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Abstract The best known model for numerically simulating the hysteretic behavior of

various structural components is the bilinear hysteretic system. There are two possible

mechanical formulations that correspond to the same bilinear model from a mathematical

viewpoint. The first one consists of a linear elastic spring connected in series with a parallel

system comprising a plastic slider and a linear elastic spring, while the second one com-

prises a linear elastic spring connected in parallel with an elastic-perfectly plastic system.

However, the bilinear hysteretic model is unable to describe either softening or hardening

effects in these components. In order to account for this, the bilinear model is extended to a

trilinear one. Thus, two trilinear hysteretic models are developed and numerically tested,

and the analysis shows that both exhibit three plastic phases. More specifically, the first

system exhibits one elastic phase, while the second one exhibits two elastic phases

according to the level of strain amplitude. Next, the change of slope between the plastic

phases in unloading does not occur at the same displacement level in the two models.

Furthermore, the dissipated energy per cycle in the first trilinear model, as proven math-

ematically and explained physically, decreases in the case of hardening and increases in the

case of softening, while in the second trilinear model the dissipated energy per cycle

remains unchanged, as is the case with the bilinear model. Numerical examples are pre-

sented to quantify the aforementioned observations made in reference to the mechanical

behavior of the two trilinear hysteretic models. Finally, a set of cyclic shear tests over a

wide range of strain amplitudes on a high damping rubber bearing is used in the parameter

identification of the two different systems, namely (a) trilinear hysteretic models of the first

type connected in parallel, and (b) trilinear hysteretic models of the second type also

connected in parallel. The results show that the complex nonlinear shear behavior of high
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damping rubber bearings can be correctly simulated by a parallel system which consists of

only one component, namely the trilinear hysteretic system of the first type. The second

parallel system was not able to describe the enlargement of the dissipated hysteresis area

for large strain amplitudes.

Keywords Bilinear hysteretic model � Trilinear hysteretic model � Hardening effect �
Softening effect � Base isolation � High damping rubber bearings

1 Introduction

Material behavior that can be modeled by elementary mechanical systems comprises:

(i) elasticity described by a spring, (ii) time-independent plasticity described by a plastic

slider and (iii) viscosity described by a dashpot, see Besson et al. (2010). The simplest

model to describe the time-independent hysteretic behavior of materials is the bilinear

hysteretic model (BHM), which has been used for decades now and combines springs with

a plastic slider. In addition to the BHM, smooth hysteretic models exist, such as those

proposed by Ozdemir (1976) and by Wen (1976). There are also two sub-formulations for

the mechanical behavior of BHM, which correspond to the same basic mathematical

representation, see Iwan (1961), Oliveto et al. (2014). More specifically, materials like high

damping rubber bearings (HDRBs) exhibit hardening behavior at large strain amplitudes.

In order to account for these kind of effects, an extension of the BHM is suggested by using

the trilinear hysteretic model (THM), see Tsopelas et al. (1994), Markou and Manolis

(2016a), Markou et al. (2016). Apart from use for the simulation of the shear behavior of

HDRBs, the THMs have been used also for the simulation of the shear behavior of single,

double and triple friction pendulums, as well as for partition wall elements, see Ray et al.

(2013), Ray and Reinhorn (2013). There are also mathematical models for describing

complex nonlinear behavior of steel, wood and concrete components, but the relevant

mechanical models are not clearly defined, see Ibarra et al. (2005). The present work

investigates two possible extensions of the THM mechanical representations, to account

for either hardening or softening behavior and highlights their differences. To this end, a

set of cyclic shear tests on a spare HDRB from the Solarino base isolation project com-

pleted in the 2000s (Markou et al. 2014) are used in order to validate and subsequently

compare the different type of models in terms of their accuracy.

2 Mechanical formulations for bilinear and trilinear hysteretic models

A BHM can be built using either of two different mechanical formulations, namely the

BHM1 and BHM2, see Figs. 1 and 2, respectively. More specifically, BHM1 consists of a

linear elastic spring of stiffness ke
m1 (element 1) connected in series with a parallel system,

i.e., a plastic slider with characteristic force fs
m1 (element 2) and a linear elastic spring of

stiffness kh1
m1 (element 3), (see Oliveto et al. 2014), see Fig. 1. Next, BHM2 consists of an

elastic-perfectly plastic system connected in parallel with a linear elastic spring of stiffness

kh1
m2 (element 3), (see Iwan 1961), see Fig. 2. The elastoplastic system itself consists of a

linear elastic spring of stiffness (ke
m2 - kh1

m2) (element 1) connected in series with a plastic

slider with characteristic force fs
m2 (element 2). Both models can evolve into 3-parameter
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systems (see Markou et al. 2016) and represent the same mathematical model shown in

Figs. 1 and 2.

The extension of both BHMs to their respective THMs is implemented by replacing

element 3 with a trilinear elastic spring, see Figs. 3 and 4. In the case of THM1, see

Markou and Manolis (2016a), Markou et al. (2016), the parameters needed to describe the

trilinear elastic spring (element 3) are the stiffnesses kh1
m1, kh2

m1and the characteristic dis-

placement uc
m1, see Fig. 3. The positive displacement uc

m1 denotes the change of slope in

the spring from kh1
m1 to kh2

m1 and vice versa for positive displacements uh
m1, while the negative

displacement -uc
m1 denotes the change of slope between kh1

m1 and kh2
m1, for negative dis-

placements uh
m1. In the case of THM2, see Tsopelas et al. (1994), the three-parameter

trilinear spring (element 3) is described by stiffnesses kh1
m2, kh2

m2 and characteristic dis-

placement uc
m2, see Fig. 4. As in the previous case, a positive displacement uc

m2 denotes the

(a)

(b) (c)

(d) (e)

Fig. 1 Bilinear hysteretic model labeled BHM1: a mechanical model b fe1-ue
m1 graph of element 1

c fe2-uh
m1graph of element 2 d fe3-uh

m1 graph of element 3 and e overall f-u graph
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change of slope in the spring from kh1
m2 to kh2

m2 and vice versa for positive displacements u,

while the negative displacement -uc
m2 denotes the change of slope between kh1

m2 and kh2
m2 for

negative displacements u. The relationships between the parameters used in the mathe-

matical models (k0, k1, k2, uy, uyh) and those used in the corresponding mechanical (ke, kh1,

kh2, uc, fs) are presented in Table 1 for both THMs. Furthermore, the relationships between

the mechanical parameters of the two systems are presented in Table 2, the compatibility

equations are presented in Table 3, the equilibrium equations in Table 4 and finally the

constitutive equations in Table 5. In the mathematical model, stiffness k0 corresponds to

the elastic phases, stiffness k1 corresponds to plastic phase 2, and stiffness k2 corresponds

to plastic phases 1 and 3 (see Figs. 3 and 4). In the case of THM2, there is an additional

elastic phase described by stiffness k01. The yield displacement is denoted as uy, the second

(a)

(b) (c)

(d) (e)

Fig. 2 Bilinear hysteretic model labeled BHM2: a mechanical model b fe1-ue
m2 graph of element 1

c fe2-uh
m2 graph of element 2 d fe3-uh

m2 graph of element 3 and e overall f-u graph
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yield displacement is denoted as uyh, the yield force at uyh is denoted as Fyh, while the

characteristic strength at zero displacement is denoted as Q and the yield force at uy is

denoted as Fy (see Figs. 3 and 4). In sum, both THMs are 5-parameter systems, see

Tables 1 and 2.

The differences between the proposed two THMs are listed as follows:

(i) THM1 exhibits three plastic phases (1, 2, 3) and one elastic phase with slope

equal to k0 = ke
m1, see Fig. 3. On the other hand, THM2 also exhibits three plastic

phases (1, 2, 3) and two elastic phases according to the displacement amplitude,

see Fig. 4. For displacement amplitude smaller than uyh in the THM2, the elastic

phases are described by stiffness equal to k0 = ke
m2, while for displacement

(a)

(b) (c)

(d) (e)

Fig. 3 Trilinear hysteretic model labeled THM1: a mechanical model b fe1-ue
m1 graph of element 1

c fe2-uh
m1 graph of element 2 d fe3-uh

m1 graph of element 3 and e overall f-u graph
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(a)

(b) (c)

(d) (e)

Fig. 4 Trilinear hysteretic model labeled THM2: a mechanical model b fe1-ue
m2 graph of element 1

c fe2-uh
m2 graph of element 2 d fe3-uh

m2 graph of element 3 and e overall f-u graph

Table 1 Relationships between
mechanical and mathematical
parameters of the THM1 and
THM2 models

Model THM1 THM2

ke k0 k0

kh1 k1
k0

k0�k1
k1

kh2 k2
k0

k0�k2
k2

fs k0uy = Fy (k0 - k1)uy = Q

uc uyh � uy
� �

k0�k1
k0

uyh

ke - kh1 ? kh2 k0
k2
0
�k1 2k0�k2ð Þ

k0�k1ð Þ k0�k2ð Þ
k01
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amplitude larger than uyh, the elastic phases are described by stiffness equal to

k01 = ke
m2 - kh1

m2 ? kh2
m2, see Table 1, Fig. 4.

(ii) The change of slope in the plastic phases in THM2 occurs at displacement uyh for

u[ 0 and at -uyh for u\ 0, see Fig. 4. In THM1, the change of slope in the

plastic phases occurs at displacement uyh for u[ 0 and at -uyh for u\ 0 during

loading phases ( _uu[ 0), and at displacements uyh - 2uy for u[ 0 and at

2uy - uyh for u\ 0 during the unloading phases (u _u\0), see Fig. 3. In physical

terms, the difference between the two THMs occurs because in THM1 element 3

is activated with displacement uh, while in THM2 the same element 3 is activated

by displacement u. Note that in the case of THM2 uyh can be smaller than uy, but

in the case of THM1 uyh can only be larger than uy.

(iii) The dissipated energy over a cycle of amplitude ua is denoted as Wd in both

THMs and presented in Table 6, where uha denotes the displacement uh at

displacement amplitude equal to ua. Note that in order to have a dissipative

system uha and subsequently Wd need to be positive. The energy dissipated over a

cycle of motion of amplitude ua by THM2 remains unaffected by the change of

slope in the trilinear spring (element 3), as compared with the BHMs, see uha in

Table 6. In the case of THM1, the energy is affected by the change of slope and

does not remain the same as in BHMs. Let us assume that the energy dissipated in

Table 3 Compatibility equations of the THM1 and THM2 models

Model THM1 THM2

u ue
m1 ? uh

m1 ue
m2 ? uh

m2

Table 4 Equilibrium equations for the THM1 and THM2 models

Model THM1 THM2

f fe1 = fe2 ? fe3 fe1 ? fe3 = fe2 ? fe3

Table 5 Constitutive equations for the THM1 and THM2 models

Model THM1 THM2

fe1 ke
m1ue

m1 (ke
m2 - kh1

m2)ue
m2

fe2 _uh 6¼ 0ð Þ f m1s sgn _um1h
� �

f m2s sgn _um2h
� �

fe2 _uh ¼ 0ð Þ fe1 - fe3 fe1

fe3(|uh
*| B uc) kh1

m1uh
m1 kh1

m2u

fe3(|uh
*|[ uc) km1h1 u

m1
c þ km1h2 um1h

�� ��� um1c
� �� �

sgn um1h
� �

km2h1 u
m2
c þ km2h2 uj j � um2c

� �� �
sgn uð Þ

* For THM2 replace uh
* with u

Table 2 Relationships between the mechanical parameters of THM1 and THM2 models

THM1 ke
m1 kh1

m1 kh2
m1 fs

m1 uc
m1

THM2 ke
m2

km2h1
km2e

km2e �km2
h1

km2h2
km2e

km2e �km2
h2

f m2s
km2e

km2e �km2
h1

um2c
km2e �km2

h1

km2e
� f m2s

km2e
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Table 6 Energy dissipation over a cycle of amplitude ua for the THM1 and THM2 models

Model THM1 THM2

uha km1e ua�f m1s þum1c km1
h2
�km1

h1ð Þ
km1e þkm1

h2

ua � f m2s

km2e �km2
h1

Wd 4fs
m1uha

m1 4fs
m2uha

m2

(a)

(b)

Fig. 5 Possible simplifications of THM1 model: a a trilinear elastic spring and b an elastoplastic element
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(a) (b)

(c) (d)

Fig. 6 Hysteretic model response force–displacement curves: a f–u, b fe2–uh for hardening, c f–u, d fe2–uh
for softening

Table 7 Parameters of the THM and BHM models for hardening and softening base isolation systems

Mathematical parameters

k0 (kN/mm) k1 (kN/mm) k2 (kN/mm) k01 (kN/mm) uy (mm) uyh (mm) ua (mm)

Hard 1 0.20 0.45 1.25 20 120 200

Soft 0.05 0.85

Mechanical parameters

ke (kN/mm) kh1 (kN/mm) kh2 (kN/mm) fs (kN) uc (mm) uha (mm) Wd (kNmm)

THM1

Hard 1 0.25 0.819 20 80 124 9920

Soft 0.053 156 12480

THM2

Hard 1 0.20 0.45 16 120 180 11520

Soft 0.05
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the THM1 is Wd
t at amplitude ua and is larger than the dissipated energy in the

BHM1 (Wd
b):

Wt
d [Wb

d ,
km1e ua � f m1s þ um1c km1h2 � km1h1

� �

km1e þ km1h2

[
km1e ua � f m1s

km1e þ km1h1
ð1Þ

Note that for the bilinear case kh1
m1 = kh2

m1 and um1ha ¼ km1e ua�f m1s

km1e þkm1
h1

. In order for THM1 to

account for larger dissipated energy than the BHM1, the following inequalities need to be

satisfied in terms of the mechanical and mathematical parameters, respectively:

km1h2 � km1h1
� �

�km1e ua � um1c
� �

þ f m1s þ km1h1 u
m1
c

� �
[ 0 ð2Þ

k1 � k2ð Þ ua � uyh
� �

[ 0 ð3Þ

For the THMs ua[ uyh, implying that term (ua - uyh) is positive. In order for THM1 to

account for larger energy dissipation as compared to BHM1, the following inequality must

be satisfied:

k1 [ k2 ð4Þ

The above inequality shows that the THM1 can describe larger amounts of energy

dissipation in comparison with the BHM1, but only for softening cases (k1[ k2). In the

Table 8 Geometrical character-
istics of the HDRB isolator

External diameter (mm) 500

Diameter of steel plates D (mm) 490

Thickness of steel plates (mm) 3

Number of rubber layers 12

Thickness of single rubber layer Tri (mm) 8

Total rubber thickness Tr (mm) 96

Cross section area Ar (mm2) 188574.10

Total height (mm) 169

Primary shape factor S1 15.31

Secondary shape factor S2 5.10

(a) (b)

Fig. 7 Third cycle force–displacement graphs at different frequencies at shear strain amplitudes of
a c = 1.20 and b c = 2.00
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case of hardening (k1\ k2), the energy in THM1 decreases as compared to BHM1. This

outcome can be explained physically, by realizing that the dissipation of all four systems

(THM1, THM2, BHM1, BHM2) is related only to element 2, namely the plastic slider. As

element 3 of THM1 becomes stiffer in the case of hardening, it allows for smaller dis-

placements uh in the plastic slider and therefore the dissipation of the system decreases.

The opposite is true for the softening case. Note that in order for k0 not to overlap either k1
or k2, it needs to be larger than both, and then the system will be dissipative.

It is of interest to point out that each of the mechanical components of the THM2 is a

particular case of the mechanical formulation of the THM1. More specifically, THM1 can

Table 9 Parallel mechanical system using the THM1 model components (33 parameters)

No. Component k0 (kN/mm) k1 (kN/mm) k2 (kN/mm) uy (mm) uyh (mm)

1 �k1, k2
a 0.283532 0.489882 0b 64.809

2 �k1, k2
a 0.000282 0.905635 0b 136.491

3 �k1, k2
a 0.000246 0.877611 0b 108.657

4 0.863754 0.402485 -0.792654 7.146 125.542

5 0.157047 0.000238 -0.285050 43.938 151.692

6 0.172839 0.000547 -0.271989 18.760 80.117

7 0.056183 0.044945 -0.006864 3.331 21.299

8 3.225241 0c 0c 0.597 –d

9 67.445070 0c 0c 0.041 –d

e2 2.50 %

a Note that a very large value of k0 � k1, k2 corresponds to a very stiff elastic spring, which can be
neglected, see Fig. 5
b Note that THM1 becomes a trilinear elastic spring for uy = 0, see Fig. 5
c Note that THM1 becomes an elastoplastic element for k1 = k2 = 0, see Fig. 5
d Note that because k1 = k2, uyh does not denote any change of stiffness, so it becomes meaningless
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be simplified to a trilinear elastic spring for fs
m1 = 0 and ke

m1 � kh1
m1, kh2

m1 in terms of

mechanical parameters and in terms of mathematical ones with uy = 0 and k0 � k1, k2,

see Fig. 5a. In this case, element 1 of THM1 will be extremely stiff to account for any

deformation and will be neglected, while element 2 will not account for any dissipation

(fs
m1 = 0) and will also be neglected, so the system will behave linearly. The relation

between mechanical and mathematical parameters (by taking into account that
k0

k0�k1
’ k0

k0�k2
’ k0�k1

k0
’ 1, see Table 1) is the following: kh1

m1 = k1, kh2
m1 = k2 and uc

m1 = uyh,

which results to a three-parameter system.

(a) (b)

(e) (f)

(c) (d)

Fig. 8 Force–displacement curves of each separate component of the THM1 model for all strain
amplitudes: a fc1-u, fc2-u, fc3-u graphs of elements 1,2,3 b fc4-u graph of element 4 c fc5-u graph of
element 5 d fc6-u graph of element 6 e fc7-u graph of element 7 f fc8-u, fc9-u graphs of elements 8,9
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Let us now consider the stiffnesses of element 3 of the THM1 to be zero, namely

kh1
m1 = kh2

m1 = 0 and in mathematical terms k1 = k2 = 0, see Fig. 5b. In this case, the

THM1 will behave like any elastoplastic element and the relation between mechanical and

mathematical parameters will be ke
m1 = k0 and fs

m1 = k0uy (see Table 1) which results in a

two-parameter system. Note that characteristic displacement uc
m1 becomes meaningless

because kh1
m1 = kh2

m1.

3 Numerical implementation

Two different sets of parameters are used as examples in order to quantify the differences

between the previously described mechanical formulations. The first one accounts for

hardening (k1\ k2) and the second one for softening (k1[ k2). The parameters of the

mathematical model, along with the mechanical parameters of the two formulations, are

given in Table 7. The only difference in the mathematical parameters between the hard-

ening case and the softening one is the change of k2 from 0.45 kN/mm to 0.05 kN/mm,

which also affects k01. Two cycles of harmonic displacement of amplitude ua = 200 mm

are imposed in the systems and the energy of the complete second cycle Wd is calculated

(a)

(b)

Fig. 9 a Elastic and b dissipative force breakdown in the THM1 model
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along with uha, see Table 7. In Fig. 6, the f - u and fe2 - uh relationships are plotted for

hardening and softening cases for both THMs and BHMs. As shown in Fig. 6a and c, the

change of slopes in the plastic phases does not occur at the same displacement value for

THM1 and THM2 during the unloading phases (u _u\0). In the same figures, it is seen that

the elastic stiffness k01 of THM2 for the elastic phases at displacements |u|[ uyh, is larger

than k0 for the hardening case and smaller for the softening one. Finally, Fig. 6b–d show

that the dissipated energy Wd increases for the THM1 for softening, decreases for hard-

ening, while it remains unchanged for THM2 and equal to the dissipated energy in both

BHM1 and BHM2.

4 Parameter identification using cyclic shear tests on HDRB

In this section the third cycle of a set of cyclic shear tests that were conducted on a HDRB

from the Solarino project ten years later in the laboratories of the University of Basilicata

in Italy (Markou et al. 2014) will be used for the parameter identification using different

parallel systems comprising either THM1 or THM2. The geometrical characteristics of the

(a)

(b)

Fig. 10 a Force-displacement curves of the THM1 model and b comparison of the numerically simulated
with the experimental results
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HDRB are given in Table 8. The cyclic shear tests were conducted under a compressive

stress of 6MPa at a frequency 0.5Hz for ten different strain amplitudes varying from

c = 0.05 to c = 2.

Apart from the cyclic shear tests, cyclic tests at different strain amplitudes (c = 1.20

and c = 2.00) at variable frequencies (from 0.006 Hz to 0.83 Hz) were implemented to

investigate the effect of rate-dependence of the bearings, see Fig. 7. The devices can be

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Fig. 11 Identification of the
force–displacement curves of
THM1 model by using the third
cycle of harmonic tests at ten
different strain amplitudes and at
a frequency 0.5 Hz under
compressive stress of 6 MPa:
a c = 0.05 b c = 0.30
c c = 0.50 d c = 0.70 e c = 1.00
f c = 1.20 g c = 1.40 h c = 1.60
i c = 1.80 j c = 2.00 (black
color indicates numerical
simulations and red color denotes
the experimental data)
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assumed as rate independent in the range of frequencies of interest under seismic

excitation.

To this end, two different rate-independent parallel systems are used to describe the

cyclic shear tests, one comprising THM1 and the other THM2. The identification proce-

dure that was used for the definition of the parameters is the CMA-ES algorithm developed

by Hansen (2011). In Table 9 the identified mathematical parameters of the THM1 system

are presented along with the corresponding mechanical formulations. The identification

error e2, also shown in Table 9, is defined as follows:

e2 ¼
X10

i¼1

F0i � ~Fi;F0i � ~Fi

� �

F0i;F0ih i ð5Þ

where F0i and ~Fi are the measured and computed force vectors at ten different strain

amplitudes, and

A;Bh i ¼
Xn

i¼1

AiBi ð6Þ

is the standard inner vector product.

Nine THM1 components are connected in parallel to describe the shear behavior of the

device, but some of them represent simplified versions of THM1 as was pointed out in

Table 10 Parallel mechanical system using the THM2 model components (30 parameters)

No. Component k0 (kN/mm) k1 (kN/mm) k2 (kN/mm) uy (mm) uyh (mm)

1 3.316369 0.097634 0.066989 0.604 34.120

2 67.826800 0.034459 0.242161 0.041 181.563

3 0.583996 0.082570 0.258475 7.945 102.741

4 0.360200 0.159367 0.287472 128.456 139.534

5 0.315248 0.115504 0.225922 20.728 99.702

6 0.142166 0.010595 0.325443 43.731 162.318

e2 5.00 %
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Fig. 5. Specifically, we have the trilinear elastic spring (components 1, 2 and 3) and the

elastoplastic element (components 8 and 9).

It may be of interest to note that trilinear elastic springs (components 1, 2 and 3) are

hardening springs (k2[ k1) accounting for the hardening behavior of the device at higher

strain amplitudes, see Table 9 and Fig. 8a. On the other hand, components 4, 5, 6 and 7

give softening behavior (k2\ k1), while in all of these cases k2 is negative, see Table 9 and

Fig. 8b–e. These four components are responsible for describing the enlargement of the

dissipated energy as the strain amplitude increases. The combination of the hardening

(a) (b)

(c) (d)

(e) (f)

Fig. 12 Force–displacement curves for each component of the THM2 model for all strain amplitudes:
a fc1-u graph of element 1 b fc2-u graph of element 2 c fc3-u graph of element 3 d fc4-u graph of element
4 e fc5-u graph of element 5 f fc6-u graph of element 6
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trilinear elastic springs and the softening trilinear hysteretic systems provides a better

description of the changing behavior during the loading (u _u[ 0) and unloading (u _u\0)

paths, as was pointed out in Markou and Manolis (2016b). Also, Fig. 9 should be con-

sulted, where the elastic and dissipative contributions of the components of the THM1

system are presented. Additionally, elastoplastic elements (components 8 and 9) are

responsible to describe the energy dissipation for small strain amplitudes due to their small

yield displacement uy, see Table 9 and Fig. 8f. Next, Fig. 10 presents the overall behavior

of the THM1 system for all strain amplitudes along with the comparison against the

experimental results. Finally, Fig. 11 gives a better representation of the comparison of the

THM1 system with the experimental results at each strain amplitude separately, and clearly

shows an almost perfect fit between simulated and recorded curves. The total number of

parameters for the THM1 system is 33 and the identification error is rather small at

e2 = 2.50 %.

Six THM2 components are connected in parallel to describe the shear behaviour of the

HDRB experiment, and the identified mathematical parameters are presented in Table 10,

along with the corresponding mechanical formulations. Component 1 has softening

behavior (k2\ k1), while the remaining components show hardening behavior (k2[ k1),

(a)

(b)

Fig. 13 a Elastic and b dissipative force breakdown in the THM2 model
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see Table 10 and Fig. 12. Components 1 and 2 have a small yield displacement uy and they

describe the energy dissipation for small strain amplitudes, where the rest of the compo-

nents remain in the elastic range. In Fig. 13, the elastic and dissipative contributions of the

THM2 system are presented, while in Fig. 14 the overall behavior of the THM2 system is

presented along with the comparison with experimental data. The comparison shows that

the system fails to describe the larger energy dissipation at larger strain amplitudes. The

total number of parameters of the THM2 system is 30, and the identification error is

e2 = 5.00 %, namely twice that of the THM1 system. Additional THM2 components did

not help improve the fitting between experimental and simulated curves, meaning that six

THM2 is the limit for this case.

For more details on the modelling approach for the THM1 the reader is referred to

Markou et al. (2016), where the THM1 is solved analytically for the case of the single

degree of freedom systems, while ongoing work aims to develop numerical implementa-

tion for the case of multi-degree of freedom systems. For the case of THM2, the system can

be solved by using Newmark’s method combined with Newton–Raphson iteration, see

Chopra (2012).

(a)

(b)

Fig. 14 a Force-displacement curves of the THM2 model and b comparison of the numerically simulated
with the experimental results
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5 Conclusions

Two different mechanical formulations corresponding to the same basic mathematical

model for the well-known BHM are introduced here. In order to account for hardening and

softening effects observed in various materials and structural components, the extension of

each BHM, which now becomes a THM, is presented. The differences between the two

possible THMs (models 1 and 2), in terms of both mechanical and mathematical repre-

sentations, are highlighted and explained. More specifically the differences are: (a) THM1

exhibits three plastic phases and one elastic phase, while THM2 exhibits three plastic

phases and two elastic phases; (b) the change of slope in the plastic phases during

unloading (u _u\0), does not occur at the same displacement level for either model; and

(c) the dissipated energy per cycle of amplitude ua decreases in the case of hardening and

increases in the case of softening for the THM1 model, while in THM2 model the dissi-

pated energy remains constant as is the case with the BHMs and it is not affected by either

softening or hardening effects. Next, numerical applications are presented in order to

quantify these differences observed in the behaviour of the two THMs. A set of cyclic

shear tests on a HDRB under a wide range of strain amplitudes shows that the shear

behaviour observed can be described by a parallel system, which comprises only one type

of component, namely the THM1 with identification error e2 = 2.50 %. On the other hand,

a parallel-type THM2 model fails to describe the behaviour of the HDRB since it does not

account for increasing energy dissipation at larger amplitudes (the identification error here

is e2 = 5.00 %). Compared to THM2, THM1 has the following advantages: (a) it accounts

for larger energy dissipation at larger strain amplitudes; (b) it better describes the different

behaviour observed during the loading (u _u[ 0) and unloading (u _u\0) paths in the

HDRB; and (c) the THM1 mechanical model, through a proper choice of parameters, can

be reduced to simpler models, namely a trilinear elastic spring and an elastoplastic ele-

ment, which actually are the two mechanical components of the THM2 model.
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