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Abstract An analytical model was developed to estimate the shear-strength degradation
and the residual capacity of circular reinforced concrete (RC) columns subjected to seismic
action. The proposed model is an upgrade of a previously proposed model for axial force
N , bending moment M and shear force V (N–M–V ) interaction domain evaluation for
rectangular and circular cross-section RC elements subjected to static loading. The model
was extended to the case of circular cross-sections subjected to seismic actionswith limitation
of the range of variability of the deviation angle between the directions of the stress fields
and the crack inclinations, as a function of the amplitude of the flexural ductility demand.
Numerical evaluation of resistance domains for circular RC columns having the current
structural configuration, like bridge piers, highlights the increment in the risk level induced
by shear strength degradation due to flexural ductility demand.

Keywords RC circular cross-section · N–M–V domains · Plastic approach ·
Shear strength degradation

1 Introduction

In literature, several models have been proposed (Ang et al. 1989; Schwartz 2002; Turmo
et al. 2009; Rossi and Recupero 2013) to evaluate the shear strength of reinforced concrete
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(RC) circular columns, but they do not take into account the interaction effect among different
internal actions (Bairan Garcia and Mari Bernat 2006). At the same time several research
works have focused on the performance of RC elements, subjected to simultaneous actions
of axial force N , bending moment M and shear force V . But most of the models have been
proposed for static actions, and usually they do not take into account the effect of strength
degradation due to flexural ductility demand and cyclic actions such as those produced in the
critical region of the columns by earthquakes.

Modern approaches to structural analysis in seismic areas aim to evaluate the system’s
capacity related to large inelastic displacement, i.e. corresponding to a large ductility demand.
Unfortunately, the classical formulations for assessment of shear strength are independent of
the deformation undergone, leading to overestimation of shear capacity when the ductility
demand is large.

Moreover, when the structural response is governed by tensile strength of concrete, the
uncertainty of concrete cracking and the great sensitivity of the parameters involved in the
constitutive behavior of material make very complex the formulation of a reliable assessment
of the whole response. Therefore, the most frequent approaches suggested in the literature
for the evaluation of the shear strength in RCmembers are not always developed on the basis
of valid physical-mechanical models.

These issues have given rise to a large debate on the assessment of the response, in the
case of a static action, while only a few models are available for shear strength prediction
under the effect of seismic actions, when the demand of shear strength is often localized in
sections that undergoes large flexural inelastic deformations also.

Several studies (Martin-Pérez and Pantazopoulou 1998, 2001) have suggested solving
these drawbacks on the basis of smeared cracking non-linear models, such as the Modified
Compression Field Theory (MCFT) (Vecchio and Collins 1986). Originally, the smeared
cracking approach was developed for the analysis of elements subjected to a static load.
However, despite their success in modeling several structural type behaviors (Colajanni et
al. 2008a; Bertagnoli et al. 2011; Spinella et al. 2012) they do not appear suitable to handily
provide relationships required for designers. Therefore, design codes prefer to adopt rela-
tionships based on simplified mechanic models, or formulations obtained through numerical
regression of experimental results. A similar approach is followed in Colajanni et al. (2008b),
Spinella et al. (2010), Colajanni et al. (2012), Cucchiara et al. (2012), Colajanni et al. (2014),
and Spinella (2013).

Nevertheless,most of themodels suggested by codes evaluate the shear strength neglecting
the interaction among the internal forces; though in the literature numerous studies and
researches on the behavior of RC elements under N–M–V forces are reported.

Recently, a general approach was employed (Recupero et al. 2003, 2005) to formulate
a model able to provide generalized strength domains of RC structural elements by taking
into account the internal force interaction effects (N–M–V ). The model provided results
that were successfully compared against laboratory tests, proving the accuracy of the whole
procedure. However, it refers to static action only, and it is not able to consider the effect of
strength degradation caused by large flexural deformation and cyclic action, like those due
to seismic actions.

In this paper, it is observed that the models for static action derived by using the stress
fields approach render possible an ample variation of the angle θ of inclination of the concrete
stress field, which is, in general, different from the inclination θI of the first cracking surface.
When large deformation and cyclic actions of wide intensity occur, the progressive roughness
reduction limits the range of variation of θ , preventing the development of directions of
yielding lines with a slope different from the first cracking one, θI .
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Fig. 1 a Contribution of axial force to column shear strength; b strength degradation coefficient

In this context a new proposal is formulated that allows the evaluation of N–M–V inter-
action domains for an assigned ductility by limiting the range of the deviation angle between
the inclinations of the yield θ and the crack line θI .

2 Model of RC member shear strength under cyclical actions

Many shear strength code equations for RC members are known to be conservative and to
give large scatter when used in predicting test results. Except for a new formulation in the
Japanese Code (Watanabe and Ichinose 1991; Architectural Institute of Japan 1994), they do
not consider the dependence of shear strength on flexural ductility.

In 1996, Priestley andBenzoni (1996) developed amodel to take into account the reduction
in shear strength due to the ductility demand, which provides close agreement with tests on
simple RC members. In this model the shear strength of a member is obtained as the sum
of three different contributions due to transverse reinforcement, compressed concrete, and
axial load. Thus, in a circular cross-section the shear strength VRd can be evaluated as
follows:

VRd ≤ π

2
· Asw

sw
· (D − x) · fyk

γs
· ctgϑI + k(μ) · 0.8

(
πD2

4

)
·
√

fck
γc

+ Nsd · tan α (1)

where Asw and sw are the circular steel stirrup cross-section area and spacing, respectively;
fyk and fck are the characteristic strength of the steel and compressed concrete; γc and γs
the safety coefficients for concrete and steel, respectively; k(μ) the strength degradation
coefficient; D the diameter of the circular cross-section; x the neutral axis depth; finally,
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the contribution of the axial force to the column shear strength and the meaning of the term
Nsd tan α are shown in Fig. 1a. By contrast, for beams and columns Fig. 1b shows the strength
degradation coefficient k(μ) curves versus curvature ductility μθ = φu/φy the latter being
the ratio between the current curvature φ and the yielding curvature φy . The coefficient k(μ)

governs the strength degradation due to the required flexural ductility.
Unfortunately, analogous proposals have not yet been formulated for extending the Bach

et al.’s (1978) stress field model to the presence of cyclic seismic forces. Thus, the interaction
resistance domains (N–M–V ) proposed in (Recupero et al. 2003, 2005), which were formu-
lated on the basis of the Bach et al. model, are not able to reproduce the strength degradation
effects due to the bending ductility demand in the plastic hinge zones.

3 Stress field model and strength domains under static actions

When RC elements are simultaneously loaded by N , M and V forces, the stress distribution
in the cross-section is complex; thus an analytical model able to predict the stress distribution
cannot easily be derived. Nevertheless, the strength of a structural element can be evaluated
according to Eurocode 2 (1992) under the following simplifying assumptions:

• longitudinal and transverse steel reinforcements are only subjected to axial forces; their
action is expressed by smeared stress fields, assumed to be uniform;

• concrete in the external portion of the cross-section is only subjected to compressive
stress fields, once again assumed to be uniform;

• the concrete stress field of the web central portion forms a θ angle in the longitudinal
direction (yield surface), whichmay differ from the slope θI due to the aggregate interlock
action transmitted along the shear fractures and dowel action;

• the failure mode of the structural member is due to concrete crushing, or to reinforcement
yielding, or to both simultaneously.

• direct contributions of strength due to dowel action, the aggregate interlock action and
the concrete tension resistance of the teeth are neglected, since they are included in the
contribution due to concrete stress field of the web central portion by a suitable deviation
of the θ angle from the initial cracking line orientation θI ;

By these assumptions, the analytical model for rectangular, I, T, and circular cross-sections
is a generalized truss model, and all internal forces (compressed chord, tension string, strut,
and tie) are replaced by uniform stress fields.

The adopted general procedure for strength domain evaluation consists of dividing the
cross-section into layers of depth yi not identified a priori, and subjected to uniform normal
(σ ) and shear (τ ) stress distributions to ensure the equilibrium with the internal actions N , M
and V .More precisely, in our research the cross-sectionwas divided into three concrete layers
having areas Sc1, Sc2 and Sc3, and the uniformly spaced longitudinal rebars were modeled
as continuous elements divided into three different steel layers with areas Ss1, Ss2 and Ss3
(Fig. 2c).

With reference to the concrete element with a circular cross-section, obtained by two cuts,
one with a plane orthogonal to the beam axis at the abscissa z, and another one parallel to the
web concrete stress field at the abscissa z+Δz (Fig. 2a), the following equilibrium equation
in the y direction can be written:
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V ∗ − q · z = Vsd = 2
Asw

s
ctgθ · Rc σsw ·

δ2∫
δ1

cos2 α · dα

= Asw

s
ctgθ · Rc σsw · (cos δ2 sin δ2 + δ2 − cos δ1 sin δ1 − δ1) (2)

where V∗ is the shear external action at the abscissa z; q is the distributed vertical load; σsw
is the normal stress of the circular steel stirrup, Rc is the radius of the concrete core; and δ1
and δ2 the angles between the horizontal diameter of the circular cross-section and the chords
that identify the layers Sc1 and Sc2, respectively (Fig. 2c). Next, a new column segment is
considered, obtained by cutting the element with two section planes with slope θ = 90 ◦ to
the beam axis at the abscissae z and z + Δz (Fig. 2b); thus the new equilibrium equation of
the column segment in the y direction reads:

V ∗ − q · �z = Vsd = σcw Sc3 cos θ sin θ (3)

where σcw is the normal stress in the Sc3 concrete layer. Furthermore, since Nsd , Vsd and
Msd are the axial, shear and bending moment internal design forces at the cross-section at
the abscissa z + �z, the expressions of the internal forces in the tension chord and in the
compression chord are the following:

σs1 ·
∫
Ss1

dSs + σs2 ·
∫
Ss2

dSs + σs3 ·
∫
Ss3

dSs + σc1

∫
Sc1

dSc + σc2

∫
Sc2

dSc

= F1 + F2 + F3 + C1 + C2 = Nsd + Vsd · ctgθ (4a)

σs1

∫
Ss1

ysdSs + σs2

∫
Ss2

ysdSs + σs3

∫
Ss3

ysdSs + σc1

∫
Sc1

ycdSc + σc2

∫
Sc2

ycdSc

= Msd + Vsdctgθ

⎛
⎜⎝

∫
Sc3

ycdSc
/∫
Sc3

dSc

⎞
⎟⎠ (4b)

Fig. 2 Circular shaped cross-section
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where σci and σsi are the normal stress of the concrete and steel related to the i th layer,
respectively; Ci and Fi the resultant forces in the concrete and the steel related to the i th
layer, respectively; and yc, ys are the lever arms (algebraic values) calculated starting from
the central axis of the circular cross-section.

Using the static theorem of the plasticity theory, also known as the “lower bound solution”,
the maximum values of the external forces, i.e. the strength interaction domain, can be
obtained by means of Eqs. (2), (3), (4a) and (4b), once the terms involved in these equations
satisfy both the following geometrical condition and mechanical inequalities for the concrete
and steel stress fields:

y1 + y2 + y3 = D (5a)

− fcd1 ≤ σci ≤ 0 i = 1, 2 (5b)

− fcd2 ≤ σcw ≤ 0 (5c)

− fyd ≤ σs j ≤ fyd j = 1, 2, 3 (5d)

in which fyd is the yield strength of the reinforcing steel, and fcd1 and fcd2 are the cylindrical
strength of the concrete in the uniaxial and biaxial stress states.

In the proposed model the following assumptions are adopted:

• the slope of the yield surface θ and of the first crack surface θI are not equal;
• the angular deviation between the two inclinations �θ = θI − θ is dependent on mechan-

ical compatibility considerations, i.e. the angular deviation is linked to ability of the
roughness of the surface and dowel action to deviate the direction of the stress transfer
through the crack from that of the initial cracking line θI , but its variation range is limited
by the indications in CEB-FIP (1993) based on the results of experimental tests under
static load conditions.

The value of θI corresponds to the inclination of first cracking under the service loads. In
detail, for a structural element with pure bending (beam), the slope θI is around 45◦, while
for columns it depends on the ratio between axial and shear forces under service loads.

In the case of static loads, the inclination angle of the yield surface is evaluated using the
plastic approach, independently of the value of θI , as the angle in the range 0.4 ≤ ctg θ ≤
2.5, (22◦ ≤ θ ≤ 68◦) [as suggested by Eurocode 2, part. 1. (1992)] that allows the maximum
shear strength.

A handy model was implemented to evaluate the strength domains N–M–V . Once the
element’s geometrical properties and longitudinal and transversal reinforcement area Asw

and Asl are set, the N–M–V interaction domain can be determined by assigning a value of
the axial force N , linking the value of the shear and bending moments by an assigned value
of the shear span M/V and finding the maximum admissible values of the external forces
through an optimization procedure based on static and geometrical equalities (2), (3), (4a),
(4b) and (5a) and static inequalities (5b)–(5d). The whole strength domain can be evaluated
by variation, in the above procedure, in the axial force and shear span length.

Useful references for details are reported in the literature (Recupero et al. 2003, 2005).

4 Stress field model and strength domains in presence of flexural ductility demand

Anewprocedure to evaluate strength domains under seismic loads is presented in this section.
It predicts the variation in the angular deviation �θ as a function of both geometrical and
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Fig. 3 Strength domains with angular deviation �θ and [cot θ ]max assigned

mechanical characteristics and of the amount of flexural ductility demand (μ) undergone by
the structural member under seismic action.

The proposed formulation aims to extend Priestley’s suggestions to models based on
inclined stress fields. Priestley’smodel and its extensions require that the strength contribution
provided by the tensile strength of the concrete to the truss model is tuned as a function of
the flexural ductility demand; its extension to models based on the diagonal stress fields is
apparently unfeasible.

In the stress field model, the difference of the slope of the yield surface in comparison to
that of the cracking surface is partly generated by the effects of aggregate interlock, which
avoid slips along cracks, and are a function of the roughness of the crack sides in contact.

When the maximum deformations and/or the accumulated damage due to small amplitude
of cyclic actions increase, the roughness of the sliding surfaces is reduced. Thus, the range
of the deviation angle �θ is limited. The proposed model assumes a limit value of the angle
�θ that should depends on a measure of the damage generated by the combined effects
of amplitude of maximum flexural ductility demand and cumulated effect of cyclic action,
i.e. on a damage index that should include both the two aforementioned contributes. As an
example, the Park and Ang index (Park and Ang 1985) appears to be a suitable damage
index for governing the limitation of the deviation angle �θ . However here, due to the lack
of adequate amount of experimental data for investigating the effect of cyclic action, the
limit value of the deviation angle �θ is linked in a simpler way to the maximum value of
the flexural ductility demand, i.e. the more the ductility demand increases, the more �θ is
reduced.

Aiming at stressing how such an assumption modifies the strength domains of RC mem-
bers, the effects of the progressive reductions of the deviation angle�θ on N–M–V domains
are shown for circular cross-sections with the following geometrical and mechanical char-
acteristics: fsd/ fcd = 320/20 = 16, ρl = Asl/Ac = 0.009, Asw/sw = 0.26mm2/mm).
The strength domains are shown in Fig. 3 for four limit values: ctg θ = 2.5(θ ≈ 22◦),
ctg θ = 2(θ ≈ 26◦), ctg θ = 1.5(θ ≈ 34◦) and ctg θ = 1(θ = 45◦) and for four normalized
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axial force values n = Nsd/( fcd1Ac) = 0, 0.25, 0.50 and 0.75. The limit of the deviation
angle �θ becomes the corresponding limit of the inclination angle θ of the stress fields.
Figure 3 shows that the progressive reduction in the yield surface inclination (angle θ ) causes
a major reduction in the maximum shear strength; by contrast, it does not have any influence
on the ultimate bending moment.

In order to characterize the relation between angular deviation �θ and flexural ductility
demandon the basis of the indications providedbyPriestley andBenzoni (1996), it is observed
that the limit of the yield surface inclination influences the horizontal line of the strength
domain corresponding to small values of the bending moment, for which the failure of the
structural element is reached by attainment of shear strength:

[Vsd ]max = [ctgθ ]max
Asw

sw
Rc fyd 2

δ2∫
δ1

cos2 δ dδ

= [ctgθ ]max
Asw

sw
Rc fyd (cos δ sin δ + δ)|δ2δ1 (6)

When squat element are considered, besides the beam effect, represented by Eq. (6), the arch
effect supplies supplementary capacity to carry shear force. If the additional contribution
of the arch effect is estimated as done in Priestley and Benzoni (1996) as (Nsd tan α), by
comparison of Eq. (1) and Eq. (6) the following relation holds:

[ctgθ ]max
Asw

sw

(
D − 2c

2

)
fyd (cos δ sin δ + δ)|δ2δ1 + Nsd tan α

= π

2

Asw

sw
(D − x) fydctgθI + kp(μ) 0.8

(
πD2

4

) √
fck

γc
tan α + Nsd tan α (7)

The degradation coefficient of shear strength provided by the concrete k = kp(μ) (Fig. 1b) is
obtained using Priestley and Benzoni’s model (1996), assuming θI = 30◦(ctg θI = 1.732)
for the column and θI = 45◦(ctg θI = 1). Thus, by Eq. (7) the minimum slope of the yield
line (i.e. the maximum value of ctg θ ) can be derived:

[ctgθ ]max =

(
π
2

(D−x)
Rc

ctgθI + kp(μ) ·
(
swRc
Asw

fcd2
fyd

)
0.8π

(
R
Rc

)2 √
fck

fcd2γc

)

(cos δ sin δ + δ)|δ2δ1
(8)

where fcd1 and fcd2 are suggested in CEB-FIP (1993) and x, δ1 and δ2 must be evaluated
according to the axial force level.

5 Model corroboration and numerical analysis

In order to corroborate the proposed model, experimental results reported in Ang et al.
(1989) are reproduced by the proposed model. In Table 1 the geometrical and mechanical
characteristics of the considered specimen are reported, and the following symbols are intro-
duced: c = cover; L = column length; f ′

c = concrete compressive strength; #, φl and fyl
number, diameter, and steel yielding stress of reinforcing longitudinal bars, respectively;
sw , φw and fyw spacing, diameter and yielding stress of hoop reinforcement, respectively;
and Ns = axial load. In Fig. 4 the theoretical predictions of the shear strength provided by
the proposed model, when [ctg θ ]max is evaluated by Eq. (8) are presented. Only specimens
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Table 1 Geometrical and mechanical characteristics of the specimens

Spec. D
(mm)

c
(mm)

L
(mm)

f ′
c

(MPa)
#Long.
Bars

φl
(mm)

fyl
(MPa)

sw
(mm)

φw

(mm)
fyw
(MPa)

Ns
(kN)

No 4 400 20 800 30.6 20 16 436.0 165 10 316 0

No. 6 400 18 600 30.1 20 16 436.0 60 6 328 0

No. 7 400 18 800 29.5 20 16 448.0 80 6 372 0

No. 16 400 18 800 33.4 20 16 436.0 60 6 326 420

No. 18 400 18 600 35.0 20 16 436.0 60 6 326 440

No. 19 400 18 600 34.4 20 16 436.0 80 6 326 432

No. 20 400 18 700 36.7 20 16 482.0 80 6 326 807

No. 21 400 18 800 33.2 20 16 436.0 80 6 326 0

No. 22 400 20 800 30.9 20 16 436.0 220 10 310 0

Fig. 4 Theoretical to experimental shear strength ratio for specimens tested in Ang et al. (1989) falling in
shear

where the failurewas due to combined action of shear and flexurewere considered.Moreover,
since the model is not able to take into account the effect of repeated load cycles, only results
corresponding to the first attainment of a given ductility level are considered for positive or
negative displacement, i.e. data corresponding to displacement smaller than those obtained
in previous cycles are neglected. The mean value of the ratio of theoretical and experimental
strength is equal to 1.03, and the coefficient of variation (COV) is 0.248. These values prove
that the model is efficient, but an improvement is required for increasing its effectiveness and
to make it able to reproduce the effect of cyclic load.

Moreover, some numerical analyses were carried out, in order to show how different
geometrical and mechanical parameters and ductility demands can reduce the range of vari-
ability of the inclination of the stress fields of compressed concrete. In Fig. 5a, b, the curves of
[ctg θ ]max derived by Eq. (8) [providing themaximumvalue of the shear strength given by the
Priestley and Benzoni’s model (1996)] versus the flexural ductility demand (μ) are reported
for three different values of the specific axial force n = 0, 0.25 and 0.50, for two values of the
mechanical ratio of the stirrups ωw = Asw fyd/(swRc fcd2) equal to 0.05 and 0.10. It has to
be stressed that, since in the Priestley and Benzoni’s model (1996) the contribute provided by
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Fig. 5 [cot θ ]max versus flexural ductility demand (μ) for different value of axial force (n) and stirrups
mechanical ratio (ωw)

the concrete in not affected by the ductility demand value, whereas in the proposed model the
ductility demand tune the whole shear strength (but the arch effect), the value of [ctg θ ]max

depends on the mechanical ratio of the stirrups ωw.
In the presence of low stirrups density in the proposed model the maximum values of

shear are attained when the inclination of the stress fields is reduced in order to allow a larger
number of stirrup legs to cross into the yield line, where the equilibrium is imposed.

No reduction of [ctg θ ]max , i.e no increment of the minimum slope of the yield line, is
obtained when flexural ductility demand is small (μ < 3). For a small value of ωw = 0.05
(Fig. 5a) and n = 0 (beams) when the ductility demand increase in the range 3 < μ < 7
the value of [ctg θ ]max decrease in the range 3.41 > [ctg θ ]max > 2.03, and the minimum
inclination of the stress fields is included in the range 16.34◦ < θ < 26.2◦. Therefore, the
angular deviation in comparison to the conventional cracking angle adopted by Priestley
(θ = 45◦) proves to be in the range 28.65◦ > �θ > 18.77◦. Larger values of the flexural
ductility demand up toμ = 15 produce a more gently reduction of [ctg θ ]max up to the value
of 1.66.

Increasing the level of axial force (n = 0.25, columns) a wider reduction of [ctg θ ]max

is found, with [ctg θ ]max = 3.2 for flexural ductility demand μ < 3; and a descending
branch that in the range 3. < μ < 7 varies in the range 3.2 > [ctg θ ]max > 1.85 (i.e.
17.35◦ < θ < 28.4◦, and angular deviation to the conventional cracking angle adopted by
Priestley (θI = 30◦) in the range 12.65◦ > �θ > 1.6◦. However, it has to be stressed that a
beneficial effect of the axial force on the shear strength is taken into account both in the values
of the dimensions of the compressed chord and in the term of the arch effect (Nsd tan α).
The curve for n = 0.50 proves that the greater the axial force level, the greater the reduction
of [ctg θ ]max that have to be assumed in order to reproduce the Priestley and Benzoni’s
results, whit values of [ctg θ ]max = 3 for μ < 3 and reduction up to [ctg θ ]max = 1.70 and
[ctg θ ]max = 1.28 when μ increases up to 7 and 15 respectively.

In Fig. 5b the curve of the value of [ctg θ ]max versus the ductility demand derived by
Eq. (8) for a larger value of the mechanical ratio of the stirrups ωw = 0.10 are reported.
The curves show a trend similar than those in Fig. 5a. In order to compare how the ductility
reduce the slope of the concrete field for the different values ofmechanical ratio of the stirrups
and axial force, in Fig. 6a the curves of [ctg θ ]max , normalized with respect to the value for
static load, versus the ductility demand are depicted. The curves show that the smaller the
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Fig. 6 Normalized curves of [cot θ ]max versus flexural ductility demand (μ) for different value of axial force
(n) and stirrups mechanical ratio (ωw)

mechanical ratio of the stirrups and the larger the axial force, the larger is the reduction of
[ctg θ ]max , i.e. the more the yield line resemble the initial cracking line.

6 Conclusions

In this paper, a theoretical model is proposed for assessment of the shear strength of RC
elements with circular cross-sections under cyclic actions. The model is able to take into
account the interaction between the internal forces, Nsd and Msd , and the shear strength
degradation due to external cyclic actions, such as those produced by earthquakes. The
model is derived on the basis of the stress field approach, and is able to predict the reduction
in shear strength related to concrete damage due to the attainment of large flexural curvature
by linking the limitation of the angle of inclination of stress fields to the flexural ductility
demand.

The predicted shear strength degradation is consistent with those predicted by Priestley
and Benzoni’s model, since the reduction of the angle of inclination of stress fields to the
flexural ductility demand has been tuned according that model. However, in Priestley and
Benzoni the shear strength reduction was obtained by a reduction in the concrete tensile
strength as a function of the bending ductility demand, and the effects of interaction among
internal forces were neglected.

Furthermore, the proposed method allows the drawing of makes it possible to evaluate
N–M–V interaction strength domains for assigned values of flexural ductility demand that
would have to be used in push-over analysis, instead of the well-known axial force-bending
moment resistance domains.

Numerical analyses have shown that, the more the ductility demand increases, the more
θ leads to first crack surface inclination θI , for any amount of stirrups. Moreover, for high
strength compression concrete, the minimum value of the yield surface inclination becomes
close to the limit value θ = 30◦. Thus, a rough approximation of the shear strength can be
obtained by assuming such an inclination of the stress fields.

It has to be emphasized that, in order to take into account the effect of cyclic load, further
investigation are needed in order to obtain a more effective calibration of the reduction of
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the inclination of the stress fields as a function of cumulative flexural ductility demand or
damage indexes, tuned on results of experimental test rather than on existing models.
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