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Abstract Based on a framework of Probabilistic Seismic Demand Analysis, a nonlinear

dynamic model of a reinforced concrete (RC) building was established to obtain a demand

hazard curve that considers multidimensional performance limit states (MPLSs), including

combinations of peak floor acceleration and interstory drift. A definition of the two limit

states is expressed using a generalized MPLSs equation. The peak floor acceleration and

the interstory drift were considered to be dependent and were assumed to follow a bidi-

mensional lognormal distribution. The maximum interstory drift and the maximum peak

floor acceleration were calculated using Increment Dynamic Analysis and nonlinear time

history analysis. The numerical formula for a demand hazard curve of the modelled

building was then derived by coupling the bidimensional lognormal distribution with the

ground motion hazard curve. The uncertainties involved in MPLSs and structural

parameters, as well as the different threshold values for peak floor acceleration, were

further considered to determine the sensitivity of demand hazard curves. The analysis

results showed that the proposed method can be used to describe the damage performance

of various building structures, which are sensitive to multiple response parameters

including drift and acceleration. Moreover, it was demonstrated in this study that the

demand hazard curves were relatively conservative if the coefficient of variation, the peak

floor acceleration threshold, the interaction factor NIDR and added stiffness, were appro-

priately selected.
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Abbreviations
MPLSs Multidimensional performance limit states

IDA Incremental Dynamic Analysis

PSDA Probabilistic Seismic Demand Analysis

PSHA Probabilistic seismic hazard analysis

EDP Engineering Demand Parameter

PDF Probability density function

IDR The maximum interstory drift

PFA The maximum peak floor acceleration

IM Intensity measures

Sa(T1) Spectral acceleration

idr Threshold value of the interstory drift limit state

pfa Threshold value of the peak floor acceleration

limit state

idrlim Interstory drift limit state

Pfalim Peak floor acceleration limit state

idrrand lim;i A random threshold value of the interstory drift

limit state at the ith performance level

pfarand lim;i A random threshold value for the peak floor

acceleration limit state at the ith performance

level

idrfixed lim;i A deterministic threshold value of the interstory

drift limit state at the ith performance level

pfafixed lim;i A deterministic threshold value for the peak floor

acceleration limit state at the ith performance

level

idrlim,ij A deterministic interstory drift limit state at the

ith performance level

pfalim,j The jth fixed peak floor acceleration limit state

e Uncertainties of ground motion and epistemic

uncertainty

Y Uncertainties of structural system characteristics

NIDR, NPFA Interaction factor determining the shape of the

surface of 2D limit state

X The one-dimensional failure domain of the

structure

D The two-dimensional failure domain

lIDRjIM¼im The log-mean of interstory drift

rIDRjIM¼im The log-standard deviation of interstory drift

lPFA|IM = im The log-mean of peak floor acceleration

rPFA|IM = im The log-standard deviation of peak floor

acceleration

q The correlation coefficient

cv The coefficient of variation

f IDR;PFAjIM ¼ imð Þ PDF of a bivariate lognormal distribution

f(IDR) PDF of the interstory drift

f ðidrrand lim;iÞ PDF of interstory drift limit state

P(IDR[ idr|IM = im) The hazard fragility function
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P(IDR[ idr, PFA[ pfa|IM = im) A two-dimensional hazard fragility function

kIM(im) Seismic hazard function of the site originated

from PSHA

vIDR(idr) The mean annual frequency of exceeding the

interstory drift limit state

vIDR,PFA(idr, pfa) The mean annual frequency of exceedance that

includes two limit states

vIDRðidrrand lim;iÞ The mean annual frequency of exceeding the

random interstory drift limit state

vIDR,PFA(idrlim,ij, pfalim,j) The mean annual frequency of exceeding ith fixed

interstory drift limit state when the effect of jth

acceleration threshold is considered

vIDR;PFAðidrrand lim;i; pfarand lim;iÞ The mean annual frequency of exceeding two

randomly independent/interdependent limit states

P½idr\IDRðY ¼ y; IM; eÞ� The probability of structural damage in the design

working life

P½idr\IDRðY ¼ y; IM; eÞ; pfa� The probability of structural damage that reflects

two performance limit states

P½idrlim ij\IDRðY ¼ y; IM; eÞ; pfalim;j� The probability of structural damage when the

effect of jth acceleration threshold is considered

1 Introduction

Recent devastating natural hazards have caused structural damages and great economic

losses in a number of countries. Excessive deformation often leads to severe damage to

building structural members, but traditional force-based design methods underestimate the

deformation of the damaged components. Therefore, force-based designs have been unable

to meet earthquake-resistant requirements (Priestley 2000; Ghobarah 2001). Many foreign

and domestic scholars have begun to investigate a new seismic design method. In this

regard, American investigators have been the first to shift from force-based to perfor-

mance-based or displacement-based seismic design. Presently, performance-based design,

which emphasizes multi-level and multi-target fortifications, has become the develop-

mental trend in seismic design in the worldwide construction industry. Due to the

uncertainties of ground motion parameters and structural materials, structural responses are

usually considered as uncertain. Many academics have suggested that probabilistic term

should be the basis for discussion of the philosophy and methods of performance-based

seismic design (Porter 2003; Deierlein et al. 2003; Moehle and Deierlein 2004). In par-

ticular, the U.S. Pacific Earthquake Engineering Research (PEER) Center has presented a

framework for performance-based earthquake engineering (PBEE), which was established

using full probabilistic theory (Deierlein, et al. 2003; Moehle and Deierlein 2004). One

goal of PBEE has been to calculate the mean annual frequency of surpassing a given level

of structural response. Consequently, some experts have utilized Probabilistic Seismic

Demand Analysis (PSDA) to calculate the mean annual exceeding frequency and evaluate

the seismic performance level of structures that will be subjected to a future earthquake

event (Tothong 2007; Shome 1999). The ultimate aim of PSDA is to obtain a structural

demand hazard curve based on a multi-performance level, which would be similar to the

seismic hazard curve obtained using the Probabilistic Seismic Hazard Analysis (PSHA)
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(Cornell 1968). A notable work (Yun et al. 2002) has evaluated the seismic performance of

steel-frame structures at two performance levels using PSDA. Other recent studies

(Tothong and Cornell 2006; Zeng et al. 2012; Wu et al. 2012) have shown that the demand

hazard curves of building structures and bridges can be developed by combining PSDA

with Incremental Dynamic Analysis (IDA).

Although these efforts have focused on the evaluation of structural demand hazards

(e.g., drift hazard, bearing displacement hazard, etc.) at various performance levels, the

literature reviewed in the introduction to this paper are by no means comprehensive. For

example, the performance limit threshold is viewed only as a deterministic quantity in

PSDA, whereas it is intended to be regarded as a random variable. Furthermore, in the

PSDA analysis either a single performance limit state is employed or two unrelated limit

states are used in the analysis. By contrast, outstanding researches (Cimellaro et al. 2006;

Cimellaro and Reinhorn 2010) have emphasized that structural seismic performance should

be estimated using bidmensional performance limit states (e.g., drifts, accelerations, etc.).

In addition, similar application investigations have also been reported in the literature that

focus on improving the accuracy of seismic performance evaluation (Wang et al. 2012; Sun

et al. 2013). However, the dependencies between multiple demand parameters and the

application of the seismic fragility have not been addressed in these reported studies. In

addition, to date there have been few literature reports of how multiple limited parameters

affect structural demand hazards. The study reported here maintains that the demand

hazard curves of a given structure should be evaluated using two different types of seismic

demands. To be realistic, the uncertainties of two limit states and the dependencies

between two responses were combined to develop demand hazard curves for a structure.

An effective methodology for calculating structural demand hazards is presented in this

study by considering bidimensional performance limit states. The proposed method was

then applied to a six story RC frame structure, selecting the peak floor acceleration and the

interstory drift as Engineering Demand Parameters (EDPs). Four performance levels of the

modelled building were defined based on the strength of the combination of the perfor-

mance of various structural components (ATC58-2 2006). The corresponding limit states

were defined using a generalized MPLSs equation. Subsequently, the maximum interstory

drift and the maximum peak floor acceleration were calculated using Increment Dynamic

Analysis and nonlinear time history analysis. Since the two seismic responses follow a

bidimensional lognormal distribution, the demand hazard curves of the modelled building

were derived by combining the bidimensional fragility curve and the seismic hazard curve.

To increase the conservative nature of the demand risk assessment, the uncertainties of

limit states, structural parameters and peak floor acceleration thresholds were discussed

based on the sensitivity analysis of demand hazard curves.

A framework of the proposed technical process is presented in Fig. 1.

2 Probabilistic seismic demand analysis (PSDA)

2.1 Performance-based PSDA

PSDA can predict the structural responses that will occur in future earthquakes using

probabilistic methods. These predictions are then used to evaluate the seismic performance

of structures by combining the results with probabilistic seismic hazard analysis (PSHA).

In this reported study, following the PEER practice, a structural response can be termed an
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Engineering Demand Parameter (EDP) and can be computed using IDA (Vamvatsikos and

Cornell 2004). The intensity of a ground motion record is represented by an intensity

measure (IM), which might be represented by a spectral acceleration or peak ground

acceleration. If the maximum interstory drift in a structure is considered to be the only EDP

and the IM is considered to be the spectral acceleration Sa(T1), the mean annual frequency

of exceeding a given limit level can be calculated (Baker and Cornell 2005; Lin et al. 2011)

according to:

vIDRðidrÞ ¼
Z

IM

PðIDR[ idrjIM ¼ imÞ dkIMðimÞ
dim

����
����dim ð1Þ

where vIDR(idr) is the mean annual frequency of exceeding the interstory drift limit state;

IDR is the maximum interstory drift; idr is threshold value of the interstory drift limit state;

IM is spectral acceleration; kIM(im) is the seismic hazard function of the site originated

from PSHA (Jalayer 2003). The term P(IDR[ idr|IM = im) represents the hazard fragility

A six story RC building

A nonlinear dynamic model of the  building 
generated using SAP2000

Compute the maximum interstory drift      
and maximum peak floor acceleration, 

respectively Assuming that the two dependent
responses follow a bivariate 

lognoraml distribution

N-dimensional hazard fragility function Seismic hazard curve by PSHA

Drift hazard curve considering 
n-dimensional limit state

Uncertainties of limit states, structural parameters 
and peak floor acceleration thresholds

Sensitivity
analysis

Twenty real ground motion 
records for a given spectra 

acceleration

Incremental Dynamic Analysis
Nonlinear time history analysis

Entered
into

Scale spectra acceleration 
from low level to higher level

Sensitivity
analysis

Effects of different random 
threshold values of interstory 

drift limit state
Chose different values of cv

(0,0.1,0.5,1.0)

Uncertainty Analysis 

univariate
lognormal distribution

Equation 11 Drift hazard curve

process
trapezoidal

method

Chose different values of cv
(0,0.1,0.5,1.0)

Uncertainty Analysis 

univariate
lognormal distribution

Equation 11 Drift hazard curve
Poisson
process

trapezoidal
method

Effects of deterministic 
threshold value of peak floor 

acceleration limit state
Vary one peak floor acceleration threshold 

and fix all threshold values of interstory drift 

Threshold Analysis 

bivariate
lognormal distribution

Equation 14 Equation 15Poisson
process

trapezoidal
method

Influences of two randomly independent/dependent limit 
states and structural parameters on drift hazard curve

Chose different values of both cv
(0,0.1,0.5,1.0) and Equation (18)

Uncertainty Analysis 

bivariate
lognormal distribution

Equation (18)Both cv

Equation 16 Equation 19

trapezoidal
method

Increased stiffness and 
additional damping 

Parametric Analysis 

 Change stiffness
matrix

Damping 
coefficient

Influence of cv

Drift hazard curve

Fig. 1 Flowchart of the proposed methodology
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function. From Eq. (1) it can be seen that performance-based PSDA is needed to compute a

structural response and a ground motion hazard curve. This numerical integration can be

calculated using a trapezoidal method.

Kiureghian (2005) revealed that the structural damage event {edp\EDP(y, IM, e)}
was Poisson in time and a structural demand hazard function could be expressed as:

P½idr\IDRðY ¼ y; IM; eÞin t years] ¼ 1� expf�vIDRðidrÞtg ð2Þ

where Ydenotes uncertainties of structural system characteristics (e.g., geometrical

dimensions, material parameters, damping characters, etc.), e represents the uncertainties

of ground motion and epistemic uncertainty; P½idr\IDRðY ¼ y; IM; eÞ� is the probability

of structural damage in the design working life.

2.2 Definition of multidimensional performance-based PSDA

In this study, the definition of performance-based PSDA was extended to multi-dimensions

to increase the reliability of the structural demand risk assessment. The proposed

methodology applies to any EDP, so that the maximum peak floor acceleration (PFA) can

be also used as an EDP together with the maximum interstory drift. If the responses IDR

and PFA are used simultaneously and the proposed intensity measurement Sa(T1) is used as

IM, the effect of the nonstructural components of the PFA on the mean annual frequency of

exceedance can be calculated as:

vIDR;PFAðidr; pfaÞ ¼
Z

IM

PðIDR[ idr;PFA[ pfajIM ¼ imÞ dkIMðimÞ
dim

����
����dim ð3Þ

where P(IDR[ idr, PFA[ pfa|IM = im) represents a two-dimensional hazard fragility

function (Cimellaro et al. 2006). Also, vIDR,PFA(idr, pfa) is the mean annual frequency of

exceedance that includes two limit states. The uncertainties in both these structural

responses are produced by a common source of uncertainties; hence, the two response

parameters should be considered to be stochastically dependent using a bivariate lognormal

distribution. The two-dimensional probability density function is shown as follows:

f IDR;PFAjIM ¼ imð Þ ¼ 1

2pIDR� PFArIDRjIM¼imrPFAjIM¼im

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p

� exp� 1

2 1� q2ð Þ � a2 � 2qabþ b2
� �� � ð4Þ

where a ¼ ðln IDRð Þ � lIDRjIM¼imÞ=rIDRjIM¼im; b = (ln (PFA) - lPFA|IM=im)/rPFA|IM=im; q
is the correlation coefficient between ln (IDR) and ln (PFA). lIDRjIM¼im and rIDRjIM¼im are

the log-mean and the log-standard deviation of interstory drift, respectively; lPFA|IM=im and

rPFA|IM=im are the log-mean and the log-standard deviation of peak floor acceleration. The

relationship between these two responses and their associated limit states are described

using a bidimensional limit state equation. Given this, the probability of exceeding the

performance levels can be calculated as
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PðIDR[ idr;PFA[ pfajIM ¼ imÞ ¼
Z1

idr

Z1

pfa

f ðIDR;PFAjIM ¼ imÞdIDRdPFA ð5Þ

where f(IDR, PFA|IM = im) is a bidimensional lognormal distribution; idr is threshold

value of the interstory drift limit state; pfa is threshold value of peak floor acceleration

limit state. Substituting Eq. (5) into Eq. (3), we obtain

vIDR;PFAðidr; pfaÞ ¼
Z

IM

Z1

idr

Z1

pfa

f ðIDR;PFAjIM ¼ imÞ dkIMðimÞ
dim

����
����dIDRdPFAdim ð6Þ

From Eq. (6) it can be seen that multidimensional performance-based PSDA requires

the computation of two responses and a seismic hazard curve. Equation (6) is calculated

using multiple integral trapezoidal methods. If the calculation accuracy and variance

reduction are considered, using the trapezoidal method, the computational efficiency will

be higher than if the Monte Carlo integral is used (Rahman and Xu 2004; Ming and Zheng

2010; Sun and Pan 2011). The effect of nonstructural components of PFA on the demand

hazard curve of the example structure can be calculated as:

P½idr\IDRðY ¼ y; IM; eÞ; pfa in t years] ¼ 1� expf�vIDR;PFAðidr; pfaÞtg ð7Þ

where P½idr\IDRðY ¼ y; IM; eÞ; pfa� is the probability of structural damage that reflects

two performance limit states.

2.3 Formulation of multidimensional performance limit state

A generalized MPLSs equation provides a tool for considering dependencies among the

threshold vectors of various components. The relationship between various threshold limit

states can be determined using the multidimensional surface function (Cimellaro and

Reinhorn 2010).

LðR1; . . .;RnÞ ¼
Xn
i¼1

Ri

rlim;i

� 	Ni

� 1 ¼ 0 ð8Þ

where Ri represents a response parameter (e.g., deformation, acceleration, velocities, etc.),

rlim,i represents a response threshold parameter related to structural damage; Niis an

interaction factor determining the shape of multidimensional surface. The two-dimensional

and three-dimensional limit state surfaces, which can be generated using the generalized

MPLSs equation, are shown in Fig. 2. From Fig. 2a, it can be seen that the dashed line

represents the dependency of two-dimensional limit state rlim,1 and rlim,2. In addition,

structural damage will occur if the response parameters fall into the failure domain. Fig-

ure 2b represents a relationship between the parameters in the 3D limit state.

For the two-dimensional case, the generalized MPLSs equation can be expressed as

follows:

IDR

idrlim

� 	NIDR

þ PFA

pfalim

� 	NPFA

�1 ¼ 0 ð9Þ

where IDR is the maximum interstory drift; PFA is the maximum peak floor acceleration;

idrlim is interstory drift limit state; pfalim is peak floor acceleration limit state; NIDR and
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NPFA are interaction factors determining the shape of the surface of two-dimensional limit

state.

A simpler expression is obtained by assuming NPFA = 1:

PFA

pfalim
þ IDR

idrlim

� 	NIDR

�1 ¼ 0 ð10Þ

where idrlim, pfalimand NIDR are independent quantities and are commonly obtained from

field data and probabilistic analysis (Cimellaro and Reinhorn 2010).

Bidimensional limit state

Failure domain

rlim, 1

r li
m
,2

(a) 

rlim, 1
rlim, 2

r li
m
,3

(b) 

Fig. 2 Multidimensional limit state surface: a bidimensional surface; b three-dimensional surface
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3 Effects of uncertainties of limit states

3.1 Different random threshold values for the interstory drift limit state

The performance limit states of structural and nonstructural components represent the level

of response and depend on mechanical properties such as strength and deformability,

which are, in themselves, uncertain. Consequently, the limit states should be considered to

be random variables rather than deterministic quantities. In this section the case is the

simplest, where the interstory drift and the associated limit state are treated as random

variables and follow a lognormal distribution (Cimellaro et al. 2006). The effects of

different random threshold values of the interstory drift limit state on the mean annual

frequency of exceedance can be obtained by the following Eq. (11).

vIDRðidrrand lim;iÞ ¼
Z

IM

Z

X

Z

idrrand lim;i

f ðIDRÞ f ðidrrand lim;iÞ
dkIMðimÞ

dim

����
����dIDRdidrrand lim;idim

ð11Þ

where X is the one-dimensional failure domain of the structure; f(IDR) is the probability

density function of the interstory drift; idrrand lim;i is a random threshold value of the

interstory drift limit state at the ith performance level. f ðidrrand lim;iÞ is the probability

density function (PDF) of interstory drift limit state and is described as follows:

f idrrand lim;i

� �
¼ 1

idrridrrand lim;i

ffiffiffiffiffiffi
2p

p exp
�ðlnðidrrand lim;iÞ � lidrrand lim;i

Þ2

2r2idrrand lim;i

( )
ð12Þ

where lidrrand lim;i
and ridrrand lim;i

are the log-mean and the log-standard deviation of interstory

drift limit state at the ith performance level. These two parameters are obtained using

Eq. (13):

lidrrand lim;i
¼ lnðidrfixed lim;iÞ; ridrrand lim;i

¼ cv � idrfixed lim;i; ð13Þ

where idrfixed lim;i is a deterministic threshold value of the interstory drift limit state at the

ith performance level; cv is the coefficient of variation of the random interstory drift limit

state.

3.2 Deterministic threshold value of peak floor acceleration limit state

Considering the effect of the deterministic peak floor acceleration limit state, the definition

of a mean annual frequency of exceedance is given by the following integral:

vIDR;PFAðidrlim;ij; pfalim;jÞ ¼
Z

IM

Z1

idrlim;ij

Z1

pfalim;i

f ðIDR;PFAÞ dkIMðimÞ
dim

����
����dIDRdPFAdim ð14Þ

where idrlim,ij is a deterministic interstory drift limit state at the ith performance level when

the effect of jth acceleration threshold is considered; pfalim,j is the jth fixed peak floor

acceleration limit state; f(IDR, PFA) is the bidimensional lognormal distribution. The

deterministic threshold values of the interstory drift limit state (0.2–0.5–1.5–2.5 % of story

height) is chosen based on FEMA 445 (2006) and four fixed peak floor acceleration

thresholds are rooted in ATC58-2 (2006) (0.6 g for the case of immediate occupancy and
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1.1 g for the case of collapse prevention). The effects of various deterministic threshold

values of the peak floor acceleration on the drift hazard curve can be depicted as (the

results are further elaborated in Sect. 5.2):

P½idrlim ij\IDRðY ¼ y; IM; eÞ; pfalim;j in t years]

¼ 1� expf�vIDR;PFAvIDR;PFAðidrlim;ij; pfalim;jÞtg
ð15Þ

3.3 Different random threshold values for drift and acceleration limit states

Taking into consideration the two randomly independent limit states and two dependent

responses, the mean annual frequency for exceeding two random limit levels can be

computed as follows:

vIDR;PFAðidrrand lim;i; pfarand lim;iÞ ¼
Z

IM

Z1

idrrand lim;i

Z1

pfarand lim;i

f ðIDR;PFAÞ dkIMðimÞ
dim

����
����dIDRdPFAdim

ð16Þ

where idrrand lim;i is a random threshold value of the interstory drift limit state at the ith

performance level; pfarand lim;i is a random threshold value for the peak floor acceleration

limit state at the ith performance level. Since the PDF of the peak floor acceleration limit

state is similar to Eq. (12), the log-mean and the log-standard deviation of the limit

parameter can be also expressed as follows:

lpfarand lim;i
¼ lnðpfafixed lim;iÞ; rpfarand lim;i

¼ cv � ðpfafixed lim;iÞ; ð17Þ

where pfafixed lim;i is a deterministic threshold value for the peak floor acceleration limit

state at the ith performance level; cv is the coefficient of variation for the peak floor

acceleration limit state (the same coefficient of variation for both limit states is used in this

study).

3.4 Randomly interdependent drift and acceleration thresholds

Here, it is reasonable to assume that the bidimensional failure domain can be defined by the

following equation:

LðIDR;PFAÞ ¼ PFA=pfarand lim;i þ IDR=idrrand lim;i

� �NIDR � 1 ð18Þ

where NIDR determines the dependency between the bidimensional limit states. Different

values of the parameter NIDR (e.g., 1, 2, 3, 5 and 15, etc.) were used to determine the

sensitivity of the demand hazard curve.

Using the description in Eq. (18), the mean annual frequency of exceeding two ran-

domly interdependent limit levels can be expressed using the following Eq. (19).

vIDR;PFAðidrrand lim;i; pfarand lim;iÞ ¼
Z

IM

ZZ
D

f ðIDR;PFAÞ dkIMðimÞ
dim

����
����dIDRdPFAdim ð19Þ

where D is the two-dimensional failure domain denoted by Eq. (18).
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4 Case study

4.1 Description of an RC building

To demonstrate the proposed method and provide insights into the impact of uncertainties

in the two-dimensional limit states on the drift hazard curve, a sample six story RC frame

structure was used as case study example. The elevation of the longitudinal and transverse

frames in the building is shown in Fig. 3. The total height of building is 18 m. The lengths

of longitudinal and transversal spans were 32 m and 12 m, respectively. Moreover, col-

umns and beams’ cross sections were 450 mm 9 450 mm and 300 mm 9 300 mm,

respectively. The distributed steel in the building members was calculated using building

code GB50011 (2010). Nonstructural components in the modelled RC building were infill

walls, which were regularly distributed from second story to the roof (Fig. 3). The

designed thickness of the infill walls was 240 mm. The foundation was assumed to be on

medium hard soil represented by site class II (the shear wave velocity was between 250 and

500 m/s). The seismic grade of the RC frame structure was level 2 (JGJ3 2010).

4.2 Material parameters of the building components

All members in the modelled building were composed made of RC structural components

reinforced HPB335 (longitudinal rebar) and HPB235 (stirrups). The foundation of the

building employed C30 concrete with 100 mm of C15 cushion plain concrete. The elas-

ticity modulus of the concrete and steel were 30GPa and 200GPa. Their corresponding

Poisson’s ratios were 0.2 and 0.3. The density of the reinforced concrete was 2500 kg m-3.

For the nonstructural components (infill walls), the strength of the brick and mortar were

MU10 and M5. The elasticity modulus and the density of the masonry were 2.4GPa and

1900 kg m-3 (GB50011 2010).

4.3 Finite-element modeling

A nonlinear dynamic model of the RC building was generated using the finite element

analysis software SAP2000. Generally, the M3 hinge, P-M2-M3 hinge and V2 hinge were

used to model both ends of the RC columns and beams. The plates were modeled using the

3rd floor

4th floor

5th floor

6th floor

 roof

4000 4000

2nd floor

4000 4000 4000 4000 4000 4000

30
00

30
00

30
00

30
00

30
00

30
00

4000 4000

30
00

30
00

30
00

30
00

30
00

30
00

infilled wall

4000

Fig. 3 The elevation of the longitudinal and transverse frames in the building
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shell-thin element. The infill walls were assumed to be equivalent to an oblique com-

pression bar, which was modeled using truss element and uniaxial hysteresis materials (Li

et al. 2009). The fundamental mode for the given structure was set at 0.6557 s in a small

earthquake. A major earthquake was found to initially generate plastic hinges at each end

of the beams on the ground floor and second floor of the building. Sequentially, these

hinges occurred at the bottom of corner column, which was the concentrated region of

structural stress.

4.4 Ground motion input

Ground motion input is an uncertain quantity that can have a significant influence on the

evaluation of the structural responses to seismic loading, because it is very difficult to

estimate the plethora of possible parameters (e.g., magnitude, spectrum characteristic,

duration, etc.) involved in seismic event. Baker and Cornell (2005) illustrated how ground

motion records can be selected for a study using the Conditional Mean Spectrum (CMS). In

parallel with recent conceptual work (Baker 2010), the target response must be calculated

using the seismic effect coefficient curve (GB50011 2010).

An efficient criterion that can be used to match ground motion and the target spectrum

(CMS) is the sum of squared errors (SSE) between the logarithms of the record’s spectrum

and the target spectrum, as detailed in the work of Baker (2010)

SSE ¼
Xn
j¼1

ln SaðTjÞ � ln SatargetðTjÞ
� �2 ð22Þ

where lnSa(Tj) is the log of the spectral acceleration of the ground motion at period Tj;

lnSatarget (Tj) is the log of the target spectrum value at period Tj. The periods Tj should

cover the period range and 50 Tj values per order of magnitude of periods is sufficient to

discriminate between ground motion records with a legitimate match to the target

spectrum.

Using this process, sixty real earthquake records (M = 6.5–6.9, R = 0.5–20 km) were

chosen for capturing the uncertainties of ground motions. Finally, as demonstrated in

Fig. 4, twenty actual seismic inputs were selected whose response spectra shapes were

similar to the shape of the target response spectrum. In Fig. 4, the dashed line represents

the mean response spectrum (damping ratio, n = 5 %).

4.5 Definition of performance levels and computations of the two maximum
responses

The performance levels of the RC building were classified into four grades, normal

operation, immediate occupancy, life safety and collapse prevention, according to the

combination of the performances between structural components and nonstructural com-

ponents. The threshold values of both limit states that influence the four performance levels

are shown in Table 1 (ATC58-2 2006; FEMA 2006).

Incremental Dynamic Analysis (IDA) is regarded as a novel approach that provides a

relationship between the intensity measurement and the seismic response (Vamvatsikos

and Cornell 2002, 2004). To perform a complete range of the structural response from

elasticity to finally collapse, a series of twenty selected recorded ground motions were

entered into the FE model. Each record was scaled from low IM levels to higher IM levels

until a structural collapse occurred. Figure 5 shows the twenty IDA curves of Sa(T1) versus
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Table 1 The threshold values of interstory drift and peak floor acceleration limit states

Four performance
levels

Normal operation
(NO)

Immediate occupancy
(IO)

Life safety
(LF)

Collapse prevention
(CP)

idrfixedlim,i (%) 0.2 0.5 1.5 2.5

pfafixedlim,i 0.4 g 0.6 g 0.8 g 1.1 g
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Fig. 5 Twenty IDA curves of Sa(T1) versus interstory drift
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interstory drift. The collapsed interstory drift is acquired when each IDA curve is close to

horizontal line. Moreover, the maximum accelerations of the nonstructural components

(infill walls) were calculated using nonlinear time history analysis. Similarly, all of the

chosen earthquake records were scaled to different intensity levels. In general, the collapse

of the nonstructural components will occur if the maximum peak floor acceleration exceeds

1.1 g (Sun et al. 2013).

4.6 Seismic hazard

The geographical location of the modelled building is designated to be western China. This

was a Class II site, with eight times the intensity of an earthquake and the designing ground

acceleration was set as 0.20. Employing these parameters, the seismic hazard analysis was

conducted using the simplified model (Jalayer 2003; Cornell and Krawinkler 2000) shown

below:

kSaðSaÞ ¼ P½Sa � x� ¼ k0 � x�k1 ð22Þ

where kSaðSaÞ is the mean annual frequency of exceeding a given intensity measure, k0 is a

constant related to the ground motion characteristics and k1 is the slope of the seismic

hazard curve in logarithmic coordinates. Since the mean annual frequencies of medium and

major earthquakes are 1/1475.475 and1/12,475.2475, respectively, k0 and k1 can be cal-

culated through the interpolation of two known points. Here, k0 = 0.000079203 and

k1 = 2.3814.

5 Sensitivity analysis on drift hazard curves

5.1 Effects of different random threshold values of the interstory drift limit
state

A sensitivity analysis of the coefficient of variation was necessary, because the interstory

drift hazard curve is affected by the various random threshold values of interstory drift

limit state. Figure 6 shows the effects of the different values of the coefficient of variation

on the drift hazard curve. As can be seen from Fig. 6, the differences between the drift

hazard curves corresponding to cv = 0.1 as well as cv = 0.5 and cv = 1.0 are quite small.

However, the drift hazard curve with a limit state uncertainty of cv = 0 is lower than the

others which signifies its importance to the limit state uncertainty. For collapse prevention

level, it is observed that the drift hazard curve with a deterministic limit state is less than

33 % of the others with the limit state uncertainty. This indicates that the use of random

threshold values for the drift limit state can produce conservative results in contrast to

results based on the deterministic threshold value.

5.2 Effects of different deterministic threshold values of peak floor
acceleration

A significant study reported by Cimellaro and Reinhorn (2010) concluded that the

threshold values of the peak floor acceleration limit state are not stable. As a result, the

drift hazard curve was investigated, where the deterministic threshold of the interstory drift

limit state was fixed, while the threshold value of the peak floor acceleration varied from
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0.4 g to ?. For comparison, the drift hazard curves based on different threshold values of

the peak floor acceleration limit state are shown in Fig. 7. As can be seen in this figure the

sensitivity of the acceleration threshold values will be reduced if the threshold value is

greater than 0.8 g. However, the drift hazard curve that ignores the acceleration threshold

is smaller than that the one that reflects acceleration threshold values of pfalim = 0.4 and

pfalim = 0.5. The results shown in Fig. 7 demonstrate that the mean annual frequency of
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exceedance will be underestimated if the threshold value of the acceleration limit state is

not chosen accurately.

5.3 Effects of different random threshold values of two limit states

In this section, the same coefficient of variation for both limit states was applied to perform

the sensitivity analysis of the drift hazard curve when two randomly independent limit

states were introduced. The drift hazard curves, which are built for different values of the

coefficient of variation related to the limit thresholds, are plotted in Fig. 8. From the drift

hazard curves at the life safety and collapse prevention performance levels, it can be seen

that the mean annual frequency of exceedance will be underestimated if the uncertainties

of the two limit states are neglected (cv = 0). However, the computation results will be

more conservative if the coefficient of variation is suitably increased. The mean annual

frequency of exceedance described in Eq. (16) at the normal operation performance level

is 0.14711 as defined by the Monte Carlo integral (105 times). Considering the variance

reduction, Monte Carlo cannot provide the approximate distribution. If the integral

dimension is less than four, the computational efficiency employing the trapezoidal method

will be much better than it would be using the Monte Carlo method (Rahman and Xu 2004;

Ming and Zheng 2010; Sun and Pan 2011).

5.4 Effects of randomly interdependent drift and acceleration limit states

The parameter NIDR describes the shape of two-dimensional limit states. The relationship

between the two limit states becomes a regular/irregular arc-shaped, when NIDR C 2. If

NIDR ? ?, the limit states of interstory drift and peak floor acceleration are not correlated.

Figure 9 shows the influence of different values on the parameter NIDR on the drift hazard

curve. The data in this figure show that the drift hazard curve will be relatively
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conservative if the value of the parameter NIDR is selectively assigned. For example, the

drift hazard curve corresponding to NIDR = 2 are quite difference from the drift hazard

curve corresponding to NIDR = 15. It is observed that differences may up to 66.9 % for life

safety performance level. Normally, the dependency between the two limit states is con-

tinually reduced as the value of the parameter NIDR is increased.

5.5 Sensitivity of the drift hazard curves to structural parameters

Recent reports (Cimellaro et al. 2006; Cimellaro 2007; Cimellaro et al. 2009) have stressed

that it was essential to consider the effects of structural parameters (e.g., stiffness, damping

and strength, etc.) in a structural risk assessment to ensure the reliability of the results.

Figure 10a shows the influence of stiffness on the drift hazard curve and how increments of

stiffness reduce the mean annual frequency of exceedance. From this figure, it can be seen

that the uncertainties in the limit states generate large values of the mean annual frequency

of exceedance and a reduction in this parameter can be realized by stiffening the structure.

This revelations lead to the conclusion that if uncertainties in the limit states are omitted,

the structural risk assessment may be inaccurate.

Some earlier reported work (Barron-Corverra 2000; Reinhorn et al. 2001) has high-

lighted that additional damping can play a significant role in the evaluation of structural

reliability. The drift hazard curves for numerous values of damping ratios (5, 15 and 25 %)

are plotted in Fig. 10b. As shown, a drastically reduction in the mean annual frequency of

exceedance can be obtained for IDR values of up to 0.41 %, when damping ratio is

increased [Fig. 10b]. However, this reduction is not proportional to additional damping. It

is observed in Fig. 10b that not considering uncertainties in the limit states can be non-

conservative for drift values of up to 0.8 %, depending on the level of damping considered,

and conservative for lower drift values. Other structural parameters, such as strength have

also been considered. But increments of strength do not produce significant improvements
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in drift hazards, since the inelastic displacement might not be distinctly affected by

changes in strength. In summary, the influence of strength, stiffness, and damping may be

used in decisions about the use of retrofitting techniques.
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Fig. 10 Effects of a increased stiffness; b additional damping when the uncertainties of limit states are
included
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6 Conclusions

In this reported study, the definition of performance-based PSDA was primarily extended

to include multi-dimensions. A nonlinear model of a six story RC building was established

to verify the proposed analysis method. The maximum interstory drift of the modelled

structure was calculated using IDA and the maximum peak floor acceleration of infill walls

was attained using a nonlinear time analysis. The two response variables were considered

to be dependent and were described by a bivariate lognormal distribution. The relationship

between the two demand responses and their associated limit states was defined using a

generalized MPLSs equation. The drift hazard curve for the structure was developed by

combining the bivariate PDF and the seismic hazard curve.

From the proposed numerical analysis, it can be concluded that the uncertainties in the

two limit states for the modelled structure contribute positively to the seismic demand risk

assessment of the structure, particularly when comparing various structural retrofitting

techniques. If the coefficients of variation, peak floor acceleration threshold and the

interaction factor NIDR are suitably chosen, the drift hazard curve will be relatively con-

servative. Furthermore, parametric analyses illustrated that additional structural damping

had a considerable effect on the drift hazards from the perspective of increased stiffness.

The effect of uncertainties in the limit states can effectively resist a reduction in the mean

annual frequency of exceedance when damping ratio is increased.

Since PEER’s PBEE approach involves four stages: hazard analysis, structural analysis,

damage analysis, and loss analysis (Porter 2003), the proposed methodology, termed

damage analysis, may be useful for future economic loss evaluation.
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