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Abstract The aim of the paper is threefold: first, to evaluate earthquake-induced slope

displacements using numerical dynamic analysis considering different real acceleration

time histories as input motion and varying the resistance and the compliance of the sliding

mass; then, to assess the reliability of the numerical approach by comparing the nu-

merically calculated seismically induced slope displacements with predictions using

available empirical models and finally, based on the numerical analysis results, to propose

new displacement predictive models applicable in earthquake engineering practice, which

relate the co-seismic slope displacement with the best correlated intensity parameters.

Linear regression analyses are performed to correlate the computed displacements with

various intensity measures (IMs). Optimal scalar and vector IMs are identified in a rigorous

way based on proficiency (i.e. a composite measure of efficiency and practicality) and

sufficiency criteria. The correlation coefficient between the IMs is also considered for the

selection of appropriate vector IMs. Both scalar and vector regression analytical predictive

expressions are proposed appropriate for probabilistic or deterministic evaluation of the co-

seismic permanent slope displacements in regional and local scale. A generic example

proves the reliability of the proposed analytical expressions.
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1 Introduction

It is common practice in geotechnical earthquake engineering to assess the expected seismic

performance of slopes and earth structures by estimating the seismically induced permanent

ground displacements using one of the available displacement based procedures. Consid-

ering that the magnitude of seismic displacements ultimately governs the performance of a

slope after an earthquake, the use of such approaches is generally recommended. Typically,

two different approaches of increased complexity are proposed to assess permanent ground

displacements in case of seismically triggered slides: Newmark-type displacement methods

and advanced stress–strain dynamic methods. Newmark-type methods are based on the

sliding block assumption first proposed by Newmark (1965) providing an index of the

dynamic slope performance. Advanced stress-deformation analyses based on continuum

mechanics (finite element, FE, finite difference, FDM) or discontinuum formulations usu-

ally incorporating complicated constitutive models, are recently becoming attractive, as

they can provide approximate solutions to problems which otherwise cannot be solved by

conventional methods e.g. the complex geometry including topographic and basin effects,

material anisotropy and non-linear behavior under seismic loading, in situ stresses, pore

water pressure built-up, progressive failure of slopes due to strain localization.

The input motion characteristics (i.e. amplitude/intensity, frequency content and dura-

tion) comprise the primary contributing factor in the calculation of the amount of earth-

quake induced slope displacement. Various simplified approaches use single parameters

characterizing the ground motion intensity (e.g. peak ground acceleration PGA), the fre-

quency content (e.g. mean period Tm) and the duration (e.g. significant duration D5–95). It

has been shown that ground motion intensity has the greatest impact on the displacement

prediction while features related to the frequency content and duration display weak

correlation with slope displacement (e.g. Saygili and Rathje 2008; Strenk and Wartman

2013). A possible explanation for this could be that the ground motion intensity predicts

the onset of slope movement and thus is initially more important than any frequency

content or duration parameter in assessing earthquake induced slope displacement (Saygili

and Rathje 2008). However, intensity ground motion parameters are usually supplemented

by additional parameters characterizing either the intensity or the frequency content and

duration of the earthquake ground motion, in order to provide more efficient and sufficient

estimates of the seismically induced slope displacements (Bray 2007).

The slope properties associated with the slope geometry, soil strength and stiffness

characteristics also play a crucial role in the seismic displacement prediction. In the dis-

placement based approaches, a single parameter, i.e. the yield acceleration coefficient, ky,

is commonly used to represent the overall resistance of the slope. The yield acceleration

coefficient depends primarily on the slope geometry and strength of the material along the

critical sliding surface and it may be determined through a pseudostatic analysis or by a

simplified empirical relationship (e.g. Bray 2007). Low ky values (near zero) are indicative

of a weak slope whereas as ky increases the strength of the slope increases as well. The

stiffness of the slope can be represented by the initial fundamental period of the slope, Ts.

For a stiff, nearly rigid slope case Ts approaches zero while for a deformable slope Ts can

normally be estimated using a simple analytical expression depending on the shape and the

dynamic response characteristics of the potential sliding mass.

Based on these general considerations, the aim of this study is threefold: (a) to assess

earthquake induced slope displacements using numerical dynamic analysis by performing a

comprehensive parametric study for different slope geometries, soil properties and input
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motions; (b) to compare the numerical results in terms of co-seismic permanent slope

displacements with available and widely used empirical displacement based models and

(c) based on the numerical results, to propose new displacement predictive models appli-

cable in earthquake engineering practice, which relate the co-seismic slope displacement

with the best correlated parameters characterizing the intensity of the strong ground motion.

The computed numerical displacements are first compared with the displacements

predicted from different empirical Newmark-type displacement procedures. The aim of

this comparison is, on the one hand, to gain confidence on the results of the numerical

analysis and, on the other hand, to assess the predictive capability of the different dis-

placement based approaches with respect to the more sophisticated numerical analysis.

Linear regression analyses are performed on the numerical analysis results to correlate

the computed displacements with various intensity measures (IMs). Optimal scalar and

vector IMs are identified in a rigorous way based on proficiency (i.e. a composite measure

of efficiency and practicality) and sufficiency criteria. An additional factor, namely the

correlation coefficient between the IMs, is also considered for the selection of appropriate

vector IMs. Finally, both scalar and vector regression analytical predictive expressions are

developed to assess the co-seismic permanent slope displacement. Such expressions may

be effectively used in engineering practice within a deterministic or probabilistic frame-

work for the evaluation of the seismic slope displacement both in regional or local scale. At

the end a typical example is presented where the co-seismic permanent slope displace-

ments have been estimated using the proposed analytical expressions in comparison with

some of the most frequently used ones.

2 Empirical displacement based predictive models

Starting from the pioneer study of Newmark (1965), several empirical models are currently

available to predict seismically induced displacements of sliding masses. These generally

differ with respect to the assumptions and idealizations used to model the mechanism of

earthquake-induced displacement. They are intended for soil slopes that do not undergo

significant strength loss (i.e. liquefaction or flow slides). They are grouped into three main

types (Jibson 2011): rigid-block, decoupled, and coupled slopes. The rigid-block model

originally proposed by Newmark (1965) treats the potential landslide block as a rigid mass

(no internal deformation) that slides in a perfectly plastic manner on an inclined plane. The

original Newmark rigid sliding block assumption is employed in many of the available

simplified slope displacement procedures (e.g. Sarma 1975; Lin and Whitman 1986;

Ambraseys and Menu 1988; Yegian et al. 1991; Jibson 2007; Saygili and Rathje 2008 etc.).

A quantitative comparison of existing simplified rigid block methods was performed by

Cai and Barthurst (1996). Rigid-block analysis is appropriate for analyzing thin, ‘‘stiff’’

landslides but yields quite unconservative results for deep, ‘‘flexible’’ slopes. The dynamic

site response and the sliding block displacements are computed separately in the ‘decou-

pled’ approach (e.g. Makdisi and Seed 1978; Bray and Rathje 1998; Rathje and Antonakos

2011) or simultaneously in the ‘coupled’ stick–slip analysis (Rathje and Bray 2000; Bray

and Travasarou 2007). Some of the most commonly applicable seismic displacement

procedures that account for the soil deformability (both coupled and decoupled) are dis-

cussed in Bray (2007). Generally, irrespective of their assumptions to analyze the dynamic

slope response, recent approaches (e.g. Watson-Lamprey and Abrahamson 2006; Jibson

2007; Saygili and Rathje 2008; Bray and Travasarou 2007; Rathje and Antonakos 2011)
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involve larger ground motion datasets and robust mathematical regression techniques and

therefore they are expected to yield more reliable estimates of the slope displacement. In

the following, four empirical predictive models, namely the conventional analytical

Newmark rigid block model (Newmark 1965), the Jibson (2007) rigid block model, the

Rathje and Antonakos (2011) decoupled sliding block model and finally the Bray and

Travasarou (2007) coupled stick–slip sliding block model, are briefly discussed.

She Newmark conventional analytical rigid block method is used to predict average

slope displacements obtained by integrating twice with respect to time the parts of an

earthquake acceleration-time history that exceed the critical or yield acceleration, ac (ky�g)
(i.e. threshold acceleration required to overcome shear soil resistance and initiate sliding).

The second approach is a simplified rigid block model proposed by Jibson (2007), which

predicts slope displacement as a function as Arias intensity (Ia) and critical acceleration

ratio (ac/PGA). This method was selected considering that Arias intensity was found to be

the most efficient IM for stiff, weak slopes (Travasarou 2003). The third method is a two-

parameter vector (PGA, PGV) model proposed by Rathje and Antonakos (2011). This

model is often recommended for use in practice due to its ability to significantly reduce the

variability in the displacement prediction (Saygili and Rathje 2008). For flexible sliding,

kmax (e.g. peak value of the average acceleration time history within the sliding mass) is

used in lieu of PGA and k-velmax (e.g. peak value of the k-vel time history provided by

numerical integration of the k-time history) is used to replace PGV. The last one is the

Bray and Travasarou (2007) model. In this model cumulative displacements are calculated

using the nonlinear fully coupled stick–slip deformable sliding block model proposed by

Rathje and Bray (2000) to capture the dynamic response of the sliding mass. They use a

single intensity parameter to characterize the equivalent seismic loading on the sliding

mass, i.e. the ground motion’s spectral acceleration Sa at a degraded period equal to 1.5Ts,

which was found to be the optimal one in terms of efficiency and sufficiency (Bray 2007).

It is noted that Newmark method is an analytical rigid block approach whereas Jibson

(2007), Rathje and Antonakos (2011) and Bray and Travasarou (2007) models are

essentially regression models of the analytical form of the rigid-block, decoupled and

coupled methods respectively. As such, Newmark analytical method uses the entire time

history to characterize the seismic loading as opposed to the simplified methods of Jibson

(2007), Bray and Travasarou (2007) and Rathje and Antonakos (2011) that use one [Ia,

Sa(1.5Ts)] and two (PGA, PGV) intensity parameters respectively. In this way, uncer-

tainties (and potential biases) associated to the selection of the ground motion intensity

parameters are limited in the Newmark conventional analytical approach.

Table 1 summarizes the functional form of the three simplified sliding block models

examined in this study. The herein models yield mean (Jibson 2007) or median (Rathje and

Antonakos 2011, Bray and Travasarou 2007) values of seismic slope displacement when

the standard deviation (the last term in the equations) is ignored. These median or mean

displacement values are used in this study for the comparison with the herein calculated

numerical displacements.

3 Numerical parametric analysis

Two dimensional (2D) fully non-linear numerical analyses are performed for idealized

step-like slope configurations applying the finite difference code FLAC2D (Itasca 2011)

considering different real acceleration time histories as input motion and varying the
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resistance and the compliance of the sliding mass (characterized by the yield coefficient,

ky, and the fundamental period of the sliding mass, Ts, respectively). In particular, 12

typical 2D stress–strain slope soil models are analyzed with varying geometrical charac-

teristics, material properties of the surface layer as well as strength and stiffness of the

potential sliding surface. Figure 1 describes the layout of the problem under study whereas

Table 2 summarizes the analyzed models.

A sensitivity analysis is conducted to assure that the boundaries of the considered soil

models are far away enough to avoid rebounding (e.g. Morales-Esteban et al. 2015). Thus,

models m1–m4 have a total length of 400 m and a thickness of the elastic bedrock equal to

30 m, models m10 and m12 a total length of 900 m and a thickness of the elastic bedrock

equal to 30 m while for the rest models (m5–m9 and m11) the total length and the

thickness of the elastic bedrock increase to 1200 and 70 m respectively. The thickness of

the stiff clayey soil layer is considered equal to 30 m for all analyzed models.

The discretization allows for a maximum frequency of 10 Hz to propagate through the

grid without distortion. A finer discretization is adopted in the slope area with quadratic

elements of 0.5–1.5 m 9 0.5–1.5 m, whereas towards the boundaries of the model the

mesh is coarser (1.5–2.5 m 9 1.5–5 m). It is noted that the element size varies for the

different analyzed soil models depending on the stiffness of each layer (it increases for the

stiffer deeper layers). In total, approximately 9500 quadrilateral elements are considered

for models m1–m4, 18,500 elements for models m10 and m12 and 21,000 elements for the

rest analyzed models (m5–m9 and m11). Free field absorbing boundaries (Cundall et al.

1980) are applied along the lateral boundaries whereas quiet boundaries (Lysmer and

Kuhlemeyer 1969) are applied along the bottom of the dynamic model to further reduce the

Table 1 Functional form of the simplified sliding block models used in this study

Model Functional form

Jibson (2007)
simplified
rigid block
model

log ðDÞ ¼ 0:561 log ðIaÞ � 3:833 log(ac=PGAÞ � 1:474� r
where D is in cm, Ia in m/s and PGA and ac in g

Rathje and
Antonakos
(2011)
simplified
decoupled
sliding
block
model

For rigid sliding masses

ln Dð Þ ¼ �1:56� 4:58
ky

PGA

� �
� 20:84

ky

PGA

� �2

þ 44:75
ky

PGA

� �3

�30:50
ky

PGA

� �4

þ

� 0:64 ln ðPGAÞ þ 1:55 ln ðPGVÞ þ e rInD
where D is in cm, PGA in g and PGV in cm/s

For flexible sliding masses, kmax (in g) and k-velmax (in cm/s) are used to replace PGA and
PGV respectively and a term conditioned to Ts is added:

ln Dflexibleð Þ ¼ ln DPGA;PGV

� �
þ 1:42Ts for Ts � 0:5

ln Dflexibleð Þ ¼ ln DPGA;PGV

� �
þ 0:71 for Ts [ 0:5

where Dflexible is in cm and Ts in seconds

Bray and
Travasarou
(2007)
simplified
coupled
stick–slip
sliding
block
model

For the flexible sliding block case (Ts[ 0.05):

ln ðDÞ ¼ �1:10� 2:83 ln ðkyÞ � 0:333 ðlnðkyÞÞ2 þ 0:566 lnðkyÞ lnðSað1:5TsÞÞ
þ 3:04 ln ðSað1:5TsÞÞ � 0:244 ðlnðSað1:5TsÞÞÞ2 þ 1:50Ts þ 0:278 ðM� 7Þ � e

where D is in cm, Ts in seconds and Sa(1.5Ts) in g
For the nearly rigid sliding block case (Ts\ 0.05):

ln Dð Þ ¼ �0:22� 2:83 lnðkyÞ � 0:333 ðlnðkyÞÞ2 þ 0:566 ln ðPGAÞ
þ 3:04 ln ðPGAÞ � 0:244 ðln ðPGAÞÞ2 þ 1:50Ts þ 0:278 ðM�7Þ � e

where D is in cm, Ts in seconds and PGA in g
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effect of trapped energy and artificially reflected waves. The soil materials are modeled

using Mohr–Coulomb elastoplastic constitutive model characterized by its yield function

and flow rule (Itasca 2011). The failure envelope corresponds to the Mohr–Coulomb

criterion (shear yield) with tension cutoff (tension yield function) assuming a nonassoci-

ated flow rule for shear failure, and an associated rule for tension failure. Thus, when

irreversible strain accumulation takes place the energy dissipation is intended to be cap-

tured through the yield model. A small amount of mass and stiffness-proportional Rayleigh

damping (3 % for the soil materials and 0.5 % for the elastic bedrock) is also assigned to

account for the energy dissipation during the elastic part of the cyclic response. The center

(minimum) frequency of the Rayleigh damping (fmin) is selected to lie between the natural

modes of the models, f1 (defined by the downhill and uphill resonant frequencies re-

spectively) and f2 = 5�f1 based on common practice (e.g. Kwok et al. 2007). This range

includes the models’ natural frequencies and the predominant frequencies of the input

motions.

Generic soil properties are considered based on the available literature and engineering

judgment. These are selected to vary for the surface layer while they are kept constant for

the intermediate layer and the elastic bedrock. The mechanical properties adopted for the

soil materials and the elastic bedrock are presented in Table 3.

The initial fundamental period of the sliding mass (Ts) is estimated using the simplified

expression: Ts = 4H/Vs, where H is the depth and Vs is the shear wave velocity of the

potential sliding mass. The depth of the sliding surface as well as the horizontal yield

coefficient, ky, are evaluated by means of pseudostatic slope stability analyses utilizing the

Bishop’s simplified method for the critical sliding surface. It‘s worth noticing that a fixed

value of ky is calculated assuming that no significant strength loss is anticipated in the

slope soil material (e.g. no liquefaction or strain softening).

The dynamic input motion consists of SV waves vertically propagating from the base.

The seismic input applied along the base of the dynamic model consists of a set of 40 real

acceleration time histories recorded on rock outcrop or very stiff soil (soil classes A and B

according to EC8) and derived from the SHARE database (Seismic Hazard Harmonization

Fig. 1 Layout of the problem under study
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in Europe, www.share-eu.org) (Table 4). The input accelerograms represent motions from

moment magnitudes, Mw, varying from 5 to 7.62 recorded at epicentral distances, R,

between 3.4 and 71.4 km with shear wave velocity at the first 30 m, Vs,30, between 602 and

2016 m/s. The input peak ground acceleration (PGA) values range from 0.065 to 0.91 g,

the peak ground velocity (PGV) values range from 3.1 to 78.5 cm/s, the mean period Tm

ranges from 0.16 to 1.14 s and the arias intensity Ia ranges from 0.015 to 10.97 m/s.

Figure 2 presents relative scatter plots of Mw–lnR, ln(PGA)–ln(PGV), ln(PGA)–ln(Tm) and

ln(PGA)–ln(Ia) describing the distributions of the main ground motion parameters. To

obtain the appropriate input motion at the base of the FLAC2D model, the selected time

histories are first subjected to baseline correction and filtering (f1 = 0.25 Hz, f2 = 10 Hz)

to assure accurate representation of wave transmission through the model. Moreover, due

to the compliant base used in the model, the appropriate input excitation corresponds to the

upward propagating wave train that is taken as one-half the target outcrop motion (Mejia

and Dawson 2006).

Prior to the dynamic simulations, a static analysis is carried out to establish the initial

effective stress field throughout the model. It is noticed that only the cases that result to

nonzero displacement (C0.001 m) due to seismic loading are addressed. Thus, the number

of dynamic analyses performed for each model depends on the considered ky value in

relation to the PGA values of the selected input motions (see Table 4; Fig. 2). For instance,

40 dynamic analyses were carried out for model m6 (ky = 0.05, see Table 2) while 13

analyses were possible for model m10 (ky = 0.3, see Table 2).

4 Comparison of the numerical approach with empirical Newmark-type
methods

The dynamic analysis results are extracted in terms of permanent horizontal displacements

within the sliding mass for the idealized step-like slopes, characterized by different flex-

ibility and resistance of the potential sliding surface. Thus, the variation of permanent

horizontal displacements across the slope depends on the considered slope soil model. The

sandy slope soil materials (e.g. models m1, m3, m5, m8, m9) are generally associated with

thinner and shallower sliding surfaces and consequently to more condensed displacement

field. On the contrary, larger and deeper sliding surfaces corresponding to more extended

displacement field are shown for the clayey slope soil materials (e.g. models m2, m4, m6,

m7, m10, m11, m12). ‘‘Average’’ values of the horizontal displacements are considered for

the comparison with the empirical methods as well as for the derivation of the analytical

expressions to account for the variation of the displacements within the sliding mass. In

particular, the maximum computed horizontal displacements within the sliding mass were

appropriately reduced, multiplied by a reduction factor equal to 0.65, to account for the fact

that the sliding mass is deformable and that the maximum horizontal displacements act

only in a rather small part of the sliding mass. Considering that the numerically computed

horizontal displacements will be used to propose closed form analytical expressions for the

average co-seismic slope displacements, it would be conservative to use the maximum

computed horizontal displacement values. It‘s worth noting that the use of the afore-

mentioned reduction factor in the maximum computed horizontal displacements has been

shown to yield a realistic approximation of the average response of the sliding mass in

terms of permanent horizontal displacements in all analysis models.
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Figure 3 presents the distribution of the ‘‘average’’ values of the numerical horizontal

displacements in log space that vary from very small values (smaller than 0.01 m) to large

ones ([1 m). In total, 285 nonzero permanent horizontal displacements are calculated for

all considered analysis cases.

Fig. 2 Distributions of the main ground motion parameters

Fig. 3 Histogram of the computed numerical horizontal displacements (for all models, N = 285)
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These displacements are then compared with the slope displacement (D) predicted with

four empirical models commonly used in earthquake engineering practice, i.e. the con-

ventional analytical Newmark rigid block model (Newmark 1965), Jibson (2007) rigid

block model, Rathje and Antonakos (2011) decoupled sliding block model and Bray and

Travasarou (2007) coupled stick–slip sliding block model. The main modeling assump-

tions and input parameters of these methods have been discussed in Sect. 2. This com-

parison aspires not only to enhance the reliability of the numerical analysis results but also

to assess the relative accuracy of the different displacement based approaches with respect

to the present a priori more advanced numerical approach. It is noted that Newmark-type

methods capture the part of seismically induced displacement attributed to the deviatoric

induced deformation while the corresponding part attributed to the volumetric compression

is not account for. This displacement due to deviatoric deformation is largely horizontal

(Bray and Travasarou 2007) justifying the use of the horizontal (instead of the vector)

numerical displacement for the comparison.

To derive the appropriate inputs for the Newmark-type methods that include the effect

of soil conditions, and to allow a direct comparison with the numerical results, the ac-

celeration time histories and the corresponding intensity parameters at the depth of the

sliding surface were computed through a one-dimensional (1D) non-linear site response

analysis using FLAC 2D considering the same soil properties as in the 2D dynamic

analysis (Fig. 4). In particular, as for 2D analysis, 12 1D soil models are constructed that

are then subjected to the same recorded earthquake motions described previously. It is

noticed that the 1D soil profile is located at the section that approximately corresponds to

the maximum slide mass thickness H of the potential sliding surface (section A in Fig. 4).

The maximum slide mass thickness H (or otherwise the maximum depth of the sliding

surface, see Table 2), which is calculated by means of pseudostatic slope stability analysis

for the critical sliding surface, varies between 2 and 26 m for the different analyzed slope

cases.

Figure 5 presents correlations between the ground motion intensity parameters of the

input motion at the rock outcrop and the corresponding intensity parameters at the depth of

the sliding surface calculated via 1D dynamic analysis. It is seen that all intensity pa-

rameters display a considerable variability with respect to the considered site conditions

(soil or rock). A linear regression fit of the logarithms of the IM, rock–IM, soil which

minimizes the regression residuals is suggested for all IMs as shown in the figure. Such

log-linear relationships could be used in practice to calculate the required IMs for soil

Fig. 4 Schematic view of the model used to perform the 1D dynamic analyses

Bull Earthquake Eng (2015) 13:3207–3238 3219

123



conditions (e.g. at the bottom of the potential sliding mass) given the corresponding IMs at

the rock outcrop. The latter parameters are normally more easily obtained from a seismic

hazard analysis. It is noted, however, that these equations are valid within the range of the

input ground motion parameters considered in this study and should not be used outside of

this range.

Fig. 5 Variation of peak ground acceleration, peak ground velocity, Arias intensity, mean period and
spectral acceleration at 1.5Ts of the input outcropping accelerograms (PGA,rock; PGV,rock; Ia,rock;
Tm,rock, Sa(1.5Ts),rock) with the corresponding calculated peak ground acceleration, peak ground velocity,
Arias intensity, mean period and spectral acceleration at 1.5Ts at the depth of the sliding surface (PGA,soil;
PGV,soil; Ia,soil; Tm,soil, Sa(1.5Ts),soil)
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Figure 6 shows a direct comparison between analytical Newmark’s, Jibson (2007) Bray

and Travasarou (2007) and Rathje and Antonakos (2011) displacements with the horizontal

displacements calculated from the 2D dynamic numerical analyses. It is observed that

numerical displacements generally are not inconsistent with the predicted Newmark-type

displacements enhancing the reliability and robustness of the dynamic analysis results. In

particular, the following general observations can be deduced from Fig. 6: (1) Newmark

method generally predicts smaller displacements compared to the numerical model, (2)

Jibson (2007) model tends to underpredict small numerical displacements and overpredict

large displacements, (3) Rathje and Antonakos (2011) model goes relatively well with

respect to the numerical analysis except for a group of under-predicted displacements at the

small displacement range, and finally (4) Bray and Travasarou (2007) model is generally in

good agreement with the numerical analysis although its ability to predict very small

displacements cannot be assessed as it cannot predict displacements smaller than 0.01 m.

It is noted that cases where Bray and Travasarou (2007) model computed ‘‘zero dis-

placement’’ (i.e.\0.01 m) and FLAC analysis did not, were not considered for the com-

parisons as they cannot be plotted in Fig. 6. To have a common dataset for all methods,

these cases have also been excluded from the comparison with the other empirical

methods.

A relatively large dispersion in the displacement estimation is shown. This dispersion is

also displayed in Fig. 7, which presents the cumulative distribution of the relative dif-

ference (Relative difference ð%Þ ¼ Dnumerical�Dempirical

Dnumerical
� 100%) between the numerical and

Fig. 6 Numerically versus empirically calculated displacements
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empirical slope displacements for each of the empirical sliding block model. Similar

cumulative distribution functions were presented in Meehan and Vahedifard (2013) to

compare the predictions of various simplified empirical displacement based models with

the actual observed displacement. It is noted that for positive values of the relative dif-

ference the empirical methods underpredict the displacements derived from the numerical

analysis and vice versa.

By examining the cumulative distribution functions it is seen that Newmark analytical

rigid block model and Rathje and Antonakos (2011) decoupled model generally tend to

predict smaller displacements compared to the numerically derived ones. In particular,

positive values of the relative difference in the displacement prediction are presented for

cumulative frequencies from around 20–30 to 100 %. On the other hand, Bray and Tra-

vasarou (2007) coupled model may either overpredict or underpredict the numerical dis-

placements yielding positive values of the relative difference in the displacement

prediction for cumulative frequencies from around 49 to 100 %. This is in line with the

inherent coupled stick–slip assumption adopted in the method that offers a conceptual

improvement over the rigid block and decoupled approaches for modeling the physical

mechanism of earthquake-induced slope displacement. Finally, Jibson (2007) simplified

rigid block model tends to predict larger displacements compared the numerically calcu-

lated ones dominated by negative predictions of the relative difference for cumulative

frequencies up to 65 %. The latter model is also associated with a very large dispersion in

the median displacement estimation with respect to the numerical analysis compared to the

former ones. This dispersion is obvious in the cumulative distribution of the relative

difference diagram resulting to relative differences greater than -500 % for cumulative

frequencies up to 20 %. This observation confirms Jibson’s statement concerning the

avoidance of using his regression equations for site-specific applications (e.g. for design

purposes) where accurate estimates of displacement are required. Instead, he states that

they could be used in regional-scale assessment and mapping of seismic landslide hazards.

After analyzing all data a distinction is also made between stiff (Ts\ 0.2 s) and flexible

(Ts[ 0.2 s) slopes as well as between weak (ky B 0.1) and high strength (ky[ 0.1) slopes.

Figures 8 and 9 show correlations between numerically and empirically estimated dis-

placements for varying Ts and ky values respectively.

It is seen that all empirical models generally tend to underpredict the numerical dis-

placements for flexible slopes presenting positive values of relative difference in the

Fig. 7 Cumulative distribution
of the Relative difference (%)
between numerical and empirical
slope displacements for each of
the empirical sliding block
models
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displacement prediction for cumulative frequencies from around 0–45 to 100 % (see

Fig. 10, right).

For stiff sliding masses, Newmark and Rathje and Antonakos (2011) models generally

tend to underestimate the numerically derived displacements whereas Jibson (2007)

severely overpredicts the corresponding displacements. Bray and Travasarou (2007)

method predicts median displacements (cumulative frequency 50 %) that are in good

agreement with the ones calculated by the numerical analysis (see Fig. 10, left).

For weak slopes, Newmark and Rathje and Antonakos (2011) models show good cor-

relations with respect to the dynamic analysis, while Jibson (2007) and Bray and Trava-

sarou (2007) models predict greater displacements (see Fig. 11, left).

Finally, for high strength slopes, Newmark, Rathje and Antonakos (2011) and Bray and

Travasarou (2007) models tend to underestimate the numerically calculated displacements

while Jibson (2007) model presents median displacement predictions that are in accor-

dance with the numerical ones (see Fig. 11, right).

In all considered cases, among the four models, Newmark’s analytical approach pre-

sents the minimum dispersion. This trend may prove the superiority of the analytical over

the simplified approaches as the latter are ‘‘models of models’’ that are subjected to

additional assumptions associated with reducing the analytical approach into a simplified

mathematical equation.

Fig. 8 Numerically versus empirically calculated displacements for stiff and flexible sliding masses
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5 Predictive models for assessing seismic displacement using numerical
analysis data

5.1 Development of regression models using optimal scalar intensity
measures

Uncertainty in the ground motion characterization is the greatest source of uncertainty in

calculating earthquake induced slope displacements (Bray 2007). Thus, the selection of

appropriate IMs is important to increase the accuracy of the predictive analytical rela-

tionships of seismic permanent displacement. The selection of the proposed IMs is also

important to reduce the overall computation effort, as fewer ground motions are required to

achieve the desired accuracy.

The optimal IM is identified through regression analyses correlating the numerically

calculated seismically induced slope displacements (D) and various IMs, namely PGA,

PGV, Ia, Tm, Sa(1.5Ts). These are some of the most frequently used IMs in earthquake

engineering practice representing different aspects of the ground motion characteristics

(i.e. intensity, frequency content and duration). In particular, PGA characterizes the

earthquake ground motion peak amplitude (amplitude/intensity), PGV the intensity and

frequency content of the earthquake motion, Ia the intensity and implicitly the duration of

the ground motion, Tm the earthquake frequency content and finally Sa(1.5Ts) is related to

both the ground motion intensity and the frequency characteristics of the sliding mass. It is

Fig. 9 Numerically versus empirically calculated displacements for weak and high strength sliding masses
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noted that the ratio ky/PGA is also used as an IM as it provides a direct assessment of

whether the displacement will be greater than zero (i.e. for PGA[ ky, D[ 0 and 0

otherwise) (Saygili and Rathje 2008). It is also worth mentioning that the estimated IMs at

the depth of the sliding surface estimated via the 1D dynamic analyses (Sect. 4), which

account for the affect of soil conditions (including soil classes B, C and D according to

EC8), are used in the regressions. Considering the fact that seismic motions are essentially

recorded at the ground surface, IMs at the free-field ground surface are suggested in

practice without any depth modification. This is in line with previous studies (e.g. Bray and

Travasarou 2007; Rathje and Antonakos 2011) and as discussed in Bray and Travasarou

(2007) is considered a relatively ‘‘conservative’’ hypothesis. In cases, however, where the

IMs for soil conditions cannot be accurately estimated or for more generic applications,

simplified relationships that yield the IMs for soil conditions (e.g. at the depth of the sliding

surface) given the corresponding IMs at the rock outcrop are proposed (see Sect. 4).

In this study IMs were rated based on two different criteria: proficiency (i.e. a composite

measure of efficiency and practicality) (Padgett et al. 2008) and sufficiency (Luco and

Cornell 2007). Proficiency serves as the primary factor in the selection process for an

Fig. 10 Cumulative distribution of the Relative difference (%) between numerical and empirical slope
displacements for each of the empirical sliding block models for stiff (Ts\ 0.2 s) and flexible (Ts[ 0.2 s)
sliding masses

Fig. 11 Cumulative distribution of the Relative difference (%) between numerical and empirical slope
displacements for each of the empirical sliding block models for weak (ky B 0.1) and high strength
(ky[ 0.1) sliding masses
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optimal IM while sufficiency is a secondary factor, which further supports the selection of

appropriate IMs.

A power model is first used to describe the relationship between the seismic slope

displacement D and the various IMs:

D ¼ a � IMb ð1Þ

where a and b are coefficients defined by the regression.

This can be rearranged to perform a linear regression of the logarithms of the IMs and

the response quantity (seismic slope displacement) to establish a demand model of the

following form:

ln ðD) ¼ b � ln ðIM)þ ln ða)þ e � r ð2Þ

where D is the seismically induced slope displacement (in m), e is the standard normal

variant with zero mean and unit standard deviation. The dispersion term sigma (r) rep-
resents the conditional standard deviation of the regression (in natural log units) and is a

metric of the efficiency of the IM with respect to the demand parameter (seismic slope

displacement). Lower r values yields less dispersion about the estimated median in the

results indicating a more efficient IM.

The regression parameter b in Eq. 2 is a metric of the practicality of the IM. Practicality

describes the dependence of the level of the slope displacement upon the level of the IM.

When this parameter approaches zero the IM term contributes negligibly to the demand

estimate and thus a lower b value implies a less practical IM (Padgett et al. 2008).

For an optimal IM selection, the term proficiency is introduced (Padgett et al. 2008)

which measures the composite effect of efficiency and practicality. A more proficient IM is

characterized by a lower modified dispersion f and is estimated as follows:

f ¼ r=b ð3Þ

Figure 12 presents correlations between the slope displacements and the various consid-

ered IMs along with the curves fit using Eq. 2.

Table 5 lists the parameters of the demand models from Eq. 2 as well as their profi-

ciency. As shown in the table, PGV and Ia are the most efficient IMs whereas PGV is the

most proficient one followed by PGA and ky/PGA (shown in bold in Table 5). Thus,

although Ia is an efficient IM, it is not practical (low b value) and therefore it should not be

considered an optimal IM.

A sufficient IM is conditionally statistically independent of ground motion character-

istics, such as magnitude (M) and epicentral distance (R) (Luco and Cornell 2007). In this

study, the sufficiency is evaluated by performing a regression analysis on the residuals,

e|IM, from the calculated seismic slope displacements relative to the ground motion

characteristic, M or R (see Figs. 13, 14). A small p value for the linear regression of the

residuals on M or R is indicative of an insufficient IM, in which the coefficient of the

regression estimate is statistically significant. The cutoff for an insufficient IM is assumed

to be a p value of 0.10. For PGA, PGV, Sa(1.5Ts) and ky/PGA, the mean residuals do not

vary with distance (p value[0.10), but they increase with increasing magnitude (p value

*0). On the other hand, Ia is statistically independent from magnitude (p value = 0.70)

but it depends on epicentral distance (p value \0.10) while Tm is dependent both on

magnitude and epicentral distance (p value *0). These trends indicate that none of the

selected IMs satisfies the sufficiency criterion with respect to magnitude and epicentral

distance in a rigorous way.
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Fig. 12 Regression of seismic slope displacement for quantifying the efficiency and practicality of different
IMs

Table 5 Demand models and
their efficiency, practicality and
proficiency for the different con-
sidered IMs

IM ln(a) b r f

PGA (g) -0.428 2.127 0.93 0.44

PGV (cm/s) -8.892 1.873 0.80 0.43

Tm (s) -1.455 1.717 1.46 0.85

Ia (m/s) -2.944 0.993 0.82 0.82

Sa(1.5Ts) -1.716 1.588 1.21 0.76

ky/PGA -4.770 -2.165 1.01 0.46
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However, as shown by Shome (1999), the error in the prediction of the demand pa-

rameter (seismic slope displacement in our case) using a hazard decoupling assumption

with an insufficient IM can be as small as ±10 %. Considering that scalar IMs are pro-

posed to assess slope displacement based only on the proficiency criterion. In particular,

the most proficient IMs, i.e. PGV, PGA and ky/PGA, are suggested to correlate to slope

displacements using the functional form described in Eq. 2.

The yield coefficient ky, which represents the overall dynamic resistance of the slope,

has been always used in sliding block procedures due to its important effect on seismically

Fig. 13 Sufficiency of the studied IMs by examining the conditional statistical independence from
magnitude
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induced slope displacement (Bray 2007). In this respect, ky is also added to the regression

equation:

ln ðD) ¼ b � ln ðIM)þ ln ða)þ c � ky þ e � r ð4Þ

A linear dependence of the residuals for the considered IMs on ky is taken into account as

shown in Eq. 4.

The proposed regression parameters for the most proficient IMs, i.e. PGV, PGA and ky/

PGA are presented in Table 6. It is seen that the models display significantly less vari-

ability when considering ky term in the regression.

Fig. 14 Sufficiency of the studied IMs by examining the conditional statistical independence from
epicentral distance
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Finally, taking into account the dependence of the residuals for almost all considered

IMs (i.e. PGV, PGA, ky/PGA, Tm and Sa(1.5Ts)) on magnitude, magnitude term is also

added to the regression equation to eliminate bias due to magnitude:

ln ðDÞ ¼ b � ln ðIMÞ þ ln ðaÞ þ c � ky þ d �Mþ e � r ð5Þ

A linear dependence of the residuals for the IMs on magnitude is considered as shown in

Eq. 5. It’s worth noting that the inclusion of magnitude term in Eq. 4 captures in part the

influence of the duration of the seismic motion in the seismically induced slope dis-

placement estimation. The proposed regression parameters for the most proficient IMs, i.e.

PGV, PGA and ky/PGA, when considering also the magnitude dependence are presented in

Table 7. As shown in the table, the efficiency of the demand models is further improved

when considering the magnitude term. Based on the above considerations, these scalar

models (Eq. 5; Table 7) are recommended for use in engineering applications. However,

the demand models that do not include the magnitude term (Eq. 4; Table 6) could also be

applied at projects where the inclusion of magnitude causes some complication.

5.2 Development of regression models using optimal vector intensity
measures

The use of vector IMs enables the model to capture additional significant features of the

ground motion (related to its amplitude, frequency content or duration), which affect the

magnitude of the seismic slope displacement. Vector IMs were selected based on the

proficiency (i.e. efficiency and practicality) of the scalar IMs, the correlation coefficient

qILi,IMj between them as well as the overall efficiency of the vector model. Correlation

coefficients were estimated using the methodology outlined by Baker and Cornell (2006).

IMs with smaller correlation coefficients were selected as a smaller value of qILi,IMj

indicates that the two IMs cover more complementary information about the ground

motion parameters leading to a smaller standard deviation in the displacement prediction

(Saygili and Rathje 2008). PGV is considered as the first component of the vector as it is

the most proficient IM. Table 8 presents correlation coefficients between PGV and the

remaining IMs. It is seen that the combination of PGV and ky/PGA yields the lowest

Table 6 Demand models for most proficient IMs when considering the ky term in the regression equation

IM ln(a) b c r

PGA (g) 0.529 2.127 -6.583 0.80

PGV (cm/s) -8.028 1.873 -5.964 0.68

ky/PGA -5.965 -2.165 7.844 0.82

Table 7 Demand models for most proficient IMs when considering both the ky and the magnitude term in
the regression equation

IM ln(a) b c d r

PGA (g) -2.965 2.127 -6.583 0.535 0.72

PGV (cm/s) -9.891 1.873 -5.964 0.285 0.65

ky/PGA -10.246 -2.165 7.844 0.654 0.75
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correlation coefficient. The functional form used for the regression on a vector of IMs is

described as:

ln ðDÞ ¼ ln ðaÞ þ b � ln IM1ð Þ þ e � ln IM2ð Þ þ e � r ð6Þ

where D is the seismically induced slope displacement (in m), IM1 is the peak ground

velocity, IM2 is the second intensity measure and a, b, and e are regression coefficients.

Equation 6 was selected based on the observation that the residuals of the regression on

PGV had only a linear dependence on the logarithm of the remaining IMs when plotted

against them.

Table 9 presents the derived vector models along with their overall efficiency (defined

by their r values). As shown in the table, among the considered vector IMs, PGV–Ia and

PGV–ky/PGA are the most efficient ones (shown in bold in Table 9). It is seen that the

efficiency of the vector IMs is improved compared to the corresponding scalar IMs (lower

sigma values) (see Table 5).

However, it’s up to the engineer to decide on a project basis whether this improvement

in efficiency by the use of a vector IM offsets the complexities in the vector seismic hazard

evaluation associated with the computation of the joint annual probability of occurrence of

the pairs of ground motion parameters (Travasarou and Bray 2003).

The sufficiency criterion is addressed by considering the magnitude and distance depen-

dence of the residuals for each pair of IMs (see Figs. 15, 16). For all considered pairs of IMs,

the mean residuals do not vary with distance (p value C0.10). However, only PGV–ky/PGA

and PGV–Ia pairs are statistically independent frommagnitude (p valueC0.10) and therefore

only these IMs cover the sufficiency criterion. Thus the vectors IMs that may sufficiently

predict seismic slope displacement are PGV–ky/PGA and PGV–Ia. However, PGV–ky/PGA

pair has a correlation coefficient 0.15 that is indicative of intensity parameters that provide

considerable complementary information about the groundmotion as opposed to PGV–Ia pair

that distinguishes a quite higher correlation coefficient (equal to 0.67) (see Table 8). In

addition, PGV and ky/PGA represent the most proficient scalar IMs; consequently the PGV–

ky/PGA pair is proposed as the most appropriate one to correlate to seismic slope

displacements.

Table 8 Correlation coefficients between PGV and the remaining IMs

IM1/IM2 qIL1,IM2

PGA Tm Ia Sa(1.5Ts) ky/PGA

PGV 0.75 0.57 0.67 0.59 0.15

Table 9 Demand models and
their associated efficiency for the
different considered vector IMs

IM1 IM2 ln(a) b e r

PGV (cm/s) ky/PGA -9.524 1.873 -0.634 0.70

PGV (cm/s) Tm (s) -9.250 1.873 -0.444 0.79

PGV (cm/s) Ia (m/s) -8.940 1.873 0.072 0.80

PGV (cm/s) PGA (g) -8.897 1.873 0.025 0.80

PGV (cm/s) Sa(1.5Ts) (g) -8.912 1.873 0.018 0.80
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Finally, ky term is also incorporated in Eq. 6 considering its importance in seismic slope

displacement estimation. Thus the functional form for the regression on a vector of IMs

becomes:

ln ðDÞ ¼ ln ðaÞ þ b � ln IM1ð Þ þ e � ln IM2ð Þ þ c � ky þ e � r ð7Þ

Table 10 presents the proposed regression parameters and the associated standard de-

viations of the vector IMs when ky is also considered in the models. It is seen that

combination of PGV with Ia, PGA and ky/PGA yields the most efficient vector models.

From these vector models only PGV–Ia and PGV–ky/PGA (shown in bold in Table 10)

Fig. 15 Sufficiency of the studied vector IMs by examining the conditional statistical independence from
magnitude
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cover the sufficiency criterion and thus they are recommended for use. However, between

the two vector models, PGV–ky/PGA model is to be preferred taking into account the

increased proficiency of ky/PGA compared to Ia. As in the scalar IMs, a considerable

increase in efficiency is observed when ky term is added in the regression equation.

5.3 Suggested scalar and vector predictive models

Based on the optimally selected scalar and vector IMs, Eqs. 8–12 summarize the proposed

scalar (Eqs. 8–10) and vector (Eqs. 11–12) predictive models for assessing the seismically

induced slope displacement that are recommended for use in practice:

Fig. 16 Sufficiency of the studied vector IMs by examining the conditional statistical independence from
epicentral distance
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ln Dð Þ ¼ �9:891þ 1:873 � ln PGVð Þ � 5:964 � ky þ 0:285 �M� e � 0:65 ð8Þ

ln ðD) ¼ �2:965þ 2:127 � ln PGAð Þ � 6:583 � ky þ 0:535 �M� e � 0:72 ð9Þ

ln ðD) ¼ �10:246� 2:165 � ln ky=PGA
� �

þ 7:844 � ky þ 0:654 �M� e � 0:75 ð10Þ

ln Dð Þ ¼ �8:076þ 1:873 � ln PGVð Þ þ 0:200 � ln Iað Þ � 5:964 � ky � e � 0:61 ð11Þ

ln Dð Þ ¼ �8:360þ 1:873 � ln PGVð Þ � 0:347 � ln ky=PGA
� �

� 5:964 � ky � e � 0:64 ð12Þ

where D is in m, PGA in g, PGV in cm/s and Ia in m/s.

As discussed previously, the free field ground surface intensity parameters (i.e. PGA,

PGV, Ia) estimated through a seismic hazard analysis that account for site effects could be

used in the above equations without any depth modification. Otherwise, one could estimate

the IMs for soil conditions (e.g. at the depth of the sliding surface) given the corresponding

IMs at the rock outcrop using the simplified expressions proposed in this study (see

Sect. 4).

5.4 Example application

A typical application of the proposed scalar and vector regression models is presented to

exemplify the proposed analytical expressions to assess the co-seismic slope displacement

providing also a comparison with Newmark-type methods. A natural step-like slope is

considered with a yield coefficient ky equal to 0.1. The elastic fundamental period of the

slide mass Ts is estimated as 0.2 s assuming a maximum depth of the sliding mass and an

average Vs equal to 15 m and 300 m/s respectively.

The scenario earthquake is represented by a real ground motion derived from the

SHARE database (Seismic Hazard Harmonization in Europe, www.share-eu.org) that is

recorded on soil conditions (soil class C according to EC8) with moment magnitude

Mw = 6.93 and epicentral distance R = 30 km. Table 11 presents the main characteristics

of the recorded ground motion while Table 12 depicts the estimated ground motion in-

tensity parameters that will be used for the given example application.

The median (or mean) and the median (or mean) ± 1 r predictions for the proposed

scalar and vector models (see Sect. 5.3) as well as the corresponding predictions of the

empirical Newmark-type models applied in this study are presented in Table 13 for the

given earthquake event and slope properties.

It is seen that the proposed models within the framework of this study predict consistent

displacement for the considered earthquake scenario and slope properties. The estimated

median values vary from 0.118 to 0.140 m, resulting at a maximum difference in the

Table 10 Demand models and their associated efficiency for the different considered vector IMs when
considering the ky term in the regression equation

IM1 IM2 ln(a) b c e r

PGV (cm/s) ky/PGA -8.360 1.873 -5.964 -0.347 0.64

PGV (cm/s) Tm (s) -8.310 1.873 -5.964 -0.380 0.66

PGV (cm/s) Ia (m/s) -8.076 1.873 -5.964 0.200 0.61

PGV (cm/s) PGA (g) -7.671 1.873 -5.964 0.334 0.64

PGV (cm/s) Sa(1.5Ts) (g) -7.912 1.873 -5.964 0.189 0.66
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prediction on the order of 15 %. In particular, the scalar ky/PGA–M model predicts the

smallest displacement (0.118 m)while the largest one is predicted by both the scalar PGV–M

and the vector PGV–ky/PGA models. Such differences are not considered important taking

also into account the considerable aleatory variability associated to both the characteristics of

the slope and the ground motion intensity parameters.

As shown in the table, for the scalar predictive models the estimated median ?1 r and

median -1 r displacements are about two times and half the median value respectively.

Considering that the vector models are shown to display smaller r values, the estimated

range of the median ±1 r displacements is even more converged for the proposed two-

parameter vector models.

A comparison between the slope displacements estimated by the models recommended

for use in this study and the corresponding displacements predicted by the empirical

models is also performed (see Table 13). It is observed that Newmark analytical rigid

block method predicts an average displacement that is 25–37 % smaller than the median

displacements estimated by the proposed models, while the remaining simplified models

Table 12 Estimated ground motion intensity parameters of the given earthquake event

PGA (g) PGV (cm/s) Tm (s) Ia (m/s) Sa (1.5Ts) (g)

0.363 32.87 0.526 1.197 0.715

Table 13 Seismic slope displacement predictions for the proposed scalar and vector models and the
Newmark-type empirical methods for the given slope properties and earthquake event

Seismic slope displacement (m)

Median (or mean) Median (or mean) ?1 r Median (or mean) -1 r

Scalar models

PGV–M (Eq. 8) 0.140 0.267 0.073

PGA–M (Eq. 9) 0.126 0.259 0.061

ky/PGA–M (Eq. 10) 0.118 0.249 0.056

Vector models

PGV–Ia (Eq. 11) 0.123 0.226 0.067

PGV–ky/PGA (Eq. 12) 0.140 0.241 0.074

Newmark 0.088 – –

Jibson (2007) 0.355 0.657 0.192

Rathje and Antonakos (2011) 0.148 0.240 0.091

Bray and Travasarou (2007) 0.259 0.499 0.134

Table 11 Characteristics of the selected scenario earthquake

Date Earthquake
name

Mw R
(km)

Preferred FS Station name Vs,30

(m/s)
Database code

18/10/
1989

Loma Prieta,
USA

6.93 30 Reverse-
oblique

Gilroy array
#2

302 NGA_766_H1
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overpredict the corresponding displacements. In particular, Jibson (2007), Rathje and

Antonakos (2011) and Bray and Travasarou (2007) present 150–200, 6–25 and 85–120 %

larger displacements respectively compared to the ones predicted by the herein proposed

relationships. These findings that are generally in line with the observations presented in

Sect. 4 indicate the significant uncertainties (both aleatory and epistemic) associated with

the modeling assumptions as well as with the selection of the intensity parameters and

slope properties in the different approaches highlighting the need for a probabilistic

assessment of the seismically induced slope displacements.

6 Conclusions

The seismic performance of slopes is commonly evaluated by using a displacement based

procedure which relates the earthquake induced slope displacement with some metric(s) of

the seismic ground motion and the main geometrical and mechanical features of the slope.

Within the framework of this study, earthquake-induced slope displacements were

calculated using an advanced numerical parametric analysis considering different slope

geometries, material properties and input motions. The computed numerical displacements

were first compared with some of the most widely used empirical Newmark-type dis-

placement procedures, namely the conventional analytical Newmark rigid block model

(Newmark 1965), Jibson (2007) rigid block model, Rathje and Antonakos (2011) decou-

pled sliding block model and Bray and Travasarou (2007) coupled stick–slip sliding block

model. Relatively good correlations were observed enhancing the reliability of the nu-

merical analysis results. However, a large dispersion in the displacement estimation is

shown. Generally, it is seen that the simplified empirical models displayed greater vari-

ability with respect to the numerical analysis compared to the analytical Newmark method.

Then, linear regression analyses were performed on the numerical analysis results to

correlate the computed displacements with various IMs. Optimal scalar and two-parameter

vector IMs were identified based on proficiency and sufficiency criteria. The correlation

coefficient between the IMs was also considered an important factor for the selection of

appropriate vector IMs. It has been shown that PGV, PGA and ky/PGA are the optimal

scalar IMs while PGV–Ia and PGV–ky/PGA represent the best vector IMs. Based on these

observations, both scalar and vector linear regression models were developed to assess the

co-seismic slope displacement. It is observed that the standard deviation in the displace-

ment prediction is reduced for the proposed vector models compared to the scalar ones.

However, despite this increase in efficiency, the vector models introduce additional

uncertainties associated with the estimation of the ground motion hazard for the vector of

IMs. ky term, which represents the overall resistance of the slope, is also incorporated in

the regression equations considering its importance in slope displacement estimation. In

addition, to eliminate bias associated to the dependence of the scalar models on the

earthquake magnitude (and thus to cover the sufficiency criterion with respect to magni-

tude), a magnitude term is also added in the suggested scalar analytical expressions.

The developed displacement models can be used as predictive tools for assessing the

performance of slopes within a deterministic or probabilistic framework for application at

regional or local scales. A typical deterministic example, where the co-seismic permanent

slope displacements were estimated using the proposed analytical expressions and the

empirical Newmark-type methods, has been also presented. It has been shown that all

proposed models predict consistent seismic slope displacements for the considered
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earthquake scenario and slope properties. The comparison with the empirical approaches

illustrated the large variability in the displacement prediction highlighting the superiority

of the probabilistic over the deterministic approach in the evaluation of the seismically

induced slope displacement (e.g. Rathje et al. 2014). Thus, future work should be devoted

to the implementation of the proposed herein predictive models using a probabilistic

approach which will account rigorously for the various sources of uncertainty involved

(both aleatory and epistemic) in the assessment of the earthquake induced slope

displacement.
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