close to zero for flexure dominated walls.

The force–displacement response (Sect. 3) is determined assuming elastic material

behaviour and does not take into account any material non-linearity or plasticity. The non-

linearity of the response itself originates from the change in the cross-section properties

A(x) and I(x). The approach of the plastic zone is used merely to estimate the point of

ultimate drift.

6 Validation

6.1 Comparison to tests

The presented model is compared to 32 full-scale quasi-static cyclic URM wall tests

reported in literature (see Table 2 in ‘‘Appendix 1’’) and design provisions given in EC8–

part 1 and 3 (CEN 2004, 2005a). The wall tests were selected based on the following

criteria: (1) wall made of vertically perforated clay units and normal strength mortar with

joints of normal thickness, (2) wall height C 1.5 m, (3) wall length C 1.0 m, (4) masonry

unit aspect ratio (hB/lB) from 0.5 to 1, (5) constant shear span during test, (6) constant axial

load during test, (7) application of a cyclic testing protocol and (8) availability of the load–

displacement history. Table 3 in ‘‘Appendix 1’’ lists the material parameters of the walls.

The model is validated with regard to: (1) the effective stiffness—kef, which is defined

as the wall stiffness at 70% of the peak shear resistance (e.g. Penna et al. (2014); Frumento

et al. (2009)), (2) the peak shear resistance of the wall—VP and (3) the ultimate horizontal

drift—dult, defined as the drift at a 20% drop in the wall’s shear force capacity in the post-

peak domain.

According to EC8–part 1 (CEN 2004), in the absence of accurate evaluation of the

stiffness properties, the effective stiffness can be estimated as 50% of the gross sectional

elastic stiffness (CEN 2004):

kef ;EC8 ¼
H0H

2 � H3

3

EI
þ j

2H

GA

 !�1

ð84Þ

The shear force carrying capacity of shear dominated walls is estimated in EC8–part 3

(CEN 2005a) according to a modified Mohr–Coulomb criterion using global values for

coefficient of friction and cohesion [Eq. (48)] while walls failing in flexure are assessed by

means of a compressive stress block approach [Eq. (54)].

EC8–part 3 (CEN 2005a) gives an estimate [Eq. (85)] for the drift at the limit state of

near collapse (dult,EC), which corresponds to the drift at 20% drop in strength.

dult;EC8 ¼

4

3
0:4½%� for walls controlled by shear

4

3
0:8

H0

L
½%� for walls controlled by flexure

8><
>: ð85Þ
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According to EC8–part 3, the distinction between shear and flexure controlled walls is

made by taking the minimum of the equations governing the wall’s shear capacity

(Eqs. (48), (54) respectively).

6.1.1 Peak shear resistance

Figure 19 compares the predictions for the peak shear resistance by the CDC model and

those by EC8 to the experimental results. Both approaches yield good results with the CDC

model showing a slightly better agreement.

6.1.2 Effective stiffness

The performance of the CDC model and EC8 in predicting the effective stiffness is

compared in Fig. 20. The CDC model is able to capture the test results in average quite

well whereas the approach suggested in EC8 tends to underestimate the effective stiffness

of the walls.
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6.1.3 Ultimate drift capacity

Figure 21 shows the performance of the CDC model as well as of EC8 in predicting the

ultimate drift capacity of the wall tests listed in Table 2 (‘‘Appendix 1’’). The CDC model

shows a good fit in predicting the ultimate drift capacities of all wall tests; the mean of

predicted to observed drift capacities is close to unity and the standard deviation small. The

predictions by EC8, on the other hand, lead to a large scatter and tend to be unconservative.

Figure 21b also differentiates between shear and flexure dominated walls. While the CDC

model shows a good fit in both cases, EC8 is especially unconservative for flexure dom-

inated walls.

6.1.4 Load–displacement curves

Figures 22 and 23 compare the results of the CDC model for a shear controlled and a

flexure dominated wall tested by Petry and Beyer (2015a) with regard to the shear force-

horizontal displacement curves (a), the shear force-axial displacement curves (b) and the

contribution of flexural and shear displacements to the total horizontal displacement (c).
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The bilinear approximation of the force–displacement response as predicted by EC8 [(CEN

2004, 2005a)] is included as well (only for the shear force-horizontal displacement curves).

The comparison with remaining walls of the testing campaign is omitted here for brevity

but is shown in ‘‘Appendix 2’’.

6.2 Parametric studies

In this section, the CDC model is used to investigate the sensitivity of peak shear resis-

tance, effective stiffness and ultimate drift capacity to the axial load ratio, the shear span

and the wall size. The obtained results are compared to those from the provisions in EC8–

parts 1 and 3. Table 1 lists geometrical values and material parameters that are kept

constant throughout the parametric analysis.

6.2.1 Peak shear resistance

Figure 24 investigates the sensitivity of the peak shear resistance to the axial load ratio r0/
fu to the normalised shear span H0/H and the size of the wall. The aspect ratio H/L is equal

to 1.0 for all walls that are represented in Fig. 24. As expected, the shear capacity increases

with increasing axial force (Fig. 24c). This applies both to walls with a shear span of H0/

H = 0.5 (shear controlled) and walls with H0/H = 1.5 (flexure dominated). A larger shear

span leads to significantly smaller peak shear force capacities. This is in line with the peak

strength equations in EC8, which show a very similar trend and lead to just slightly lower

values.
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Table 1 Values used for all parametric studies

T hB lB l c fu fB,c E
(mm) (mm) (mm) (-) (MPa) (MPa) (MPa) (MPa)

200 190 300 0.94 0.27 5.86 35 3550
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6.2.2 Effective stiffness

Good approximations to predict the effective wall stiffness are currently missing. EC8–part

1 (CEN 2004) recommends to use 50% of the gross sectional stiffness if better estimates

are not available. Figure 25 investigates by means of the CDC model the sensitivity of the

ratio of effective to gross sectional stiffness to the axial load ratio. The results show that the

effective stiffness tends to remain constant with increasing wall size (Fig. 25a, b) but

increases slightly with increasing axial load (Fig. 25c). This applies both to walls with H0/

H = 0.5 and 1.5 and therefore to flexure as well as shear dominated walls. While a

constant ratio of effective to gross sectional stiffness could be a reasonable estimate, the

results of the CDC model and the comparison against test results (Sect. 6.1.2) suggest that

this ratio should be higher than 50 %.

6.2.3 Ultimate drift capacity

Parametric studies investigating the ultimate drift capacity as predicted by the CDC model

are presented in Fig. 26. In this figure, the shear span, axial load ratios as well as the wall

size are varied while keeping the wall aspect ratio the same.

Figure 26a depicts the ultimate drift capacity for walls with a shear span ratio of 0.5 of

which the size is increased whilst keeping the ratio of wall height to length constant. It

shows that the ultimate drift capacity decreases with increasing wall size, thus, agreeing

with the size effect stipulated in Petry and Beyer (2014). The figure further shows that an

increase in axial load leads to a reduced ultimate drift capacity.

In Fig. 26b, the shear span ratio is set to 1.5. With increasing wall size, the ultimate drift

decreases agreeing with the idea of a pronounced size effect for flexural walls (charac-

terised by higher shear span ratios and lower levels of axial load). For a higher level of

axial load, the size effect is not as strong but still clearly discernible.

The influence of the axial load ratio on the ultimate drift is presented in Fig. 26c. For

small shear span ratios (H0/H = 0.5—usually corresponding to shear critical walls), the

drift capacity decreases slightly with increasing axial load while for a high shear span ratio
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of 1.5 that is more characteristic of flexure controlled walls, the drift capacity reduces first

rapidly and the more slowly with increasing axial load ratio.

Figure 26 also shows the drift capacities according to the empirical models in EC8. It

shows that the simple equations according to EC8 do not capture any of the aforemen-

tioned trends (size effect, influence of axial load ratio) and that the provisions are generally

unconservative for the investigated wall parameters when compared to results obtained

with the CDC model.

Parametric studies investigating the influence of a changing wall aspect ratio on the

ultimate drift capacity are presented in Fig. 27. The drifts increase with increasing H/

L ratio. The plots further confirm the trend to higher drift capacities for lower axial load

ratios.

As for the provisions according to EC8, they are generally unconservative for the

parameters used in this study. They seem to fit best for small walls tested with a shear span

ratio of one and low axial loads, i.e., for the wall configurations that have been tested very
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frequently and were therefore probably overrepresented in the data set used for deter-

mining empirical drift capacity models (Petry and Beyer 2014). Another point that can be

observed from Fig. 27a, b is that EC8 often assesses the type of wall behaviour (shear,

flexure dominated) differently than the CDC model, i.e., EC8 grades walls to be of the

flexural dominated type while the CDC model still assigns them to the shear/hybrid kind.

7 Conclusion

This article presents the Critical Diagonal Crack (CDC) model, which is a novel analytical

model for predicting the monotonic load–displacement response of in-plane loaded unre-

inforced brick masonry walls. Based on the Timoshenko beam model, it simulates the

effect of horizontal flexural cracking as well as diagonal shear cracking on the stiffness of

the wall by means of mechanical considerations that update the cross sectional parameters

to account for the extent of shear and flexural cracking. The peak shear resistance of URM

walls is estimated using local strength criteria, which compare local stresses directly to

local parameters of material resistance. The ultimate drift capacity is estimated by means

of a plastic zone model, which reflects the large curvatures in the crushed area at the wall

toe at failure.

A comparison with the envelope response of 32 cyclic full-scale wall tests shows that

the CDC model constantly performs better than the current provisions in EC8 in predicting

the effective stiffness and the ultimate drift capacity of the wall; the peak shear resistance

is predicted with similar accuracy as EC8. Parametric studies show that the model agrees

with trends observed in tests with regard to the influence of wall size, shear span and axial

load ratio on stiffness, strength and drift capacity while the provisions according to EC8 do

not consider many important relations.

Herein, the CDC model was solely validated against one masonry typology; modern

vertically perforated clay blocks and normal strength mortar with bed joints of about 1 cm

thickness. Future research should be devoted to validating the model for other masonry

typologies and assessing if key parts of the model also hold in these cases (e.g. the model

for ultimate drift that is based on a certain height of a crushed zone, the influence of the

Critical Diagonal Crack on the force–displacement response).
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The CDC model is a further step towards establishing a more complete mechanical basis

for estimating the force–displacement response of unreinforced masonry walls by means of

analytical models. Future work will be directed to considering the effect of cyclic loading

explicitly. Furthermore, the model should be transformed to simpler closed-form equations

for the effective stiffness, strength and deformation capacity that can be easily considered

in the assessment of structures.
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Appendix 1: Wall tests used for the validation

The walls and their parameters used in the validation of the model are presented in

Tables 2 and 3. The shear modulus G is always taken as � of the elastic modulus E, the

tensile strength of a brick (fB,t) was assumed to be 1.27 MPa for all walls corresponding to

the testing campaign by Petry and Beyer (2015a) as values in other reference documents

were not provided.

Table 2 Wall parameters used in the comparison of model/tests

Name References Behaviour L T H H0/
H

hB lB r0

(mm) (mm) (mm) (-) (mm) (mm) (MPa)

PUP1 Petry and Beyer (2015a) S 2010 200 2250 0.50 190 300 1.05

PUP2 S 0.75 1.05

PUP3 F 1.50 1.05

PUP4 F* 1.50 1.54

PUP5 S 0.75 0.55

BNW1 Bosiljkov et al. (2006) F 2567 297 1750 1.10 236 244 0.59

BNW2 S 2572 297 1753 236 244 1.19

BNW3 S 2584 297 1751 236 244 0.89

BZW1 S 2482 296 1750 237 244 0.95

BZW2 F 2484 296 1750 237 244 0.53

BSW S 2712 172 1820 188 288 2.07

W6 Ganz and Thürlimann
(1984)

S* 3600 150 2600 1.05 190 300 0.77

W7 S 1.05 2.39

T1 Salmanpour et al. (2015) S 2700 150 2600 0.50 190 290 0.58

T2 S 2700 0.50 0.29

T3 S 2700 0.50 1.16

T6 S 3600 0.50 0.58

T7 F 2700 1.00 0.58
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Table 3 Material parameters taken from corresponding reference document except where indicated
explicitly

Name References l c fu fB,c E
(-) (MPa) (MPa) (MPa) (MPa)

PUP1–PUP5 Petry and Beyer (2015a) 0.94 0.27 5.86 35.0 3550

BNW1–BSW Bosiljkov et al. (2006) 0.94* 0.27* 5.86* 35.0* 5000*

W6–W7 Ganz and Thürlimann (1984) 0.81 0.27* 8.25 37.4 5000*

T1–T7 Salmanpour et al. (2015) 0.48 0.26 5.80 26.3 3550*

BNL1–BNL6 Bosiljkov et al. (2004) 0.94* 0.27* 4.13 25.0* 3088

BGL1–BGL2 0.94* 0.27* 4.31 25.0* 3302

BPL1–BPL3 0.94* 0.27* 6.28 25.0* 4815

BZL1–BZL3 0.94* 0.27* 6.24 25.0* 5548

* Parameters assumed based on common values since either not provided in reference or as given values
appeared not credible

Table 2 continued

Name References Behaviour L T H H0/
H

hB lB r0

(mm) (mm) (mm) (-) (mm) (mm) (MPa)

BNL1 Bosiljkov et al. (2004) F 1028 300 1510 1.06 240 245 0.6

BNL2 F 1030 1510 240 245 1.19

BNL3 F 1033 1515 240 245 0.6

BNL4 F 1025 1514 240 245 1.19

BNL5 F 1027 1511 240 245 1.19

BNL6 F 1026 1508 240 245 0.6

BGL1 F 989 1513 237 245 1.19

BGL2 F 987 1511 237 245 1.19

BPL1 F 985 1508 236 245 1.19

BPL2 F 985 1509 236 245 1.19

BPL3 F 986 1507 236 245 1.19

BZL1 F 988 1510 235 243 1.19

BZL2 F 987 1512 235 243 1.19

BZL3 F 986 1508 235 243 1.19

* The shear force–displacement behaviour corresponds to the one reported in the reference document. If the
behaviour was reported as ‘hybrid’ or ‘doubtful’, it was assigned to F or S based on the shape of the final
cycles of the shear force-drift hysteresis, F, flexure dominated behaviour; S, behaviour controlled by shear
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Appendix 2: Comparison of CDC model to wall tests

See Figs. 28, 29 and 30.
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CEN (2005b) EN 1996-1-1:2005 Eurocode 6: design of masonry structures—part 1-1: general rules for
reinforced and unreinforced masonry structures. Comité Européen de Normalisation
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Hochschule Zürich, Switzerland

Ganz H, Thürlimann B (1984) Versuche an Mauerwerksscheiben unter Normalkraft und Querkraft. Test
Report. ETH Zürich, Zürich

Lang K (2002) Seismic vulnerability of existing buildings. PhD-Thesis, ETH Zürich
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of Engineers and Architects SIA, Zürich
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