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Abstract The ground acceleration is usually modeled as a filtered Gaussian process. The
most common model is a Tajimi–Kanai (TK) filter that is a viscoelastic Kelvin–Voigt unit (a
spring in parallel with a dashpot) carrying a mass excited by a white noise (acceleration at the
bedrock). Based upon the observation that every real material exhibits a power law trend in
the creep test, in this paper it is proposed the substitution of the purely viscous element in the
Kelvin Voigt element with the so called springpot that is an element having an intermediate
behavior between purely elastic (spring) and purely viscous (dashpot) behavior ruled by
fractional operator. With this choice two main goals are reached: (i) The viscoelastic behavior
of the ground may be simply characterized by performing the creep (or the relaxation) test on
a specimen of the ground at the given site; (ii) The number of zero crossing of the absolute
acceleration at the free field that for the classical TK model is ∞ for a true white noise
acceleration, remains finite for the proposed model.

Keywords Fractional viscoelasticity · Ground motion · Tajimi–Kanai filter

1 Introduction

The classical Tajimi–Kanai (TK) to model earthquake ground motion (Tajimi 1960; Kanai
1957) is often used for the analysis of structures subjected to earthquakes. The TK model is a
linear oscillator attached to the bedrock that, during the earthquake, moves with an accelera-
tion modeled as a Gaussian white noise process. Studies of the TK filter and generalizations
to take into account the non-stationatity may be found in Liu and Jhaveni (1969); Ahmadi
and Fan (1990); Rofooei et al. (2001). The parameters of the TK model (damping ratio ζg

and frequency ωg of the soil deposit) are calibrated by the observation of zero crossings and
other statistics of the historical earthquakes. In spite the studies and revisitations on this model
two main questions remain unsolved: (i) If there is no previous time histories on the given
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site, how may we evaluate the relevant parameters of the TK model? (ii)As the classical TK
model is assumed, the number of zero crossing of the acceleration at the free field is ∞ if the
oscillator is enforced by a true white noise (power spectral density (PSD) constant at overall
frequencies). The latter aspect remains hidden during the generation of artificial earthquakes
starting from the TK filter since a cut-off frequency (80–100 rad/s) is usually performed. We
preliminarly observe that the TK model is a Kelvin Voigt viscoelastic element that is a spring
whose stiffness is ω2

g and a dashpot characterized by the damping coefficient 2ζgωg carrying
an unitary mass. Some authors give informations on calibration of the TK parameter, see
e.g. Ellingwood and Batts (1982); Ellingwood et al. (1983); Rezaeian and Der Kiureghian
(2008); Hindy and Novak (1979); Zerva and Harada (1997); Zerva and Stephenson (2011).
Then the viscoelastic characteristics of the soil deposit are connected with such parame-
ters. However Nutting (1921) observed that every real material (rubber, bitumen, cheramics,
steel, . . .) experiences a power law trend in the creep function. Based upon this observation
in the second part of the last century many research works have been devoted to the correct
constitutive laws of viscoelastic materials. And now it is widely recognized that the stress
strain relationship involves fractional derivative rather than first order one, like it happens by
assuming a constitutive law with integer order derivative (dashpot). Many papers have been
focused on this theoretical aspect of fractional viscoelastic constitutive law and its numerical
aspects (Blair and Caffyn 1949; Slonimsky 1961; Bagley and Torvik 1984; Schiessel and
Blumen 1993; Schiessel et al. 1995; Bagley and Torvik 1983, 1986; Bagley 1989; Schmidt
and Gaul 2002; Spanos and Evangelatos 2010; Yuan and Agrawal 2002; Schmidt and Gaul
2006a, b; Podlubny 1999; Di Paola et al. 2012; Di Paola and Zingales 2012; Di Paola et al.
2013), and others devoted to creep tests on real materials (Yang and Cheng 2011; Nian et
al. 2012; Ter-Matirosyan and Ter-Matirosyan 2013; Li and Xia 2000; Di Paola et al. 2011;
Zbiciak 2013; Grzesikiewiz et al. 2013). This new element, usually called springpot in lit-
erature, exhibits an intermediate behavior between purely elastic element (SPRING) and a
purely viscous fluid (dashPOT). The qualitative viscoelastic behavior is characterized by the
order β of the fractional derivative (Di Paola and Zingales 2012), that for every material has
the limitation 0 ≤ β ≤ 1. In particular the values β = 0 and β = 1 correspond to a purely
elastic behavior and a purely viscous material, respectively.

From all these observations in this paper, a novel model of TK filter is proposed, that
consists in assuming that the link between the bedrock and the free field is composed by a
spring and a springpot in order to capture the correct viscoelastic behavior of the soil deposit.
Then because of the presence of the fractional operator such a modified TK model will be
termed as fractional Tajimi–Kanai (FTK) model. With this choice two main goals are reached:
(i) The viscoelastic behavior of the ground may be simply characterized by performing the
creep (or the relaxation) test on a specimen of the ground at the given site; (ii) The number
of zero crossing of the absolute acceleration at the free field that for the TK filter is ∞ for
a true white noise acceleration, remains finite for the FTK one confirming the robustness of
the model. The paper is organized as follows: in Sect. 2 some preliminaries remarks on the
fractional viscoelasticity is presented. In Sect. 3 the FTK model and the characterization of
the parameters based upon experimental data available in literatures are proposed, while in
Sect. 4 a wide discussion of the zero crossing of both TK and FTK is presented.

2 Preliminary concept on fractional viscoelasticity

In order to capture the viscoelastic behavior of any real material as a first step a creep or a
relaxation function on a specimen of the given material has to be performed. In particular the
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creep function J (t) is the strain history for an unitary imposed stress, while the relaxation
function G(t) is the stress history for an unitary imposed strain.

The constitutive law may be obtained in a linear viscoelastic range by using the Boltzmann
superposition principle in the dual form (Flugge 1967)

τ(t) = G(t)γ (0) +
t∫

0

G(t − t̄)γ̇ (t̄)dt̄ (1)

γ (t) = J (t)τ (0) +
t∫

0

J (t − t̄)τ̇ (t̄)dt̄ (2)

where τ(0), γ (0) are the initial condition in terms of shear stress and shear strain, respectively.
From Eqs. (1) and (2) we may affirm that in general the constitutive laws are ruled by
convolution integrals whose kernels are the relaxation and creep function. Consider, without
loss of generality, that the initial conditions are zero, that is γ (0) = 0, τ(0) = 0, then by
making the Laplace transform of Eqs. (1) and (2) we get a fundamental relationship between
Ĝ(s) and Ĵ (s) in the form

Ĝ(s) Ĵ (s) = 1

s2 (3)

being s the Laplace (complex) parameter and Ĝ(s), Ĵ (s) the Laplace transform of G(t) and
J (t), respectively. In the last part of the last century Nutting (1921) observed that the creep
test performed on real materials like rubber, ceramics, steel, bitumen and many others are
well fitted by a power law, that is

J (t) = tβ

Cβ�(1 + β)
0 ≤ β ≤ 1 (4)

where β and Cβ are characteristic of the material at hand and �(·) is the Euler Gamma
function. Further consider that the creep is given as in Eq. (4) by using Eq. (3) and making
the inverse Laplace transform of Ĝ(s) = ( Ĵ (s)s2)−1 we obtain that the relaxation function
is given in the form

G(t) = Cβ

�(1 − β)
t−β 0 ≤ β ≤ 1 (5)

By inserting Eqs. (4) and (5) into Eqs. (1) and (2) we obtain

τ(t) = Cβ

1

�(1 − β)

t∫

0

(t − t̄)−β γ̇ (t̄)dt̄ (6)

γ (t) = 1

Cβ

1

�(1 + β)

t∫

0

(t − t̄)β τ̇ (t̄)dt̄ (7)

Now we recognize that τ(t)/Cβ in Eq. (6) is the Caputo’s fractional derivative of γ (t) and
γ (t)Cβ in Eq. (7) is the Riemann Liouville fractional integral of τ(t), that is the constitutive
law may be written in the dual form

τ(t) = Cβ

(
C Dβ

0+γ
)

(t) (8a)

γ (t) = C−1
β

(
I β

0+τ
)

(t) (8b)
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Eqs. (8) shows that as we assume for the creep (or relaxation) function a power law trend,
then the fractional operators appear whose order of fractional derivative (or integral) is the
exponent of the power law. Moreover because of the limitation on β we recognize that for
β = 0 the purely elastic behavior is recovered, for β = 1 the purely viscous behavior is
obtained (see Eq. (2)). Intermediate values of β take into account the viscoelastic behavior
of the material.

3 Tajimi–Kanai model and its fractional counterpart

In this section the FTK model will be introduced in detail. For clarity’s sake the classical TK
model is first discussed.

3.1 Classical TK filter

The TK model for the earthquake ground motion is based on the observation that the absolute
acceleration of the ground may be sought as a white noise process (acceleration at bedrock)
filtered through superimposed soil deposit modeled as a single degree of freedom oscillator
as depicted in Fig. 1.

Let us denote as Mg the mass of the oscillator, Kg the stiffness and Cg the damping
coefficient of the dashpot connecting the mass Mg and the bedrock, U (t) is the absolute
displacement of the mass Mg , W (t) the absolute displacement of the bedrock and Xg(t)
the relative displacement between the mass Mg and the bedrock (Xg(t) = U (t) − W (t)).
Based on the above considerations, the dynamic equilibrium equation of the mass Mg is
given as:

Mg(Ẍg(t) + Ẅ (t)) + Cg Ẋg(t) + Kg X (t) = 0 (9)

and dividing by Mg we get

Ẍg(t) + 2ζgωg Ẋg(t) + ω2
g X (t) = −Ẅ (t) (10)

where ζg and ωg are the damping ratio and the circular natural frequency of the ground,
respectively, whose values are generally ωg = 5π (rad/s), ζg = 0.6. Then since we are
interested in absolute acceleration of the free field we may write

Ü (t) = Ẍg(t) + Ẅ (t) = −2ζgωg Ẋg − ω2
g Xg(t) (11)

Now let us suppose that Ẅ (t) is a normal white noise process characterized by the PSD level
S0 (constant at overall frequencies), then the PSD for Ü (t) is given as

Fig. 1 Tajimi–Kanai model

MgMg

W(t)W(t)

U(t)U(t)

kg

Cg
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SÜ (ω) = 2π S0
ω4

g + 4ζ 2
g ω2

gω
2

(ω2
g − ω2)2 + 4ζ 2

g ω2
gω

2 (12)

Close inspection of Fig. 1 reveals that the classical TK filter is neither else than a Kelvin–
Voigt element carrying a mass Mg in which the elastic and the viscous elements take into
account the viscoelastic property of the soil deposit. In order to overcome the unrealistic
value of SÜ (ω) at ω = 0 (SÜ (0) = 2π S0) in Clough and Penzien (1995) is proposed a
modification of the classical TK by inserting another oscillator (like a filter) avoiding the
physical inconsistency.

On the other hand in the previous section it has been shown that the correct interpretation
of the viscoelastic property of the soil is a spring (like in the classical TK filter) and a
fractional element characterized by the coefficients β and Cβ . This issue will be addressed
in the following.

3.2 Fractional Tajimi–Kanai model

Once we know the local constitutive law of the ground, by knowing the depth and the local
characteristics of the soil deposit by using a shear type beam model the acceleration at the
free field may be obtained. However since our goal is to find a simplified model like the TK
filter we assume that the dashpot in the TK is substituted by a fractional element characterized
by β and C (β)

g , as depicted Fig. 2.
Inspection of the above model reveals that the dashpot characterized by Cg in the classical

TK is substituted by a fractional element (Fig. 2b), usually termed as springpot because it is
an element with an intermediate behavior between the purely elastic (SPRING) and a purely
viscous one (dashPOT). As we assume that the term Cg Ẋg(t) in Eq. (9) is substituted by

C (β)
g

(
C Dβ

0+ Xg

)
(t) the equation of motion in canonical form is written as

Ẍg(t) + 2ζ̄gωg

(
C Dβ

0+ Xg

)
(t) + ω2

g Xg(t) = −Ẅ (t) (13)

where ζ̄g is an anomalous damping coefficient [ζ̄g] = [sβ−1].
Since the Fourier transform of the Caputo’s fractional derivative is given as

F
{(

C Dβ

0+ Xg

)
(t);ω

}
= (iω)β X̂g(ω)

= |ω|β
(

cos

(
βπ

2

)
+ i sgn(ω) sin

(
βπ

2

))
X̂g(ω) (14)

Fig. 2 a FTK model,
b Springpot

Mg

kg

Cg

W(t)

U(t)
Cg
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where i = √−1, sgn(ω) is the signum function and X̂g(ω) is the Fourier transform of Xg(t),
then after some algebra we get the PSD of the absolute ground acceleration in the form

SÜ (ω) = 2π S0

ω4
g + 4ζ̄ 2

g ω2
gω

2β + 4ζ̄gω
βω3

g cos
(

βπ
2

)

(ω2
g − ω2)2 + 4ζ̄ 2

g ω2
gω

2β + 4ζ̄gωβωg cos
(

βπ
2

)
(ω2

g − ω2)
(15)

It is worth stressing that as soon as we assume β = 1, then ζ̄g = ζg , and since cos(βπ/2) = 0
Eq. (15) reverts to Eq. (12).

Also in the proposed model there is a physical inconsistency at ω = 0, that is SÜ (0) =
2π S0 like in the classical filter. To avoid this problem, a similar strategy, like that one used
in Clough and Penzien (1995), may be also used for the FTK system. However for the sake
of simplicity hereinafter this problem is not considered. To select the parameters kg , C (β)

g

and β it is possible to perform a best fitting of experimental shear creep tests on sample of
real ground. It can be easily demonstrated that for a fractional Kelvin–Voigt model the creep
function is given in the form

J (t) = tβ Eβ,β+1

(
− kg

C (β)
g

tβ
)

(16)

where Eβ,β+1(·) is the Mittag-Leffler function defined as (Podlubny 1999)

Eα,γ (z) =
∞∑

k=0

zk

�(αk + γ )
(17)

Inserting Eq. (16) into Eq. (2) it leads to

γ (t) =
∞∑

k=0

kg

C (β)
g

(
I βk+1
0+ τ

)
(t) (18)

The creep function for the ground are rare as in fact the tests performed on the specimen of
ground are usually performed only to assess the ultimate load for the ground at hands and
not for the characterization of the viscoelastic behavior. However recently Yang and Cheng
(2011) for shale located in Lougtan Hydropower project of China using shale sample size
of 150 mm×150 mm×150 mm the creep test are reported. Such a test have been performed
for various shear stress levels and the results are depicted in Fig. 3a

A best fitting between experimental creep and theoretical ones obtained by Eq. (16) returns
the parameters kg = 55 · 106 N/m, C (β)

g = γ1 kg N sβ/m, β = 0.4, for the minimum level
stress τ = 0, 45 MPa. The selection of the minimum stress level is made in order to ensure
us that the ground behaves in the viscoelastic zone. The parameter γ1 is a dimensional
factor useful to give a numerical relation between kg and C (β)

g ; for the ground at hands it is
γ1 = 20 sβ . Like in the classical TK then the main assumption is that the ground deposit
behaves linearly. This is reflected from the fact that the equation of the filter is ruled by
Caputo’s fractional operators that are in fact linear ones. If the magnitude of earthquake
grows then the Nutting law requires the dependence on the level of stress as well. As in fact
the Nutting law is γ (t) ∝ ταt−β (being α an indicator of nonlinearity) and the equation of
the filter is non linear. Hereinafter the dependence on the stress level is eliminated in order
to work with a linear model as the classical TK is. Once the parameters have been obtained
by the best fitting the shear creep test curve obtained from experimental data is contrasted
with the theoretical one expressed in Eq. 16 and plotted in Fig. 3b.
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(a) (b)

Fig. 3 a Typical visco-elastic shear test (Yang and Cheng 2011), b shear creep test: experimental data (dots),
theoretical result (solid line)

Fig. 4 Power spectral densities;
classical TK (solid line):
ωg = 5π , ζg = 0.6, S0 = 1;
FTK (dashed line): ωg = 2,
ζ̄g = 20, β = 0.4, S0 = 1
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From the figures some considerations may be withdrawn: (i) From the experimental tests
it is apparent that the correct way to describe the soil constitutive law is involving power
law in the kernel of Eqs. (1) and/or (2). (ii) As a consequence of (i) the proper constitutive
model of soil deposit is not a classical Kelvin–Voigt or Maxwell element or more complex
combination of such elementary units since a fractional constituitive law may be represented
by ∞ Kelvin–Voigt elements (see Di Paola and Zingales (2012); Di Paola et al. (2013)).

Now to study the PSD of the FTK the values of ζ̄g and ωg have to be found; in order to do

this, first a relation between ζ̄g and ωg is found thanks to the relation between kg and C (β)
g as

C (β)
g

Mg
= γ1 kg

M
= 2ζ̄gωg (19)

and since
kg

Mg
= ω2

g (20)

we obtain
ζ̄g = γ1

2
ωg (21)

The values of ζ̄g and ωg are then calibrated in order to have the PSD peak of the FTK at
almost the same frequency of the peak of the TK PSD obtaining ωg = 2 rad/s and ζ̄g = 20.
In Fig. 4 the PSD for the classical TK filter is contrasted with that of the proposed FTK filter.

123



2502 Bull Earthquake Eng (2014) 12:2495–2506

From Fig. 4 at first glance it seems that no substantial difference between the two PSD
distributions is evidenced. It follows that up to now the only reason to prefer using the FTK
is that it models the viscoelastic property of the soil in a more realistic way. As in fact
the parameters ζg and ωg of the classical TK are mainly determined by the zero crossing
of historical data and other specific characteristics based upon the probability theory of
stochastic processes. However there is another reason to prefer the FTK from a theoretical
point of view that is not explicitely claimed in literature. This issue will be adressed in the
next section.

4 Zero crossings for TK and FTK model

The PSDs of the absolute acceleration Ü (t) of TK and of FTK model are given in Eqs. (12)
and (15), respectively. In order to match experimental data coming from historical earthquake
model the zero crossings of the absolute acceleration at the free field has to be evaluated. It is
well known that the mean number of zero crossings ν of the stationary Gaussian stochastic
process Ü (t) is given as (Lin 1967)

ν = 1

π

[∫ ∞
0 S...

U (ω)dω∫ ∞
0 SÜ (ω)dω

]1/2

= 1

π

σ...
U

σÜ
(22)

where S...
U (ω) is the PSD of the rate of acceleration

...
U , σ...

U and σÜ are the standard deviation
of

...
U and Ü , respectively.
On the other hand since S...

U (ω) = ω2SÜ (ω), the number of zero crossings for the TK
model and the FTK model is given by inserting the corresponding PSDs obtained by Eq. (12)
(TK model) or Eq. (15) (FTK model). We preliminary observe that S...

U (ω) for classical TK
model is depicted in Fig. 5 (solid line), in the same figure the S...

U (ω) is plotted for FTK model
(dashed line) for the selected parameters reported in previous sections and S0 = 1 cm2/s.

From this figure it is evident that for β = 1 (classical TK) the PSD of
...
U (t) for ω → ∞

is constant (for the case under exam the asymptotic value is 355 cm2/s5). This may also be
captured by making the limit for ω → ∞ of Eq. (12) multiplied by ω2. This means that as we
assume that the PSD is that given in Eq. (12) the mean number of zero crossing per unit time
is ∞. This fact is ignored in literature since usually people say that for ω >80–100 rad/s the
PSD is negligible. This means de facto that the stochastic process of input is band limited.
If this assumptions is made then also the mean number of zero crossing does not diverge.
In Fig. 6 two sample functions of Ü (t) are plotted with different clipping on the PSD of the

Fig. 5 Power spectral densities
of

...
U (t); classical TK solid line;

FTK dashed line

20 40 60 80 100
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200

300

400

500

600
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Fig. 6 Sample functions of Ü (t) for various values of the cut off frequency ωc in the TK filter (ωg = 5π ,
ζg = 0.6)

Fig. 7 Sample functions of Ü (t) for various values of the cut off frequency in the FTK filter (ωg = 2, ζ̄g = 20,
β = 0.4)

classical TK filter. In Fig. 6a the cut off frequency ωC is 80 rad/s and the number of zero
crossings ν � 8 s−1, in Fig. 6b the cut off frequency is 5,000 rad/s and ν � 60 s−1. By
increasing the cut off frequency ν increase without limit.
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In Fig. 5 something different happens for the FTK filter, that is the PSD of
...
U (t) goes to

zero for ω → ∞. Moreover if 0 < β < 0.5 also the area of the PSD reamains finite and then
the mean number of zero crossings is finite. That is the FTK model may be enforced by a
true white noise process, obtaining, for ωc → ∞, a number of zero crossings ν � 7.6 s−1. In
Fig. 7 two sample functions of Ü (t) for the FTK with different values of ωc; in Fig. 7a the cut
off frequency ωC is 80 rad/s and the number of zero crossings ν � 5.7 s−1, in Fig. 7b the cut
off frequency is 5,000 rad/s and ν � 7 s−1. This value remain stable also for higher values
of the cut-off frequency and is ν � 7.6 s−1 for ωc → ∞. From the above considerations it
follows that by using the FTK one may take profit of all tools of Itô′s calculus that remains
valid only if the input is a true white noise.

5 Conclusions

In this paper a modification of the TK model has been proposed, that is the dashpot in the
mechanical model is substituted by a springpot. The latter element is a fractional viscoelastic
model whose constitutive law involves the Caputo’s fractional derivative instead of the first
derivative as in the classical dashpot. The behavior of the springpot is intermediate between
pure solid phase and pure Newtonian fluid. The main motivations, for using such an element
instead of the dashpot, are twofold: (i) the creep test performed on specimen of ground (as in
all other materials like rubber, bitumen, bones ceramics and so on) are power law type and
not exponential ones. This leads to the fractional operators in the constitutive law; (ii) the
zero crossing of the FTK model here proposed leads to a finite number, while in the classical
TK filter the number of zero crossing is ∞. This relevant fact remains hidden in literature
since usually a band limited (pink noise) is used, disregarding the PSD for ω >80–100 rad/s.
There is another motivation that has not been developed in this paper, that is, if we know the
constitutive law obtained by the creep test on the ground at hand, by knowing the depth of the
soil deposit a correct model for determining the absolute acceleration of the free field may be
easily derived. Usually the creep test on grounds is performed by using triaxial machine that
returns only the relationship between normal stress and corresponding axial deformation.
However ti may be useful to perform creep shear test in order to define the proper fractional
constitutive laws. On the other hand the ground is considered as isotropic then with the
parameters of axial stress and axial strain the shear behavior may be easily obtained. It is
hoped that, the proposed approach can be used for simulating earthquake ground motion.
Then since the soil is viscoelastic in nature, therefore the better characterization is one for
which determining the relevant features of viscoelasticity that are creep and relaxation. Then
creep and or relaxation tests should be the standard tests to perform on soils. Extensions to
model non-stationary records is straightforward and may be handled like for the classical TK
filter.

References

Ahmadi G, Fan FG (1990) Nonstationary Kanai–Tajimi models for El-Centro 1940 and Mexico city 1985
earthquake. Prob Eng Mech 5:171–181

Bagley RL (1989) Power law and fractional calculus model of viscoelasticity. AIAA J 27(10):1412–1417
Bagley RL, Torvik PJ (1983) Fractional calculus—a different approach to the analysis of viscoelastically

damped structures. AIAA J 21(5):741–748
Bagley RL, Torvik PJ (1984) On the appearance of the fractional derivative in the behavior of real materials.

J Appl Mech 51:294–298

123



Bull Earthquake Eng (2014) 12:2495–2506 2505

Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30(1):133–155
Blair SGW, Caffyn JE (1949) An application of the theory of quasi-properties to the treatment of anomalous

strain–stress relations. Philos Mag 40(300):80–94
Clough R, Penzien J (1995) Dynamics of structures. Computers & Structures, Berkeley
Di Paola M, Zingales M (2012) Exact machanical models of fractional hereditary materials. J Rheol 56:983–

1004
Di Paola M, Pirrotta A, Valenza A (2011) Visco-elastic behavior through fractional calculus: an easier method

for best fitting experimental results. Mech Mater 43:799–806
Di Paola M, Failla G, Pirrotta A (2012) Stationary and non-stationary stochastic response of linear fractional

viscoelastic systems. Prob Eng Mech 28:85–90
Di Paola M, Pinnola F, Zingales M (2013) A discrete mechanical model of fractional hereditary materials.

Meccanica 48(7):1573–1586
Ellingwood B, Batts M (1982) Characterization of earthquake forces for probability-based design of nuclear

structures. US Nucl Regul Comm NUREG/CR-2945
Ellingwood B, Reeds D, Batts M (1983) Stochastic models of earthquakes for probability-based design of

nuclear structures. Trans Int Conf Struct Mech React Tech K1/3:11–18
Flugge W (1967) Viscoelasticity. Blaisdell Publishing Company, Massachusetts
Grzesikiewiz W, Wakuliez A, Zbiciak A (2013) Non linear problems of fractional calculus in modeling of

mechanical systems. Int J Mech Sci 70:90–98
Hindy A, Novak M (1979) Earthquake response of underground pipelines. Earthq Eng Struct Dyn 7:451–476
Kanai K (1957) Semi empirical formula for the seismic characteristics of the ground motion. Bull Earthq Res

Inst Univ Tokyo 35:309–325
Li Y, Xia C (2000) Time-dependent tests on intact rocks in uniaxial compression. Int J Rock Mech Min Sci

37(6):467–475
Lin Y (1967) Probabilistic theory of structural dynamics. McGraw-Hill, NY
Liu SC, Jhaveni DP (1969) Spectral simulation and earthquake site properties. ASCE J Eng Mech Div 95:1145–

1168
Nian T, Yu P, Diao M, Lu M, Liu C (2012) Shear-creep behavior of dredger fill silty sands under different

normal pressure. Civ Eng Urban Plan 70:558–563
Nutting P (1921) A new general law of deformation. J Frankl Inst 19:679–685
Podlubny I (1999) Fractional differential equation. Academic Press, San Diego
Rezaeian S, Der Kiureghian A (2008) A stochastic ground motion model with separable temporal and spectral

nonstationarities. Earthq Eng Struct Dyn 37:1565–1584
Rofooei F, Mobarake A, Ahmadi G (2001) Generation of artificial earthquake records with a nonstationary

Kanai–Tajimi model. Eng Struct 23:827–837
Schiessel H, Blumen A (1993) Hierarchical analogues to fractional relaxation equations. J Phys A Math Gen

26:5057–5069
Schiessel H, Metzeler R, Blumen A, Nonnenmacher TF (1995) Generalized viscoelastic models: their frac-

tional equations with solutions. J Phys A Math Gen 28:6567–6584
Schmidt A, Gaul L (2002) Finite element formulation of viscoelastic constitutive equations using fractional

time derivatives. Nonlinear Dyn 29(1):37–55
Schmidt A, Gaul L (2006a) On a critique of a numerical scheme for the calculation of fractionally damped

dynamical systems. Mech Res Commun 33(1):99–107
Schmidt A, Gaul L (2006b) On the numerical evaluation of fractional derivatives in multi-degree-of-freedom

systems. Signal Process 86(10):2592–2601
Slonimsky GL (1961) On the law of deformation of highly elastic polymeric bodies. Dokl Akad Nauk SSSR

140(2):343–346
Spanos P, Evangelatos G (2010) Response of a nonlinear system with damping forces governed by fractional

derivatives-onte carlo simulation and statistical linearization. Soil Dyn Earthq Eng 30(9):811–821
Tajimi H (1960) A statistical method of determining the maximum response of a building structure during an

earthquake. Proc 2nd WCEE, Tokyo II:781–798
Ter-Matirosyan Z, Ter-Matirosyan A (2013) Rheological properties of soil subject to shear. Soil Mech Found

Eng 49(6):219–226
Yang SQ, Cheng L (2011) Non-stationary and non-linear visco-elastic shear creep model for shale. Int J Rock

Mech Min Sci 48:1011–1020
Yuan L, Agrawal OP (2002) A numerical scheme for dynamic system containing fractional derivatives. J Vib

Acoust 124(2):321–324
Zbiciak A (2013) Mathematical description of rheological properties of asphalt aggregate mixes. Bull Pol

Acad Tech Sci 61(1):65–72

123



2506 Bull Earthquake Eng (2014) 12:2495–2506

Zerva A, Harada T (1997) Effect of surface layer stochasticity on seismic ground motion coherence and strain
estimates. Soil Dyn Earthq Eng 16:445–457

Zerva A, Stephenson W (2011) Stochastic characteristics of seismic excitations at a non-uniform (rock and
soil) site. Soil Dyn Earthq Eng 31(9):1261–1284

123


	Fractional Tajimi--Kanai model for simulating earthquake ground motion
	Abstract
	1 Introduction
	2 Preliminary concept on fractional viscoelasticity
	3 Tajimi--Kanai model and its fractional counterpart
	3.1 Classical TK filter
	3.2 Fractional Tajimi--Kanai model

	4 Zero crossings for TK and FTK model
	5 Conclusions
	References


