
Bull Earthquake Eng (2015) 13:1425–1454
DOI 10.1007/s10518-014-9668-z

ORIGINAL RESEARCH PAPER

Prediction of the additional shear action on frame
members due to infills

Liborio Cavaleri · Fabio Di Trapani

Received: 10 October 2013 / Accepted: 19 August 2014 / Published online: 2 September 2014
© Springer Science+Business Media Dordrecht 2014

Abstract Infill masonry walls in framed structures make a significant contribution to the
response under seismic actions. With special regard to reinforced concrete (RC) structures,
it is known that internal forces modifications caused by the frame–infill interaction may be
not supported by the surrounding frame because of the additional shear forces arising at
the ends of beams and columns. Such additional forces may lead to the activation of brittle
collapse mechanisms and hence their prediction is basic in capacity assessment, especially
for structures that disregard the details for seismic zones. In this paper a parametric study is
carried out addressed to the prediction of the shear forces mentioned before. The results of
this study can be used as a support when the simplified model is adopted consisting in the
substitution of infill with an equivalent pin jointed concentric strut, because in this case the
structural analysis fails in the prediction of the shear forces in question. Through the paper, in
which existing RC infilled frames designed only for vertical loads are discussed, analytical
laws, depending on the level of the axial force arising in a concentric strut equivalent to
infill, are proposed, the above analytical law allowing to correct the local shear forces in the
frame critical sections, which are not predictable in the case of substitution of infill with an
equivalent concentric strut.

Keywords Infilled frames · Masonry infills · Local shear effects · Micromodel · Equivalent
strut

1 Introduction

The contribution of infills in seismic response of framed reinforced concrete structures is
significant; nevertheless, they are usually neglected in models assuming a non-structural
function. The seismic damage on this kind of structures suggests, as widely discussed in
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Fig. 1 Transmission of local shear forces close to the beam–column joints in presence of lateral actions

Fig. 2 Local shear failure of frame due to interaction with infills under seismic loads

literature, the fact that frames and infills have a strong interaction when involved in seismic
events, not always being beneficial for structural safety and not negligible in general.

Though an infilled frame exibits a significant increase in lateral strength and stiffness with
respect to the corresponding bare one this fact cannot be extended to the whole structural
behaviour depending on the distribution of infills. It can be generally stated that, if the planar
and elevation distributions are regular and approximately symmetric, the contribution of infill
panels is beneficial; contrariwise infills are potentially dangerous, often causing activation
of additional torsional effects and soft story mechanisms.

Regarding a single frame, the increase in strength mentioned before is associated with
an increase in the demand for shear capacity in some specific sections. This aspect of the
frame–infill interaction constitutes the central issue of this paper.

As is well known, in the presence of lateral actions, the infill panel partially disconnects
from the frame, remaining in contact with it only near two opposite corners (Fig. 1).

Strength increase occurring on infilled frames is allowable, however, if RC members adja-
cent to panels (beams, columns and joints) have sufficient shear overstrength. When especially
strong masonry infill panels are combined with frames having a low shear reinforcement, the
activation of local brittle collapse mechanisms, able to compromise the capacity and safety
of the entire structure becomes a major question. In Fig. 2 a picture referring to local shear
failure mechanism due to frame–infill interaction is reported.
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The frame–infill interaction has been treated by several authors which have proposed
strategies to introduce the effects of infills in structural models. A very successful technique
is based on the replacement of the infill with one or more equivalent diagonal struts. This
technique, belonging to the macromodel approaches, was first introduced by Holmes (1961)
and then developed by other researchers (Asteris et al. 2011; Chrysostomou and Asteris 2012;
Crisafulli et al. 2000).

In the most simple case one equivalent pin-jointed concentric strut is used by means of
that it is possible to obtain good reliability in modelling the stiffening effects produced by
infill panels (e.g. Papia et al. 2003). Unfortunately, as a counterpart of its simplicity, this
approach is unable to provide the internal forces in beams and columns, close to the joints,
arising because of frame–infill interaction.

More complex macromodels making use of multiple diagonal struts (two or three), able
to reproduce these effects, have also been developed (e.g. Crisafulli and Carr 2007; Fiore et
al. 2012). However, identification of the mechanical properties to attribute to each strut is not
a simple question since these depend not only on masonry mechanical properties but also on
the frame–infill stiffness ratios and on the geometrical characteristics of the system (Asteris
2003, 2008; Cavaleri and Papia 2003). The difficulties in managing multi-strut approaches
grow when nonlinear (static o dynamic) analyses are required since the attribution of specific
monotonical or cyclic nonlinear laws is necessary for each strut.

A substantially different approach has been instead followed by other authors (e.g. Mallick
and Severn 1967; Mehrabi and Shing 1997; Shing and Mehrabi 2002; Ghosh and Made
2002; Asteris 2008; Koutromanos et al. 2011) which have adopted an “exact representation”
of infills (micromodelling) to better reproduce frame–infill interaction. According to this
modelling approach, panel and frames are modelled by means of planar shell finite elements
while interface elements able to reproduce frictional effects and frame–infill detachment
are considered for frame–infill contact regions. Such typology of approach, which is aimed
at providing a more accurate response, is able to capture well local interaction effects and
frame global internal force distribution, but in this case too, calibration of the analytical
models, especially in terms of nonlinear laws for shell elements and interfaces, is not easy
to accomplish. Furthermore, analyses of framed structures which make use of micromodels
require a higher computational effort which is not always acceptable for practical engineering
uses.

Also technical codes point out the need to take into account the frame–infill interaction.
Eurocode 8 when furnishing indications about modelling in structural analysis prescribes that
infill walls which contribute significantly to the lateral stiffness and resistance of building
have to be considered. Unfortunately no reference models for infills are provided.

In a similar way in the Italian technical code (D.M. LL. PP. 2008) neither are modelling
criteria given nor is a strategy suggested to predict the local increase of shear in the columns
and in the beams of infilled frames close to the nodal regions.

Differently from Eurocode 8 and the Italian codes, the Federal Emergency Management
Agency code (FEMA 356) dedicates a significant attention to describe how to take infills into
account and how to predict the local effects on beams and columns. One possible choice that
is offered is to model an infill by an equivalent pin-jointed strut that should have the same
thickness and modulus of elasticity as the infill panel while the width w is given by

w = 0.175
(
λ1h′)−0.4

d (1)

where, referring to Fig. 3, h′ is the height of the frame, measured between the centre-lines
of the beams, d is the measure of the diagonal dimension of the infill and λ1 is given by
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Fig. 3 Geometrical features of a frame–infill system and of the equivalent diagonal strut

λ1 =
[

Edt sin 2θ

4E f Ich

] 1
4

(2)

in which t is the thickness of the infill and h and � are its height and length, respectively,
θ = atan(h/�), Ic is the moment of inertia of the column cross-sections and Ed and E f are
the Young’s modulus of the infill and of the material constituting the frame, respectively.

Referring to local interaction effects, the FEMA code specifies that beams and columns
adjacent to infills should have sufficient strength to support local shear effects. According to
the strategy proposed, in absence of more accurate models and analyses, the FEMA code-
states that the flexural and shear strength of beams and columns close to nodal regions should
exceed the internal forces evaluated by the application, at the specified lengths lce f f and lbe f f ,
of the horizontal and vertical components of the expected axial force value for an equivalent
strut (Fig. 4). The lengths lce f f and lbe f f can be obtained as

lce f f = w

cos θc
; tan θc = h − lce f f

�
(3)

lbe f f = w

sin θb
; tan θb = h

�− lbe f f
(4)

Although the question of local failure of RC members adjacent to infills is treated in FEMA
356 more than in other codes, the strategies suggested, not deriving from a specific analy-
sis and basing on expected values for equivalent strut strength may lead to an unreliable
estimation.

Considering all premises above, this paper provides a study in which the relevance of the
local shear interaction effects is pointed out, giving the basis for a tool as rigorous as it is
simple for the prediction of the real distribution of shear demand in the critical sections of
frames when a single equivalent concentric strut is used.

The study, regarding a single infilled frame that can be viewed as a part of a more com-
plex framed structure, is based on the comparison of the results derived from two modelling
approaches: one (M1 model) providing the simple single-strut approach; the other one (M2
model) using plane–shell elements to model infills, nonlinear beam elements at the contour
and multilinear elastic links (MElink) resisting in compression only at the frame–infill inter-
face. Comparisons are carried out, with variation in mechanical features, geometry, stiffening
and strength ratios between frame and infill, in order to determine, for fixed interstorey drifts,
the relationship between the axial force evaluated on the equivalent strut and the shear forces
(negligible in the M1 model) evaluated in critical sections of beams and columns in the M2
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Fig. 4 Schemes for the
evaluation of local effects
according to FEMA 356: a on
columns; b on beams

model. The final aim is to permit use of the simple equivalent concentric strut approach for
the analysis, this approach being able to provide adequate correction coefficients for local
shear forces arising in the beams and in the columns near the joints.

This allows to have a wider consciousness of the mechanics of the frame–infill systems
varying the characteristics of infills. Further, here, the independence of the level of shear in
the columns and beams from the interstory drift has been proved, thanks to a major and more
detailed numerical simulations, providing a decisive advance for the future of the prediction
of local effects in infilled frames. Hence an updated tool for the prediction of the above
effects has been presented. Finally a comparison has been made between the tool proposed
here and the strategy proposed by FEMA for the prediction of the shear due to infills in frame
members.

2 Modelling

As mentioned above the results of this work are based on a comparative procedure between
two different approaches used to model the same structural system. Having as reference
the generic infilled frame, whose geometrical features are indicated in Fig. 5, the structural
responses at fixed interstorey drifts are compared in detail. The M1 model (Fig. 6) is based
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Fig. 5 Generic features of an infilled frame

Fig. 6 M1 model: geometrical
and mechanical scheme

on the classical assumption of replacing an infill with an equivalent diagonal concentric strut.
This model requires a very low computational effort and is really efficient when nonlinear
analyses have to be carried out, although it is affected by a significant defect due to the
impossibility of evaluating the interferences of infills in local internal force distribution on
the RC members. The M2 model (Fig. 8), which instead requires a higher computational
effort, allows one to evaluate the influence of the infill on the internal forces in RC members
thanks to the modelling of the infill in finite elements connected to beams and columns
through interfaces elements able to transfer normal forces to the surrounding frame.

Models M1 and M2 can be considered equivalent and results can be compared under
monotonic loading when they exhibit the same stiffness in both the linear and nonlinear
fields. More generally, the stiffness equivalence can be defined as a function of interstorey
drift (dr ) and expressed by the equation

KM1(dr ) = KM2(dr ) (5)
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KM1(dr ) and KM2(dr ) being the lateral secant stiffness of the M1 and M2 models for a
generically assigned dr .

Analyses and modelling were performed using SAP 2000 NL. The characterization of
the M1 and M2 models is indicated below, while the details of comparisons procedures and
results are discussed in the following sections.

2.1 M1 model

The M1 model (Fig. 6) is obtained by the application of the equivalent strut approach. The
geometrical and mechanical characteristics of the RC infilled frame from which it is originated
are shown in Fig. 5. There, bb and hb are the width and the depth of the beam cross-sections,
respectively and Ab the corresponding area, while bc and hc are the width and the depth of
the column cross-sections, respectively and Ac the area. Regarding to the elastic parameters,
the concrete constituting the frame is identified by the Young modulus E f . while masonry
constituting infills is mechanically characterized by the parameters E1, E2, G12, ν12 which
are respectively the Young moduli, rigidity modulus and Poisson ratio referred to directions
1 and 2.

The identification of the equivalent diagonal strut cross-section width w is performed by
means of the expression below (Papia et al. 2003).

w = d κ
c

z

1

(λ∗)β∗ (6)

where d is the infill diagonal length and c and β∗ are coefficients depending on the Poisson
ratio νd along the diagonal direction (along which the equivalent strut lies) and are defined
by the equations

c = 0.249 − 0.0116 νd + 0.567 ν2
d (7)

β∗ = 0.146 + 0.0073 νd + 0.126 ν2
d , (8)

further z is a coefficient depending on the panel shape and can be evaluated as

z = 1 + 0.25(�/h − 1) (9)

where � and h are the infill dimensions. The coefficient κ appearing in Eq. 6 takes into
account the effect of the vertical loads which generically act con columns and involve infill
panels. This coefficient can be obtained as a function of the mean vertical deformation εv
experienced by columns as effect of the compressive load Fv (Amato et al. 2008), through
the equation

κ = 1 + (18λ∗ + 200)εv (10)

in which εv is calculated as

εv = Fv
2Ac E f

(11)

E f and Ac being, as before mentioned, respectively the elastic modulus of the concrete
constituting the frame and Ac of the cross-section areas of the columns (Ac has to be intended
as the average of the column cross-section areas in the case of different columns—the elastic
modulus E f can implicitly include all the phenomena involving the frame in the first loading
stage, comprised the first cracking if the vertical loads are not able to prevent it.). Finally the
parameter λ∗ (Eqs. 6 and 10), is a parameter representative of the frame–infill system and
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Fig. 7 Axial force–axial
displacement law for equivalent
diagonal strut

characterizes the stiffness ratios between infill and frame: it is defined as follows:

λ∗ = Ed

E f

t h′

Ac

(
h′2

�′2
+ 1

4

Ac

Ab

�′

h′

)
(12)

where Ed is the infill elastic modulus along the diagonal direction, t is the infill thickness,
h′ and �′ are respectively the frame dimensions in agreement to Fig. 3, Ab is the average of
the cross-section areas of the beams.

The evaluation of masonry elastic Young modulus Ed and the Poisson ratio νd along
the diagonal direction can be easily carried out as a function of the mechanical parameters
mentioned above (E1, E2, G12, ν12) according to the procedure proposed in Cavaleri et al.
(2014).

The constitutive law that governs the equivalent strut is defined by a trilinear axial force–
axial displacement compressive diagram (axial meaning along the direction of the strut)
having no tensile strength (Fig. 7) in which the initial elastic stiffness K1 is evaluated as

K1 = Edtw

d
(13)

while the strength at the elastic limit F1 is defined as a function of the parameter α < 1,
which defines the ratio between the peak strength and the level of the resisting force at the
end of the elastic branch, that is

F1 = αF2 (14)

The stiffness in the post-elastic branch K2 is instead related to the parameter β, which
regulates the loss of stiffness after the yielding point with respect to the initial one:

K2 = βK1 (15)

The displacements at the elastic limit and peak strength are therefore directly identified as

δ1 = F1/K1; δ2 = δ1 + (F2 − F1)/K2 (16)

The trend of the softening branch is linearized and obtained by connecting points F2 − δ2

and F3 − δ3, assuming that F3 = 0.7F2 and calculating δ3 by the expression below (Cavaleri
et al. 2005)

δ3 = 1

ζ
ln

[
F2

F3
exp(ζ δ2)

]
(17)

where ζ is a coefficient defining the decay velocity of the post peak branch.
The equivalent strut peak strength F2 is finally determined as a function of the mean shear

strength of the masonry infill panel fv0m as follows:

F2 = fv0mt�∗ (18)
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Table 1 Parameters regulating
equivalent diagonal strut
constitutive law

α β ζ fv0m (MPa)

0.5 0.15 0.02 0.5–1.07

in which �∗ represents the ideal length of the panel that coincides with the real length � in
the case of square infills (�/h = 1) and undergoes a reduction down to 0.7� when �/h = 2.
This assumption takes into account a strength reduction due to the aspect ratio of the infills,
especially for rectangular long infills, experimentally observable (Mehrabi et al. 1996).

The equivalent strut properties are introduced in the model by means of a Multilinear
Elastic Link (MElink) element available in the SAP 2000 libraries.

The frame mechanical nonlinearities are introduced by means of 4 interacting axial force-
bending moment plastic hinges (P–M) placed at the ends of the columns to be representative
of the case of a non-seismically designed strong beam-weak column frame.

The hinge properties depend in each case on the cross-section geometrical features and
on the reinforcement.

The concrete strength is assumed to be 25 MPa and an unconfined constitutive law is
attributed to consider low transversal reinforcement. The steel rebar strength is set equal to
450 MPa and an elastic perfectly plastic law is attributed. Nodal regions at the intersections
between beams and columns are modelled as rigid links. The reinforcement geometrical ratio
is set equal to 1 % for all column sections and it is furthermore assumed that the beams have
a higher flexural strength than the columns, as in the case of structures designed to resist
gravity loads only. Finally, a dimensionless axial force n = 0.2 is assigned on top of the
columns.

The calibration of the parameters α, β and ζ , which characterize the shape of the
monotonic law of the equivalent strut, were provided by carrying out pushover analyses
and comparing them with the experimental results of different types of system tested and
available in the literature (e.g. Koutromanos et al. 2011; Cavaleri et al. 2005; Mehrabi et al.
1996; Cavaleri and Di Trapani 2014; Korkmaz et al. 2010; Chiou et al. 1999). Pushover curves
were compared with the results of monotonic tests or with the envelope of the strengths of
cyclic tests. It has been verified that, meanly, the values for the α, β and ζ that can be adopted
for defining the shape the response of an infilled frame are the ones inserted in Table 1.

Besides, basing on results of experimental tests reported in (Cavaleri et al. 2012, 2014)
for different typologies of masonries, it is assumed that the elastic Young modulus ratio
γ = E1/E2 is equal to 0.75, the shear modulus G12 = 0.4 E2 and the Poisson’s ratio
νd = ν12 = 0.1. Different values for the shear strength fv0m of the panels (from 0.50 to
1.07 MPa) are considered in the analyses. The above mentioned parameters governing the
equivalent strut compressive law each time are summarized in Table 1.

With regards to the modelling of the frame-strut, when the strategy of substitution of
infill with an equivalent strut is adopted, the non exact correspondence between the real
state evolution (e.g. cracking pattern, failure modes, etc.) and the model structural state is
generally accepted as long as a match, by the global phenomenological point of view, is
obtained in lateral stiffness, in lateral strength, in degradation of stiffness and strength, in
residual strength, etc, (e.g. Shing and Stavridis 2014; Asteris and Cotsovos 2012; Asteris et al.
2013). This is the natural consequence of the substitution of a substructure (namely an infill)
with a deeply different element (namely a strut). The calibration of an equivalent strut able to
match the global phenomenon takes account the possibility of formation of plastic hinges at
critical regions of frame members. Further, a comparison between the “exact model” and the
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Fig. 8 M2 model: geometrical and mechanical schemes

simplified model highlights normally a comparable sequence in the formation of the plastic
hinges at ends of the columns although this fact cannot be considered a rule (e.g. Fiore et al.
2012)

2.2 M2 model

Referring to the generic infilled frame (Fig. 5), the M2 model was also defined (Fig. 8)
characterized by detailed discretization of infill by means of orthotropic elastic shell elements.
The assumptions for the elastic properties of the masonry (Young moduli E1 and E2 along
the two orthogonal directions, shear modulus G12 and Poisson ratio ν12) are the same as
those proposed for the characterization of the M1 model.

The RC frame at the boundary was modelled as the one included in the M1 model in terms
of geometry and properties of concrete and steel rebars. The distance between the infill and
the surrounding frame beam elements, which are positioned at the centrelines, is covered by
means of null weight rigid links. The latter have the sole function of transmitting the interface
forces. A similar approach is also proposed in Doudoumis (2007). Interface elements are
placed between shell contour nodes and rigid link ends and are modelled using multilinear
elastic link elements having only axial stiffness, no tensile strength and a constitutive law that
is assumed to be elastic in compression. As mentioned above the interface elements are used
to simulate the mortar joints. Taking into account the high manufacturing variability affecting
these mortar joints, the conventional elastic Young modulus Em = 3,000 MPa was set, and
the conventional mortar joint thickness hm = 20 mm was assigned. Also considering-that
under lateral loads the frame–infill contact lengths are strongly reduced and mortar joints are
affected by significant damage, frictional effects were not included in the model (different
studies (e.g. Asteris 2008) show that friction arising in interfaces is not decisive for the overall
response).

It is generally accepted after different numerical tests (e.g. Fiore et al. 2012; Asteris 2008)
that friction does not modify the overall response of an infilled frame.

Nevertheless friction can modify the local response in the sense of a reduction of the
stresses normal to the contact surface frame–infill. This produces also a reduction of the
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shear stresses on members. The Coulomb law is commonly used for the friction, meaning
that the friction stresses can be considered proportional to the stresses normal to the contact
frame–infill surface. The using of this approach requests the definition of a proportionality
factor (the friction coefficient m) but it is not simply to fix a realistic value of it. For example
in Papia et al. (2003) and in Saneinejad and Hobbs (1995) the value 0.45 has been assigned
for the friction coefficient without an experimental evidence while in Fiore et al. (2012)
a parametric study has been preferred and carried out assigning values in the range 0–0.4.
Further the friction phenomenon is not simply controllable in the case of cyclic loading: it can
undergo a strongly variation with the increasing of the numbers of cycles. In this conditions,
considering that (a) it does not influence the overall behaviour of the system, (b) it produces
a reduction of the shear stresses on beams and columns, (c) it progressively varies in the case
of cyclic loading, it is reasonable to neglect it in the assessment of the local shear effect on
frame members.

Nonlinearity of shell elements was introduced in the model by iteratively scaling (i.e.
reducing) their thickness. The reduced thickness ideally represents that one allowing to
obtain for the M2 model the same lateral secant stiffness as exhibited by the M1 model for a
fixed interstorey drift level. This way the simple M1 model permits one to calibrate the M2
model at each selected prescribed displacement basing on a nonlinear law assumed for the
equivalent strut.

The so defined M2 model furnishes more detailed results regarding frame internal force
modification due to the frame–infill interaction, being able to simulate both interface detach-
ment and local shear effects on RC member ends, unlike the M1 model, able to simulate the
overall behaviour but not the distribution of the internal forces in the frame members.

2.3 Reliability of M1 and M2 models

Both M1 and M2 models are characterized by non linear frame members whose nonlinearity
depends on the possibility of activation of plastic hinges in the critical regions. Considered
that the M1 model reproduces infill by an equivalent nonlinear diagonal strut and M2 model
reproduces infill by means of linear Finite Shell Elements, the reliability of the M2 nonlinear
model is obtained by a calibration basing on the response of the M1 nonlinear model at each
assigned drift. On the other hand the M1 nonlinear model is calibrated basing on experimen-
tal tests. Therefore M2 model, because of the calibration criterion adopted, reproduces the
nonlinear behaviour of infilled frames.

The M2 model is calibrated by equating its secant stiffness and the M1 model secant
stiffness at each assigned drift. In this way, as schematically shown in Fig. 9, the M2 model
can follow the response of the M1 model. This is possible assuming each time different
mechanical parameters. In this case, considering that the nonlinearity of the members is
obtained by plastic hinges at the critical regions fixed as a functions of the cross sections
characteristics, the equivalence is obtained only by varying the thickness of the infill that is
modelled at each stage as a linear material.

The definition of the infill nonlinearities of the refined M2 model, carried out by a compar-
ison with the M1 model, has great advantages. In fact infill is generally a non homogeneous
material whose nonlinear behaviour depends on a number of parameters whose identification
requests a non negligible effort (e.g. Stavridis and Shing 2010). Conversely the behaviour of
an equivalent nonlinear strut can be defined depending on a minor numbers of parameters
more simply identifiable by observing experimental responses.

For what above the reliability of the M2 model depends on the reliability of the M1
model whose characteristics has been discussed in previous Sect. 2.1. M1 model has been
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Fig. 9 Theoretical representation of three states of the M2 model (points A, B, C) in the lateral force–drift
curve compared to the response of the M1 model and the experimental response

55 20 160 20 55

8 17

10

40

160

35

20

20

40

20

6 10

4 10

beam

column

18

Fig. 10 Experimental responses of infilled frames (Cavaleri et al. 2014)

formulated on the basis of different experimental results available in the literature. As an
example in Fig. 10 the cyclic responses of two frames infilled with clay masonry, obtained
by the authors and partially discussed in Cavaleri et al. (2014), used for the calibration of the
M1 model, are shown. Also a comparison of the envelopes of strengths with the M1 model
is inserted in Fig. 11 proving the reliability of the model M1 itself. To the same conclusions
one can arrive by a comparison with the experimental results in Koutromanos et al. (2011)
(see Fig. 12), Korkmaz et al. (2010) and Chiou et al. (1999).

The approach above described uniformly spreads the damage in the infill but this fact does
not contrast the reliability of the results in fact the experimental observations in the case of
cyclic loading show a wide diffusion of the damage (see Fig. 10) further the damage does
not change the influence of the ineffective infill volumes, if any.
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Fig. 11 Experimental strength
envelopes of infilled frames
compared to analytical one
obtained by assigning the strut
M1 model (Cavaleri and Di
Trapani 2014)

Fig. 12 Experimental response of an infilled frame (Koutromanos et al. 2011) compared to the analytical
envelope obtained by assigning the strut M1 model

3 Parametric study

As discussed in the previous section, the comparability of the two-models used here is
possible, under monotonic loading, when they exhibit the same stiffness at a generically
assigned interstorey drift. Therefore the procedure used to evaluate internal force modification
due to the presence of infill panels follows the steps shown above: (a) assignment of the
mechanical properties and geometry of the infilled frame; (b) definition of the equivalent
strut (M1 model); (c) definition of the M2 model in which the thickness (t) of the infill is
initially set equal to the real thickness; (d) choice of an interstorey drift (dr ); (e) analysis
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Fig. 13 Critical sections on RC
frame

of the M1 model by imposing the fixed interstorey drift and evaluation of secant stiffness
as the parameter identifying damage level; (f) identification of the damage level in the M2
model (by reducing infill thickness) in such a way as to provide the same secant stiffness as
exhibited by the M1 model; (g) evaluation of RC frame internal force distribution on the M2
model. Once the internal force distribution is evaluated for both the M1 and M2 models it is
possible to correlate the level of the shear forces acting in the critical sections of the frame
members (obtained by the M2 model) and the axial force in the equivalent strut.

Parametric analyses were carried out to evaluate the responses, for an assigned damage
level (identified by the interstorey drift ratio), of infilled frames modelled by means of both
the approaches described above. The geometrical and mechanical properties of frames and
infills (elastic moduli, aspect ratio, beam element cross-sections, masonry mechanical char-
acteristics) were varied in order to evaluate their influence on the distribution of shear forces
occurring on beam and column ends in contact with infills.

The shear force in the four critical sections indicated in Fig. 13 (BNO-Beam North-
West, BSE-Beam South-East, CNO-Columns North West, CSE-Columns South East) was
considered. In these sections, equilibrium with forces transferred by the infill through the
contact regions has to be granted, thus the shear demand is here highly concentrated.

For each infilled frame considered, M1 and M2 models were generated and analyzed
for the drifts fixed above. Once the structural responses were obtained the dimensionless
quantities reported below were evaluated:

αB N O = V (M2)
B N O

N (M1)
p

; αBSE = V (M2)
BSE

N (M1)
p

(19)

αC N O = V (M2)
C N O

N (M1)
p

; αC SE = V (M2)
C SE

N (M1)
p

(20)

in which N (M1)
P is the axial force on the equivalent diagonal strut evaluated in the M1 model

while V (M2)
B N O , V (M2)

BSE , V (M2)
C N O , V (M2)

C SE , are the shear forces acting in the critical sections evaluated
using the M2 model.

The coefficients αB N O , αBSE , αC N O , αC SE , here called shear distribution coefficients,
define the relationship existing between the shear forces acting on the frame critical sections
and the axial force acting on the equivalent strut for a fixed interstorey drift ratio. If prediction
of shear distribution coefficients is possible a priori as a function of the geometrical and
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Fig. 14 Comparison between M1 and M2 model responses: a deformed shape; b shear distribution

mechanical variables of the infilled frame system, these coefficients become a useful tool
to evaluate the real shear forces on frame sections as a quota of the equivalent strut axial
force. In Fig. 14, a qualitative comparison in terms of deformed shapes and distribution of
shear demand between responses exhibited by the two models for the same interstorey drift
is reported, evidencing the relevance of local shear effects detected in the contact regions by
the M2 model and not by the M1 model.

Since shear distribution coefficients can be defined at each interstorey drift reached by
an infilled frame, a sensitivity analysis for different classes of infilled frames was primarily
performed with an increase in the drift level from the elastic phase (dr = 0.01−0.03 %)
up to dr = 1.2 % which for most non-ductile structural systems represents a near-collapse
condition.

It is not easy to identify with a single parameter a class of infilled frame systems because
a really wide quantity of variables is involved and the behaviour of each system depends not
so much on the single mechanical properties of RC frame and masonry infills but more on
their ratios. It is also important to underline that, since the analyses were carried out in a
nonlinear field, parameters that usually are not significant in elastic studies, such as strengths
and strength ratios, have to be taken into account. Therefore in this study the parameter ψ
(Eq. 21) was considered as characterising the system; this parameter is the product of three
terms that appear to be fundamental in the behaviour of an infilled frame.

ψ = λ∗ξ∗ fv0m (21)

The parameter λ∗ appearing in Eq. 21 has already been defined by Eq. 12. It carries informa-
tion about the geometry of the system and the stiffness ratio between infill and frame. The
term ξ∗ = MRB/MRC , is the ratio between the flexural strengths of the upper beam (MRB)

and the mean flexural strengths of columns (MRC) and is introduced since it is related to the
plastic hinge formation sequence that significantly influences frame secant stiffness in the
nonlinear field and therefore also the shear distribution coefficient trend. Since the resisting
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Fig. 15 Shear distribution coefficients αCNO and αCSE versus drift ratio for different ψ values and �/h = 1

dr [%]

α
B

N
O

dr [%]

α
B

SE

ψ values
1.14

1.63

1.72

3.48

5.36

3.68/ h=1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

0 0.4 0.8 1.20.2 0.6 1 0.4 0.8 1.20.2 0.6 1

Fig. 16 Shear distribution coefficients αBNO and αBSE versus drift ratio for different ψ values and �/h = 1

moment of the column does not have a univocal value but depends on the axial force, the
term ξ∗ can be more simply estimated, as was done in this case, by calculating the ratio
hb/hc between the beam and column cross-section heights. Finally, fv0m is the medium
shear strength to be attributed to the masonry used for the infill. This medium shear strength
plays a significant role because the forces that are transferred from the infill panel to the RC
frame are strongly related to the panel strength.

In Figs. 15, 16, 17 and 18 the results of the previously mentioned sensitivity analyses are
shown. In detail the shear distribution coefficients are shown for different values of the ψ
factor and for infilled frames having aspect ratios �/h = 1 and �/h = 2. From observation of
the curves it appears evident that the shear distribution coefficients maintain a sub-horizontal
trend after an unstable stage which is limited to low drift values. This trend occurs for shear
distribution coefficients of both the beam and column critical sections and for the two aspect
ratios of the infill considered. Another characteristic of the shear distribution coefficients is
that they assume the highest values when systems are characterized by low values of the
ψ factor. This trend is explained by the fact that low values of the ψ factor are generally
associated with weak infills combined with RC frames having significant stiffness. These
conditions produce a reduction in the axial force Np in the equivalent strut appearing in
Eqs. 19–21 and the correlated growth of theα coefficients. In Tables 2 and 3 the characteristics
of the specimens modelled for obtaining the curves α − dr are included.

Since this study aims to provide the basis for a predictive general instrument able to esti-
mate a reliable shear demand in critical sections a relationship was sought between the shear
distribution coefficients and geometrical/mechanical features of the infilled frame summa-
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Fig. 18 Shear distribution coefficients αBNO and αBSE verus drift ratio for different ψ values and �/h = 2

rized by the ψ factor. A further parametric analysis correlating α coefficients with ψ factors
was therefore performed.

As previously observed, the α coefficients are almost drift independent after a certain drift
level (typically a low value) is reached. Hence it is possible to choose a single interstorey drift
value whose corresponding α coefficients can be considered representative of the frame–infill
interaction for each value of the interstorey drift. In order to obtain the previously mentioned
α −ψ correlation, the intermediate drift value dr = 0.6 % was selected as a reference. Two
sets of models having different infill aspect ratios (�/h = 1.0 and �/h = 2.0)were analyzed.
In different cases the above models were characterized by the same or similar values of the
parameter ψ in order to verify that similar values of this parameter produce similar effects
in terms of coefficients αB N O , αBSE , αC N O , αC SE . The results of the analyses in terms
of relationships between the ψ factor and the coefficients αB N O , αBSE , αC N O , αC SE . are
synthetically reported in Figs. 19 and 20. The points in Figs. 19 and 20 refer to some of the
infilled frames analyzed—in different cases characterized by the same value of ψ just as a
prove that similar values of ψ generate similar values of the coefficients αBNO, αBSE, αCNO,
αCSE. The points represented in Figs. 19 and 20 refer to infilled frames whose geometrical
and mechanical features are indicated in Tables 4 and 5 together with the terms λ∗, ψ andw.

Analytical best fitting functions (Eqs. 22–25) have also been provided in order to show the
possibility of deriving effective tools for practical applications. The determination coefficients
R2 are also calculated to evaluate the agreement of the best fitting correlation law with the
numerical results.
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The laws for the α − ψ relationships are shown below (including R2 coefficients) for
�/h = 1 (Eqs. 22–23) and for �/h = 2 (Eqs. 24–25)

αC N O = 0.96ψ−0.37(R2 = 0.94); αC SE = 1.03ψ−0.35(R2 = 0.91) (22)

αB N O = 0.98ψ−0.33(R2 = 0.90); αBSE = 1.03ψ−0.32(R2 = 0.93) (23)

αC N O = 1.05ψ−0.36(R2 = 0.93); αC SE = 1.08ψ−0.30(R2 = 0.90) (24)

αB N O = 0.60ψ−0.39(R2 = 0.88); αBSE = 0.68ψ−0.32(R2 = 0.82) (25)

By means of the proposed laws α coefficients can be evaluated for each infilled frame system
before analyses are made as a function of the ψ factor. The above coefficients can be used
to correct shear forces detected in critical sections when equivalent strut models are used to
perform analyses. Finally, according to Eqs. 19–20 the shear value in critical sections can be
evaluated by multiplying the previously calculated α coefficients by the axial force resulting
in the equivalent strut.
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By observing the α−ψ curves it appears evident, as observed before, that, for both aspect
ratios considered, the α coefficients undergo a reduction when the ψ values increase. This
expresses the general tendency of RC frames to receive shear forces on critical sections that
increase as the stiffness of the frame increases with respect to the infill. The results also show
that the influence of the infill aspect ratio (�/h) has a major role, especially for beams that are
affected by significantly lower shear when the horizontal dimension of the panel � prevails
over the height h.

The results of the analyses reported above can be a basis for assessment of the capacity of
RC members of infilled frames when linear or nonlinear analyses are performed by means of
equivalent concentric strut models. In practical applications, once the analysis is performed
and the axial forces acting on the equivalent struts are known, the shear demand to consider
for capacity assessment can be estimated by replacing shear forces on critical sections with
the values VB N O , VBSE , VC N O , VC SE that can be calculated by means of the following
expressions:

VB N O = V0 + αB N O NP ; VBSE = V0 + αBSE NP (26)

VC N O = αC N O NP ; VC SE = αC SE NP (27)

V0 being the shear force due to the vertical loads on the beams and Np the axial force in the
equivalent strut.

4 Extensibility of the laws expressed by Eqs. 22–25

Considering that the laws in question, correlating the coefficients for the right estimation of
the shear in the frame members, were obtained for a drift of 0.6 %, it is natural to want to
verify the extensibility of these laws to different drifts that can be experienced by frame–infill
systems.

In this section an application is proposed to two cases of infilled frame having aspect ratios
�/h = 1 and �/h = 2 respectively.

The response in terms of shear demand in the critical section is evaluated for different drift
levels using the M2 model and is assumed to be exact. The shear distribution is calculated
by means of the M1 model and corrected by using the laws in Eqs. 22–25, also for drifts
different from 0.6 % (lower and higher). Finally, the exact demand (M2 model) and the
demand corrected by the proposed law (M1 model) are compared. For the sake of simplicity
the term V0 related to vertical loads is considered null in this example. The geometrical and
mechanical characteristics of the models are reported in Table 6 within the ψ factors and the
related shear distribution coefficients calculated by Eqs. 22–25.

The results of the tests are shown in Figs. 21 and 22 in terms of shear on critical sections
versus interstorey drifts.

It appears evident that although the proposed strategy is based on shear distribution coeffi-
cients evaluated at dr = 0.6 %, the resulting predictive capacity at each drift is quite reliable.
Prediction errors for the drift levels considered are in most cases acceptable. Figures 21
and 22 also show the level of shear obtainable by the procedure proposed by FEMA. It can
be observed that this level of shear agrees conservatively with the maximum level of shear
obtainable varying the drift. This result validates the procedure proposed by FEMA but con-
firms that the shear demand in the frame members may be lower, resulting in a lower effort
in the measures to be implemented to obtain a fixed safety level.
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Fig. 21 Comparison of the predictive capacity of shear forces on column critical sections in the M1 Model
and proposed method with respect to the M2 Model for two numerical specimens characterized by �/h = 1
and �/h = 2
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Fig. 22 Comparison of the predictive capacity of shear forces on beam critical sections in the M1 Model and
proposed method with respect to the M2 Model for two numerical specimens characterized by �/h = 1 and
�/h = 2

5 Conclusions

In the present paper a study of the local shear effects produced at the ends of beams and
columns of non-ductile RC infilled frames in the presence of lateral loads has been presented.
This study has the aim of providing strategies for correcting the results in terms of shear
demand obtained when, for the modelling, an infill is substituted with an equivalent concentric
strut.

A comparison has been carried out between the force arising in the frame members in
the case of an infill modelled as an equivalent concentric strut and in the case of an infill
“exactly” modelled by finite shell elements, at different drift levels, for a single infilled frame.
The comparison was repeated varying the geometrical and mechanical characteristics of the
frame–infill system and a correlation law between a parameter synthesizing the characteristics
of frame and infill and the real shear distribution in the critical sections was derived. This
law allows one to express the local shear forces acting on beam and column ends as a
fraction of the axial load experienced by the equivalent strut and for this reason it can be
considered a basis for a predictive tool to be used for the assessment of shear demand on RC
member critical sections that is otherwise undetectable when a simple equivalent concentric
strut model is used. The predictive capacity of the correlation proposed was tested on two
numerical specimens having two different aspect ratios, demonstrating good accuracy for
all investigated drifts. Further, a comparison was made with the shear demand assessment
proposed by FEMA, confirming on one hand the reliability of the approach proposed (a light
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underestimation of the model proposed in FEMA for the shear demand in the columns in the
case of rectangular infills is not really significant) and on the other one the possibility of an
overestimation of the FEMA approach for drifts lower than those for which the equivalent
strut is affected by a force equal to its resistance.

The proposed correlation is obtained considering mechanical properties and structure
configurations representative of RC frames designed to resist vertical loads only, but the
study can be improved by including a wider class of infilled frames. However, it reveals that
more accurate assessment of local shear effects is achievable even if detailed and onerous
models are not used to perform analyses. Further, instruments supplementing technical codes
which do not provide any predictive strategy for the evaluation of local frame–infill interaction
effects or give very conservative approaches can be formulated.

Acknowledgments This study was sponsored by ReLUIS, Rete di Laboratori Universitari di Ingegneria
Sismica, Linea 2, Obiettivo 5: Influenza della Tamponatura sulla Risposta Strutturale.

6 Appendix: Reliability of the internal forces transferred from infill to frame
members as predicted by M2 simplified FE model

According to the procedure described in Sect. 2.2, when using M2 model, the nonlinearity
of infills (modelled by shells), is introduced by a multi-stage linear equivalence. The latter
is obtained scaling the thickness of the infill in such a way to get the same secant stiffness of
M1 model at each interstorey drift. In terms of global behaviour the procedure provides the
same level accuracy of the one provided by M1 model. This means that if M1 model is well
calibrated the overall response obtained by M2 is accurate too. The accuracy of M2 model
in prediction of local response in terms of shear action transferred to frame members is a
question to discuss but not simply to definitively solve: really if one has to fix as “true” the
response of a more refined model including the nonlinearity of infills it has to be said that
there are so many approaches in defining the nonlinearity of a shell system hence the choice
of a “true” model is itself a problem.

Anyway, for the case here discussed, a comparison between the M2 multistage linear
equivalent model, used through the paper to estimate the internal forces on the frame members,
and a fully nonlinear version of the M2 model before mentioned (having the characteristics
specified below) has been carried out. The results obtainable by the two models have been
compared in terms of global response (base shear vs. interstorey drift) and local response

Fig. 23 M2 model with nonlinear shells
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Fig. 24 Comparison between the global force–drift responses obtained by a M2 fully nonlinear model and
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Fig. 25 Comparison between the local shear force–drift responses obtained by a M2 fully nonlinear model
and the M2 multistage linear model used through the paper

(shear in critical section vs. interstorey drift). The refined fully nonlinear M2 model included
orthotropic nonlinear shell elements (Fig. 23). The nonlinear behaviour of the shells was
attributed after an equivalent homogenization of the masonry material using the compressive
stress–strain law (parabolic-linear-constant) reported in Fig. 23. The characteristic strains
εm0 and εmu were fixed at the values 0.002 and 0.0035, respectively. A peak strength fm0 =
8.66 MPa was assumed, having as reference the experimental results reported in Cavaleri and
Di Trapani (2014) for clay masonry infills. The ratio between ultimate strength fmu and peak
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strength fm0 was assumed to be 0.85. All the other geometrical and mechanical features of
the infilled frame are still referred to S1B specimens investigated in Cavaleri and Di Trapani
(2014) and reported in Table 7.

As before mentioned the first comparison between the two approaches is made in terms
of global force–displacement response. A pushover curve of the M2 nonlinear shell model is
compared with the response obtained by the application of the multistage linear procedure.
The results are shown in Fig. 24. The curves show that the multistage procedure has a good
accuracy in estimating the overall response with a slight overestimation in correspondence of
the lower drifts. This trend is reflected on the local shear–drift curves determined for critical
sections CNO, CSE, BNO, BSE (Fig. 25). Here the comparison with the fully nonlinear
model shows that the prediction of internal shear forces performed by M2 linear equivalent
procedure provides a realistic overview. The lower accuracy in earlier drift does not modify
the overall reliability since the higher shear actions transmitted by the infills to the frames
are associated with larger drifts (where the predictive capability of the procedure is more
accurate).

Similar results can be found changing the characteristics of the infilled frame proving that
the approach used through the paper considering the non linearity of infills by a multistage
linearization procedure, in connections with the objectives fixed, is a valid alternative to more
refined models including infill nonlinearity.
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