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Abstract Housner published a simple model for the rocking block more than five decades

ago (Housner in Bull Seismol Soc Am 53:403–417, 1963), which is widely used also for

modeling stone and masonry columns and arches. In this paper we investigate the reasons

of the well-known fact that experiments show lower energy loss during impact than it is

predicted by Housner’s model. It was found that a reasonable explanation for the difference

is that in the original model the best case scenario was assumed: that impact occurs at the

edges, which results in the maximum energy loss. In reality, due to the unevenness of the

surfaces, or due to the presence of aggregates between the interfaces, rocking may occur

with consecutive impacts, which reduces the energy loss. This hypothesis was also verified

by experiments.

Keywords Rocking block � Rigid block � Housner � Impact

1 Introduction

Housner published his classical paper more than five decades ago (Housner 1963), in

which he presented a simple model for the rocking block (Fig. 1). He investigated a block

which rotates around corner A, then—when the block reaches the vertical position—impact

occurs, and the block rotates further around corner B. Assuming identical angular
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momentum on corner B before and after the impact (Fig. 1), he determined the angular

velocity after impact, xa (Fig. 1c) as a function of the geometry and the angular velocity

before impact, xb (Fig. 1a), see Eq. (1).

Housner’s model is a very important element of the analysis of structures subjected to

earthquakes, where cracks may open and close during excitations. These are, for example:

columns, walls and arches made of masonry, stone or unreinforced concrete blocks

(Fig. 2).

The square of the angular velocity is proportional to the kinetic energy of the rocking

block, and hence at every impact there is an energy loss. The motion of a rocking block—

subjected to gravity load only—according to Housner’s model is shown in Fig. 3. Note that

both the amplitude and the time between impacts decrease with time.

The rocking block was investigated experimentally by several researchers:

(Anooshehpoor and Brune 2002) used timber blocks, Prieto-Castrillo (2007) granite,

Aslam et al. (1980) and Ma (2010) concrete, Lipscombe and Pellegrino (1993) used steel

elements. In almost every case it was found that in the experiments the energy loss (and the

decrease in angular velocity) is smaller than the one predicted by Housner’s model

(Fig. 3). The results are shown in Table 1 and in Fig. 4 (the angular velocity ratio, l is

defined as the ratio of the angular velocities after and before impact, while the loss of

kinetic energy, g as the change in kinetic energy during impact over the kinetic energy

before impact).

In case of the experiments of Elgawady et al. (2011) rocking did not occur freely but

through a steel mechanism, which was applied on the system. This is the reason that this

(a) (b) (c)

Fig. 1 Housner’s model for a rocking block

(a) (b) (c)

Fig. 2 Columns and arches, where Housner’s model is applied
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experiment was not included in Fig. 4. Aslam et al. (1980) reported high slips (and,

accordingly, high energy loss) during the experiments, which explains that in this case the

energy loss is higher than in case of Housner’s model.

Researchers gave different explanations for the significant differences between the

results of the experiments and the model (see the summary of Lagomarsino 2015), and

several improvements were suggested. Augusti and Sinopoli (1992) and Kounadis (2015)

took into account the sliding between the block and the base, which, especially for small

aspect ratios, is a necessary and important improvement. Note, however, that it cannot

explain that the model underpredicts the energy loss (Table 1). A possible explanation

assumes that the impact is neither plastic nor elastic: Lipscombe and Pellegrino (1993)

stated that the bouncing is significant for short blocks. They insert the coefficient of

restitution into Housner’s equations to reach an agreement with the experiments, where the

bouncing of the element was detected. This effect has been experimentally tested by

Elgawady et al. (2011), by investigating the material of the surface of the base under the

rocking element. Ma (2010) ran over 400 experimental tests with a built-in steel mecha-

nism that prevents sliding to explain the discrepancy. In conclusion, he stated that the

Fig. 3 Typical time-displacement curve of a rocking block according to Housner’s model (dashed line),
and according to our experiment (solid line)

Table 1 Experimental results (Ogawa 1977; Prieto 2007; Elgawady et al. 2011) compared with Housner’s
model. gHous is the relative energy loss

Author Material of the block 2 h 2b 2b2 h/b Loss in energy

�g (%) gHous (%)

Ogawa (1977) Timber 200 100 2.00 37.6 51.0

Ogawa (1977) Timber 300 100 3.00 22.6 27.8

Ogawa (1977) Timber 400 100 4.00 11.6 16.9

Aslam et al. (1980) Concrete block with
aluminum plate

771.5 152 5.08 14.4 10.9

ElGawady et al. (2011) Concrete block with
steel plate

950 190 5.00 15.6 11.2

Prieto (2007) Granite 1000 250 4.00 12.4 16.9

Prieto (2007) Granite 1000 170 5.88 5.3 8.2

Prieto (2007) Granite 1000 120 8.33 4.4 4.2

Prieto (2007) Granite 500 246 160 2.03 14.0 25.2

gHous was calculated by Eqs. (1) and (11) except the last one, where Eqs. (6) and (11) were used
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experiments have demonstrated that despite the very simple appearance of free rocking

motion, highly complex interactions play an important role. To overcome the differences

between the model and the experiments, some of the researchers suggested to use an

angular velocity ratio (l) which agrees with the experiment and not with Housner’s model

(Priestley et al. 1978; Aslam et al. 1980; Lipscombe and Pellegrino 1993; Anooshehpoor

and Brune 2002; Elgawady et al. 2011).

2 Problem statement

In his original paper Housner derived the following expression to calculate the angular

velocity of the block after impact (Fig. 1c):

xa ¼ lHousxb; lHous ¼
2h2 � b2

2h2 þ 2b2
; ð1Þ

where xb and xa are the angular velocities before and after rocking, h and b are the

dimensions of the block, l is the angular velocity ratio.

As we stated in the Introduction (see Figs. 3, 4) experiments show lower energy loss

during impact than it is predicted by Housner’s model, which means that—as a rule—

Housner’s model is unconservative. Although, in practice, fudge-factors may be success-

fully used to obtain proper results, it is worthwhile to find a physical explanation for the

difference, and—if possible—to have an improved mechanical model.

Note that in spite of the presented inaccuracies Housner’s model is widely applied

because of its simplicity and physical clarity. Numerical solutions were developed to

follow the motion (Augusti and Sinopoli 1992; Lipscombe and Pellegrino 1993; Prieto

et al. 2004; Kounadis 2015), and with the aid of these, several authors determined rocking

spectra or stability maps to analyze the stability of a single rocking block (Housner 1963;

Hogan 1989; Shi and Anooshehpoor 1996; Psycharis et al. 2000; Makris and Konstan-

tinidis 2003; Prieto 2007; Makris and Vassiliou 2012; Voyagaki et al. 2013). Oppenheim

Fig. 4 The reduction in speed (l) and the loss of kinetic energy (gHous = 1 - lHous
2 ) for different aspect

ratios. Experimental results (Ogawa 1977; Aslam et al. 1980; Prieto 2007) compared with Housner’s model
(Aslam reported significant slips, which explains the high energy loss)
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(1992) extended this for the investigation of arches and De Lorenzis (2007) defined sta-

bility maps for impulse-ground motions. Housner’s model was also extended to investigate

non-symmetric monolith blocks (Shi and Anooshehpoor 1996; Di Egidio and Contento

2009; Zulli et al. 2012) and two (Psycharis 1990; Spanos et al. 2001) or multi degree of

freedom structures (Ther and Kollár 2014).

Our aim in this paper is to give an explanation and to present a new model, which can be

used not only for the rocking block, but also—as a building element—for the modeling of

masonry and stone columns and arches (Fig. 2).

3 Hypothesis and approach

First, we apply a simple modification on Housner’s classical model. It is assumed that the

surface of the block (or the ground surface) is not perfectly smooth, but there is a small

bump (or aggregate) in the middle (Fig. 5a). In this case the rocking occurs with two

impacts (Ther and Kollár 2014). Before rocking the block rotates around corner A. Then,

impact occurs, and the

• Block rotates around point C (bump or aggregate). Following that a

• Second impact occurs and the block rotates around corner B.

If the size of the bump (or aggregate) is small the time between the two impacts is also

small, however, the final angular velocity is higher than in Housner’s model (This can be

shown simply by applying Housner’s model twice. See Eq. (10) in the ‘‘Appendix’’).

If there are two bumps (Fig. 5b), rocking occurs with three impacts, and if there are

n bumps (which form a convex surface), rocking occurs in n ? 1 impacts. Figure 6 shows

the loss in kinetic energy as a function of the aspect ratios with 1, 2,…, 100 bumps. If the

number of bumps goes to infinity, the block will ‘‘roll’’ and the energy loss is zero.

In reality, there is no perfect surface (Fig. 7a), and as it was shown above, even a small

unevenness of the surface (bump or aggregate) changes the loss in the kinetic energy

during rocking significantly.

It is assumed that the main reason that Housner’s model overpredicts the loss in kinetic

energy is the following:

• Impact does not occur purely at the edges of the blocks (Fig. 7b), rather—in

consecutive steps—at bumps and then at the edges (Fig. 7c).

It is suggested that Housner’s model can be improved by taking into account these

additional impacts during rocking.

(a) (b) (c)

Fig. 5 Rocking block. a one bump in the middle, b two bumps, c several bumps
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To evaluate the above hypothesis experiments were carried out, which are presented in

the next section. In addition, we investigated some of the experiments available in the

literature.

4 Experiments

Two granite blocks were manufactured with different aspect ratios, shown in Fig. 8. (At

two adjacent edges approximately 5 9 5 mm triangular prisms were cut off). The depth of

the blocks was 300 mm to maintain the 2D rocking motion, since blocks with square cross
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Fig. 6 Loss in kinetic energy as a function of slenderness of the block for n bumps

(a)

(b)

(c)

Fig. 7 Comparison of Housner’s model and the modification with an additional bump in the middle
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sections, as it is reported in Zulli et al. (2012), may show 3D twisting motion. The rocking

of each block was tested in 4 different configurations (Fig. 9a–d):

(a) Rocking on the surface, where the corners are cut off,

(b) Rocking on the same surface with a 2 mm diameter wire attached at the middle,

(c) Two wires attached at the opposite surface, where two wires attached 7 mm from

the edges,

(d) An additional 4 mm diameter wire attached at the middle.

Note that the Young modulus of the steel is about 3–4 times bigger than that of the

granite, hence the somewhat softer contact has only a minor effect. (Table 3, configuration

c shows that the calculated, theoretical value of the energy loss—assuming inelastic

impact—is 17.2%, while the measured value—due to the deformations and/or the slip is

only a little bit higher: 19.5%. Our intention was to place the two wires at the same

(a) (b)

Fig. 8 Picture and the sizes of granite blocks used in the experiments

(a) (b) (c) (d)

Fig. 9 Configurations of a block applied in the tests
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distance as the width between the cuts, i.e. *5 mm from the edges, however there is a

small difference.) Configuration a basically agrees with Housner’s case with the slight

modification that the axes of rotations are 5 mm from the edges of the blocks. The

reduction in kinetic energy slightly changes as well, as discussed in the ‘‘Appendix’’ [see

Eqs. (6) and (11)].

In case of configurations b and d two impacts occur during rocking; while in case of

configuration c it is made sure that one impact occurs exactly at the chosen position defined

by the wires close to the edges.

We ran each configuration 40 times, hence, the number of performed tests is 320. In

each test a block was placed on a horizontal, 35 mm thick steel plate, the block was tilted

close to its neutral position, and then it was moved by the gravity force (free rocking). The

motion was measured by an x-IMU device with 256 Hz accuracy (for comparison, in a few

cases one of the blocks were placed on top of the other granite block instead of the steel

surface. The results of rocking were identical to those when rocking was performed on a

steel plate).

A typical displacement (angle of rotation) curve as a function of time is given in Fig. 10

by solid line.

An important measure of the behavior of the system is the change in kinetic energy

before and after each rocking. The system has kinetic and potential energy. The first one is

zero when the vertical displacement is maximum, while the second one is taken to be zero

when the angular rotation is zero, and hence the vertical displacement is minimum. As a

consequence, by neglecting the energy loss between two consecutive impacts, the maxi-

mum kinetic energy is identical to the maximum potential energy (Ei). Thus Ei can be

calculated by multiplying the maximum vertical displacement of the center of gravity by

the weight of the block. The relative energy loss is calculated as

�gi ¼
Ei � Eiþ1

Ei

� ui � uiþ1

ui
; ð2Þ

which is also shown in Fig. 10. In Eq. (2) ui and ui?1 are the amplitudes of displacements

before and after the i-th rocking. (We applied the ‘‘bar’’ to identify that �g is obtained from

Experimental, ηexp = 8.92%

Numerical, ηHous = 8.61%

Configuration d; h/b = 3.70

time [s]
0

ro
ta

tio
n 

[ra
d]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

u1 = 7.7 mm

u2 = 7.1 mm

u3 = 6.4 mm

u4 = 5.8 mm

η1 = 8.70%
η2 = 8.67%
η3 = 9 19 %
η4 = 9.09 %

u5 = 5.3 mm

Fig. 10 Angle of rotation as a function of time, configuration d (the potential energy of the block was
measured at the maximum amplitudes of the rotations marked with arrows)
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an experiment.) It is important to notice that with reasonable accuracy the values of �gi are
identical at every rocking. �g-s—calculated as the average of four consecutive �gi-s of each
experiments, are given in the first two columns of Tables 2 and 3. The presented numbers

are the average of 40 tests, which are followed ± the standard deviation. We may observe

that the highest standard deviation belongs to configuration a, where the unevenness of the

surface affects the impact.

During the impacts it was observed that small slips (and a minor twisting) occurred,

which means that part of the loss in energy is due to the slips and not due to the impact. In

two cases, identified in Table 3 by an asterisk, the slip was significant.

By comparing the experiments to each other a few important observations can be made.

(1) �ga\gHousC, as it was expected the energy loss in the experiment is much smaller

than in Housner’s model (13.4\ 28.4; 12.4\ 17.7; Table 2).

(2) �ga\�gc, i.e. when impacts are enforced to occur at the edge, the energy loss is higher

than on the rocking block (12.4\ 19.5; Tables 2, 3). Note that significant slips

occurred with configuration c for the lower aspect ratio during the motion, which

explains the very high energy loss.

(3) �gb\�gc, the energy loss is smaller if two impacts occurs instead of one (11.2\ 57.9;

6.9\ 19.5; Table 3).

(4) �gc ’ �gHousC, if it is made sure that impact really occurs at the edges the difference

between the experiments and Housner’s model is small at the slender block

(19.5[ 17.2; Tables 2, 3).

(5) �ga [ �gb, an enforced impact at the middle decreases the loss in energy, note,

however, that the difference is much smaller than in item 1 (11.2\ 13.4\ 28.4;

6.9\ 12.4\ 17.7; Tables 2, 3).

Table 2 Relative energy loss between adjacent rockings in the experiments (�g) and in Housner’s model
[gHousC, Eqs. (1), (6) and (11)]

�g
Slenderness: h/b

gHousC
Slenderness: h/b

2.79 3.70 2.79 3.70

Configuration

a 13.4 ± 3.0% 12.4 ± 0.9% 28.4% 17.7%

Table 3 The relative energy
loss between adjacent rockings in
the experiments (�g) and in the
calculation (gHousC for configura-

tion c, and g2imp
HousC for configura-

tion b and d)

The cases where the slip of the
block just after impact was
significant are marked by an
asterisk

�g
Slenderness: h/b

gHousC & g2imp
HousC

Slenderness: h/b

2.79 (%) 3.70 (%) 2.79 (%) 3.70 (%)

Configuration

b 11.2 ± 1.2 6.9 ± 0.4 14.8 9.0

c 57.9* 19.5 ± 1.0 26.5 17.2

d 22.9* 8.8 ± 1.0 13.8 8.6
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5 Model and verification

We extended Housner’s rocking model with the following modifications:

• Impact may occur at an arbitrary position, not only at the corners. The equations

corresponding to this modification are given in the ‘‘Appendix’’.

• Several impacts may arise consecutively (see the ‘‘Appendix’’ for two consecutive

impacts).

To follow the entire motion of the blocks, a simple computer code was developed to

calculate the position, velocity and acceleration of the block at each step, while rocking

was modeled with one or more consecutive impacts. The slips were not modeled.
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Fig. 11 Examples of the experimental results for configuration a, b and c, investigating the block with
slenderness 3.7
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With these modifications the motion of the blocks with configurations b, c and d were

also calculated. A typical example was shown in Fig. 10. The relative loss in energy is

given in the last two columns of Table 3.

In every case the experimental values are 1–3% off the calculated value. That difference

is much smaller than between the ‘‘classical’’ experiments (configuration a) and Housner’s

model (5–15%, see Table 2).

It is also an important observation that �ga [ �gb, however, the difference is smaller than

the difference between �ga and the classical Housner’s model. It seems a reasonable

approximation for the modeling of a rocking block that a bump is assumed at the middle of

the block. According to our calculations and experiments this is a conservative approxi-

mation since this model underpredicts the loss of energy (while the classical Housner’s

model overpredicts it).

We tested this hypothesis with the experiments published by Ogawa (1977), Aslam

et al. (1980), Prieto-Castrillo (2007), Elgawady et al. (2011). See Fig. 12, where the dashed

line represents Housner’s model with an extra bump in the middle.

Three further comparisons for configurations a, b and c are given in Fig. 11. For

configurations b and c the change in the amplitudes in the experiments and the calculations

are close to each other, while for configuration a the original Housner’s model overpredicts

the change in amplitude, and the modified underpredicts it.

6 Conclusion

In this paper we investigated the reasons of the well-known fact (see Figs. 3, 4) that

experiments show lower energy loss during impact than it is predicted by Housner’s model.

It was found that the main reason for the difference is that in the original model the best
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Fig. 12 Experimental results compared with the classical Housner’s model and with the refined model
including a bump in the middle
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case scenario was assumed: that impact occurs at the edges (Fig. 7b), which results in the

maximum energy loss. In reality, due to the unevenness of the surfaces, or due to the

presence of aggregates between the interfaces, rocking may occur with consecutive

impacts, which reduce the energy loss.

A simple possible phenomenological improvement of Housner’s model is that one

additional bump (and consequently an additional impact) is assumed in the middle of the

section (Fig. 7c). This modified model is proposed to be taken into account, when masonry

and stone columns and arches (Fig. 2) are analyzed.

To demonstrate the importance of the improvement of Housner’s model a block was

considered, which is subjected to a base excitation recorded at the Northridge earthquake

shown in Fig. 13a (1994, NORTHR/MUL009 component). The aspect ratio of the element

is 4, while its diagonal is 2.6 m, hence its sizes are b = 0.315 m and h = 1.261 m. When

Housner’s classical model is applied (Fig. 13b) the block does not overturn, its maximum

inclination is about 80% of the neutral position (at about 9 s). When the above improved

model is applied (with one additional bump), which agrees better with the experiments, it

can be observed that the inclination of the block becomes bigger and bigger during the

excitation, resulting in overturning at about 11 s.

Rotations of h/b=4, R=1.3 m block

Northridge (1994) - NORTHR/MUL009 component

Original Housner
Housner with bump
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Fig. 13 The rocking motion of a block considering the original Housner’s model and the proposed
improvement
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Appendix: Housner’s model when the two axes of rotation are at arbitrary
locations

Here, we give the simple extension of Housner’s model, when the location of the axis of

rotation before impact (P1) and after the impact (P2) are not at the edges of the block but at

arbitrary positions (Fig. 14). Immediately before impact (rotation around axis P1) the

angular momentum about axis P2 is

Lb ¼ mxb

2bð Þ2

12
þ 2hð Þ2

12
þ h2 þ x1x2

 !
; ð3Þ

while after impact (rotation around axis P2) the moment of momentum about axis P2 is:

La ¼ mxa

2bð Þ2

12
þ 2hð Þ2

12
þ h2 þ x22

 !
; ð4Þ

where m is the mass of the block, and x1 and x2 are the locations of the axes measured from

the middle of the edge. From the condition that La = Lb, we obtain the following

expression for the angular velocity:

xa ¼ lxb; l ¼ 2h2 þ 0:5b2 þ 1:5x1x2
2h2 þ 0:5b2 þ 1:5x22

: ð5Þ

For x1 = –b and x2 = b Eqs. (1) and (5) are identical.

If the corners are cut (Fig. 14), and we set x1 = –b2 and x2 = b2, Eq. (5) results in

xa ¼ lHousxb; lHousC ¼ 2h2 þ 0:5b2 � 1:5b22
2h2 þ 0:5b2 þ 1:5b22

: ð6Þ

Now we apply Eq. (5) in two steps. First, x1 = –b2 and x2 = 0, i.e. the block rotates at

the left corner and then impact occurs at the middle. Equation (5) gives:

xa1 ¼ xb1; ð7Þ

and second: x1 = 0 and x2 = b2, i.e. the block rotates at the middle and then impact occurs

at the right corner:

Fig. 14 Housner’s model for a
rocking block if rotation occurs
around two axes of arbitrary
position
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xa2 ¼ xb2

2h2 þ 0:5b2

2h2 þ 0:5b2 þ 1:5b22
: ð8Þ

By setting xa = xa2, xb = xb1, xa1 = xb2, from Eqs. (7) and (8) we obtain an

expression for the change in the angular velocity, if rocking occurs in two steps, according

to the geometry shown in Fig. 7b:

xa ¼ l2imp
HousCxb; l2imp

HousC ¼ 2h2 þ 0:5b2

2h2 þ 0:5b2 þ 1:5b22
: ð9Þ

If the width of the block is identical to the width of the base (b = b2) Eq. (9) simplifies

to

xa ¼ l2imp
HousCxb; l2imp

HousC ¼ 2h2 þ 0:5b2

2h2 þ 2b2
: ð10Þ

Since the kinetic energy is proportional to the square of the angular velocity, the relative

loss in kinetic energy during rocking can be calculated as:

g ¼ x2
b � x2

a

x2
b

¼ 1� l2; ð11Þ

where xb and xa are the angular velocities before and after rocking, and l is the angular

velocity ratio defined by Eqs. (1), (6), (9) and (10).
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