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Abstract In this paper a recently developed multimode pushover procedure for the approx-
imate estimation of structural performance of asymmetric in plan buildings under biaxial
seismic excitation is evaluated. Its main idea is that the seismic response of an asymmetric
multi-degree-of-freedom system with N degrees of freedom under biaxial excitation can be
related to the responses of N ‘modal’ equivalent single-degree-of-freedom (E-SDOF) sys-
tems under uniaxial excitation. The steps of the proposed methodology are quite similar to
those of the well-known modal pushover analysis. However, the establishment of the (E-
SDOF) systems is based on a new concept, in order to take into account multidirectional
seismic effects. The proposed methodology does not require independent analysis in the two
orthogonal directions and therefore the application of simplified superposition rules for the
combination of seismic component effects is avoided. After a brief outline of the theoretical
background and the application process, an extensive evaluation study is presented, which
shows that, in general, the proposed methodology provides a reasonable estimation for the
vast majority of the calculated response parameters.

Keywords Pushover analysis · Equivalent single-degree-of-freedom system ·
Asymmetric buildings · Biaxial seismic excitation · Nonlinear dynamic analysis

1 Introduction

In recent years an increasing interest for pre-earthquake assessment and rehabilitation of
existing buildings has been observed. For this purpose a linear or nonlinear analysis procedure
has to be implemented in order to calculate some critical response parameters. Given that the
structures designed according to older seismic codes (or even without taking into account
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any seismic code provisions) are expected to sustain extensive inelastic deformations under
strong earthquake excitations, nonlinear dynamic analysis (NDA) is undoubtedly the most
rational procedure. However, the application of NDA in current practice is complicated and
involves many shortcomings related to its computational cost, to the selection and scaling
of the accelerograms to be used, etc. Thus, many researchers tried to establish simplified
nonlinear analysis methods for the approximate estimation of the inelastic performance of
buildings under seismic excitations. As a result of these efforts, static pushover analysis (SPA)
was established. Initially, SPA has been developed in some more or less similar variants
called ‘conventional’ procedures. All of these variants are based on the assumption that
the inelastic response of a structure can be related to the response of an equivalent single-
degree-of-freedom (E-SDOF) system. SPA was shortly adopted by several seismic codes and
prestandards (American Society of Civil Engineers 2008; Applied Technology Council 1996;
European Committee for Standardization 2004) under the name ‘nonlinear static procedure’
(NSP) and became a very popular and useful tool for the earthquake resistant design of new,
as well as the seismic rehabilitation of existing buildings.

However, as it has already been stressed by many researchers (e.g., Krawinkler and Senevi-
ratna 1998; Goel and Chopra 2004), this procedure involves many shortcomings and can
provide reasonable results only for low- and medium-rise planar systems. This is mainly due
to the fact that the determination of the structural response is based on the assumption that its
dynamic behavior depends only on a single elastic vibration mode. In addition, this elastic
mode is supposed to remain constant despite the successive formation of plastic hinges during
the seismic excitation. Also, the choice of the roof displacement as the target displacement
instead of any other displacement is arbitrary and it is doubtful whether the capacity curve is
the most meaningful index of the nonlinear response of a structure, especially for irregular
and spatial systems. Therefore, various ‘advanced’ pushover procedures have been proposed
to overcome some of these shortcomings, e.g., modal pushover analysis (MPA) (Chopra and
Goel 2001), energy-based pushover analysis (Hernadez-Montes et al. 2004), etc.

Nevertheless, the aforementioned ‘advanced’ pushover procedures—in their initial
version—can be rigorously applied only to very simple structures which can be modeled
by planar models, since they do not take into account multidirectional seismic effects. It
is well known that the very common in current practice plan-asymmetric buildings have to
be designed or assessed for concurrent action of at least two horizontal components of the
seismic excitation. In literature only few investigations concerning this issue can be found
(e.g., Fujii 2007; Lin and Tsai 2008; Fajfar et al. 2005; Reyes and Chopra 2011a,b; Magli-
ulo et al. 2012). For example, on the basis of several assumptions, Fujii (2007) determines
two orthogonal principal directions of an equivalent single storey model of the multi-storey
building under consideration and applies proper lateral loads simultaneously along them. The
inelastic behaviour of the building is correlated to the response of the equivalent single storey
model. Lin and Tsai (2008) use pushover analysis to establish three-degree-of-freedom modal
sticks, each one corresponding to a vibration mode of a multi-storey asymmetric building
under biaxial excitation. The response of the building is then determined by modal superpo-
sition of modal sticks’ responses, calculated by means of uncoupled modal response history
analysis (Chopra and Goel 2001). On the other hand, some researchers (e.g., Fajfar et al.
2005; Reyes and Chopra 2011a,b; Magliulo et al. 2012) apply pushover analyses indepen-
dently in two horizontal directions and use one of the widely used directional combination
rules [e.g., American Society of Civil Engineers 2008, Section 3.2.7; European Committee
for Standardization 2004, Section 4.3.3.5.1(6)] to take into account the multidirectional seis-
mic effects. However, these rules are based on the superposition principle, while it is well
known that this approach lacks a theoretical basis in the domain of inelastic response.
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Recently, a new multimode pushover procedure for the approximate estimation of the
seismic response of asymmetric in plan buildings under biaxial seismic excitation has been
developed (Manoukas et al. 2012). Its main idea is that the seismic response of an asymmetric
multi-degree-of-freedom (MDOF) system with N degrees of freedom under biaxial excitation
can be related to the responses of N ‘modal’ E-SDOF systems under uniaxial excitation. The
whole procedure is quite similar to the well-known MPA (Chopra and Goel 2001) as extended
for asymmetric buildings (Reyes and Chopra 2011a,b; Chopra and Goel 2004). However,
the establishment of the E-SDOF systems is based on an essentially different concept. In
particular the properties of the E-SDOF systems are determined by proper equations which
take into account bidirectional seismic effects. The proposed methodology does not require
independent analysis in each direction of excitation, hence directional combination is avoided.
Also, as it will be explained in more detail at the end of Sect. 3, it leads to smaller number
of extreme values of the response parameters, so a reduction of the computational cost is
achieved.

The preliminary evaluation of the proposed procedure, comprising applications to single-
storey buildings consisting of quite simple structural system, indicated that, in general, pro-
vides conservative results and relatively small mean errors with regard to the NDA (Manoukas
et al. 2012). The objective of this paper is the further evaluation of the procedure for multi-
storey asymmetric in plan buildings with realistic structural system, in order to check its
accuracy and to identify possible limitations or/and shortcomings.

Firstly, the theoretical background and the assumptions of the proposed methodology
are briefly outlined. Secondly, the sequence of steps to be followed for its implementation
is systematically presented. The accuracy of the proposed methodology is evaluated by an
extensive parametric study, which comprises implementation of the procedure to ten multi-
storey asymmetric in plan buildings with varying values of normalized eccentricity. The
whole investigation shows that, in general, the proposed methodology provides a reasonable
estimation of the vast majority of the response parameters. Finally, the paper closes with
comments on results and conclusions.

2 Theoretical background

Concerning the linear range of behaviour, it has been demonstrated that the proposed method-
ology can accurately determine the modal response of MDOF systems under two proportional
horizontal seismic components (Manoukas et al. 2012). However, in the nonlinear range some
fundamental assumptions have to be made:

• The seismic response of a MDOF system can be expressed as superposition of the
responses of appropriate SDOF systems just like in the linear range.

• Each SDOF system corresponds to a vibration ‘mode’ i with ‘modal’ vector ϕi (the
quotation marks indicate that the application of the superposition principle is not strictly
valid).

• The displacements ui and the inelastic resisting forces Fsi are supposed to be proportional
to ϕi and Mϕi , respectively (where M is the mass matrix).

• The ‘modal’ vectors ϕi are supposed to be constant, despite the successive development
of plastic hinges.

• It is supposed that Rayleigh damping is present.

Of course, such assumptions violate the very logic of nonlinearity, as the superposition
principle does not hold for nonlinear systems. However, keeping always in mind that our
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main intention is the development of an approximate simplified procedure, the recourse to
these assumptions is inevitable. They must be thought as a fundamental postulate, which
constitutes the basis on which many simplified pushover procedures are built (Manoukas et
al. 2011).

The only additional assumption introduced is that the two horizontal seismic components
üg(t)X and üg(t)Y are proportional to each other, i.e.:

üg (t)Y = κ üg (t)X = κ üg (t) (1)

where κ is a constant factor. Of course, this is not true for recorded earthquake ground
motions. However, this approximation is in accordance with the very common assumption
adopted by seismic codes which specify that—within the framework of NSP as well as
the linear analysis methods—the two horizontal seismic components are represented by the
same design spectrum, while directional combination may be conducted using the percentage
combination rule (e.g., American Society of Civil Engineers 2008, Section 3.2.7.1) which
implies a constant factor (0.3) similar to κ . Obviously, the evaluation of this assumption, as
well as the definition of specific values of κ is beyond the objective of the present study.

Given the aforementioned assumptions, the nonlinear response of an L-story MDOF
system with N degrees of freedom (in the usual case of rigid diaphragms N = 3L) to a
biaxial earthquake ground motion (üg(t)X and üg(t)Y = κ üg(t)X = κ üg(t) along X and Y
axes, respectively) is described by the following equation (for the sake of simplicity (t) is
left out in all following expressions) (Manoukas et al. 2012):

Mu̇ + Cu̇ + Fs = −M(δ,X + κδ,Y )üg ⇒ Mü + Cu̇ + Fs = −Mδ,XY üg (2)

where u, u̇, ü are the displacement, velocity and acceleration vectors of order N , M is the
N × N diagonal mass matrix, C is the N × N symmetric damping matrix, Fs the resisting
forces vector and δ,X , δ,Y are the influence vectors that describe the influence of support
displacements on the structural displacements for independent uniaxial horizontal seismic
excitations along X and Y axes, respectively. Vector u is written as follows:

u = [uX , uY , θ z]T (3)

where uX , uY , θ z are the vectors of order L of displacements along X axis, along Y axis and
rotations around Z (vertical) axis, respectively. The influence vectors δ,X and δ,Y are:

δ,X = [I, 0, 0]T (4)

δ,Y = [0, I, 0]T (5)

where I, 0 are vectors of order L with each element equal to unity and zero, respectively.
Due to the aforementioned assumptions, vectors u and Fs can be expressed as the sum of the
‘modal’ contributions (Anastassiadis 2004; Chopra 2007):

u =
N∑

i=1

ui =
N∑

i=1

ϕi qi , (6)

Fs =
N∑

i=1

Fsi =
N∑

i=1

αi Mϕi (7)

where αi is a hysteretic function that depends on the ‘modal’ co-ordinate qi and the history
of excitation (Anastassiadis 2004). By substituting Eqs. 6 and 7 into 2 and applying well-
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Table 1 Properties of the i th E-SDOF system

Property Uniaxial excitation ügX Biaxial excitation ügX + κ ügY

Mass M∗
Xi M∗

XY i = M∗
Xi + κ (νXi LY i + νY i L Xi ) + κ2 M∗

Y i
Resisting force VXi VXY i = VXi + κVY i

Displacement Di = uNi /νXi ϕNi
(roof displacement uNi )

Di = uNi /νXY i ϕNi = uNi /(νXi + κνY i )ϕNi
(roof displacement uNi )

Damping factor 2M∗
Xi ωi ζi 2M∗

XY i ωi ζi

known principles of structural dynamics, N uncoupled equations can be derived, each one
corresponding to an E-SDOF system (Manoukas et al. 2012):

M∗
XY i D̈i + 2M∗

XY iωiζi Ḋi + VXY i = −M∗
XY i üg (8)

where Di = qi/νXY i , Ḋi , D̈i the displacement, velocity and acceleration of the ith
(i = 1 . . . N ) E-SDOF system, ωi and ζi are the natural frequency and damping ratio of
the elastic vibration mode i and:

VXY i = VXi + κVY i (9)

M∗
XY i = M∗

Xi + κ(νXi LY i + νY i L Xi ) + κ2 M∗
Y i (10)

νXY i = νXi + κνY i (11)

where VXi , VY i are the ‘modal’ base shears parallel to X and Y axes respectively, M∗
Xi , M∗

Y i
and νXi , νY i are the effective modal masses and the modal participation factors of the elastic
vibration mode i due to independent uniaxial excitations along X and Y axes respectively,
while L Xi = δT

,X Mϕi and LY i = δT
,Y Mϕi .

Equation (8) shows that, due to the aforementioned assumptions, the nonlinear response
of a MDOF system with N degrees of freedom subjected to a biaxial seismic excitation ügX

and ügY = κ ügX = κ üg along X and Y axes, respectively, can be expressed as the sum of
the responses of N SDOF systems under uniaxial excitation üg, each one corresponding to a
vibration ‘mode’ having mass equal to M∗

XY i , displacement equal to Di and inelastic resisting
force equal to VXY i , i.e. the sum of ‘modal’ base shear parallel to X axis plus ‘modal’ base
shear parallel to Y axis multiplied by κ (see Eq. 9) (Manoukas et al. 2012).

3 The sequence of steps for the implementation of the proposed methodology

The application process of the proposed methodology resembles the one of MPA. However,
the definition of the E-SDOF systems is essentially different, in order to take into account
multidirectional seismic effects. In Table 1 the properties of the i th ‘modal’ E-SDOF system
are tabulated, along with the properties that it would have in case of uniaxial excitation
(parallel to X axis). The displacement of the E-SDOF system for both cases is correlated
to the roof displacement instead of any other displacement. As it has been pointed out in
introduction, this choice is arbitrary and obviously not obligatory. However, it has been
adopted by the vast majority of the researchers as well as by all modern seismic codes. The
further investigation of its validity is beyond the objective of this paper.
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The proposed methodology should be implemented for all possible combinations of the
seismic components. In particular, the following four combinations should be examined:

ügX + κ ügY (12)

ügX − κ ügY (13)

ügY + κ ügX (14)

ügY − κ ügX (15)

The equations derived by the process presented in the previous paragraphs have to be modified
proportionately for each combination. It can be easily proved—by simple implementation
of the process— that the consideration of the four combinations with opposite sign (e.g.,
−ügX − κ ügY instead of ügX + κ ügY ) leads to identical properties for the E-SDOF systems,
so they can be skipped.

The steps needed for the implementation of the proposed methodology are as follows
(Manoukas et al. 2012):

Step 1: Create the structural model.
Step 2: Calculate νXY 1 (Eq. 11) and M∗

XY 1 (Eq. 10) of the fundamental elastic vibration
mode 1 for the first combination of seismic components (ügX + κ ügY ).
Step 3: Apply to the structural model a set of lateral incremental forces (and moments)
proportional to the vector Mϕ1 of the fundamental elastic vibration mode 1 and determine
the (resisting force)-(displacement) curve VXY 1 − uN1 of the MDOF system. uN1 can
be chosen to correspond to any degree of freedom, but usually the roof displacement
parallel to X or Y axis is used.
Step 4: Divide the abscissas of the VXY 1 − uN1 diagram by the quantity νXY 1ϕN1 =
uN1/D1 and determine the (resisting force)-(displacement) curve VXY 1 − D1 of the
E-SDOF system.
Step 5: Idealize VXY 1 − D1 to a bilinear curve using one of the well known graphic
procedures (e.g., American Society of Civil Engineers 2008, Section 3.3.3.2.5) and cal-
culate the period T1 and the yield strength reduction factor R1 of the E-SDOF system
corresponding to mode 1, from the following equation:

T1 = 2π

√
m1 Dy1

V y1
→ Sa (T1) → R1 = m1Sa(T1)

V y1
(16)

where m1 = M∗
XY 1, Dy1, Vy1 are the mass, the yield displacement and the yield strength

of the system, respectively, and Sa(T1) is the spectral acceleration.
Step 6: Calculate the target displacement of mode 1 using one of the well known pro-
cedures of displacement modification (e.g., American Society of Civil Engineers 2008,
Section 3.3.3.3.2; Federal Emergency Management Agency-Applied Technology Coun-
cil (ATC) 2004, Section 10.4). If the procedure is applied for research purposes using
recorded earthquake ground motions, it is recommended to estimate the inelastic dis-
placement of the E-SDOF system by means of NDA, instead of using the relevant coef-
ficients (e.g., C1 in American Society of Civil Engineers 2008 and Federal Emergency
Management Agency-Applied Technology Council (ATC) 2004). This is due to the fact
that the coefficient values given by codes are based on statistical processing of data with
excessive deviation and, therefore, great inaccuracies may result (Manoukas et al. 2006).
Step 7: Calculate the ‘modal’ values of the other response quantities of interest (drifts,
plastic rotations, etc.) of mode 1 by conducting pushover analysis up to the already
calculated target displacement.
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Step 8: Repeat steps 3–7 applying the incremental forces (and moments) in the opposite
direction.
Step 9: Repeat steps 2–8 for an adequate number of modes.
Step 10: Calculate the extreme values of response parameters by utilizing one of the well
established formulas of modal superposition (SRSS or CQC).
Step 11: Repeat steps 2–10 for all possible combinations of the two horizontal components
of the seismic excitation (Eqs. 12–15).

In general, if n is the number of modes taken into account, 2n pushover analyses have
to be implemented (step 3). Also, 2n target displacements (steps 4–6), 2n “modal” values
(step 7) and 2n extreme values (step 10) of response parameters have to be calculated for
each combination examined (2n+2 extreme values for all combinations). It is worth noticing
that when a multimode pushover procedure (e.g., MPA) is applied independently in two
orthogonal directions and the multidirectional seismic effects are taken into account by using
the SRSS formula or ASCE 41-06 provision (Section 3.2.7), the number of the resulting
extreme values of the response parameters is 22n or 22n+1, respectively. Also, the proposed
methodology does not require independent analysis in each direction of excitation. It is
obvious that with increasing n (n ≥ 2), a significant reduction of the computational cost is
achieved.

In case of taking into account the accidental eccentricity imposed by seismic codes, four
different models should be analyzed and, as a consequence, the number of the aforemen-
tioned extreme values is quadrupled. However, it has been demonstrated that the influence
of accidental design eccentricity to the inelastic response of buildings to strong earthquakes
is not important (Stathopoulos and Anagnostopoulos 2010), so its omission is justified.

4 Evaluation study

4.1 Structural models

The implementation of the proposed methodology to single-storey buildings consisting of
quite simple structural system produced satisfactory results (Manoukas et al. 2012). In the
present study, the procedure is further evaluated for multi-storey asymmetric in plan buildings
with realistic structural systems, in order to check its accuracy and to identify possible
limitations or/and shortcomings.

In particular, an extensive parametric study is carried out comprising applications to five
3-storey and five 6-storey asymmetric in plan (but regular in elevation) reinforced concrete
buildings with different values of normalized structural eccentricity. Each building is charac-
terized by a string symbol comprising the letter ‘B’ (from the word ‘building’) and two num-
bers separated by a ‘-’. The first number (3 or 6) indicates the number of the building’s storeys,
while the second indicates the value of the normalized eccentricity e/r = eX/r = eY /r
(where eX , eY are the distances between center of mass CM and center of rigidity CR, and r
is the radius of gyration) ranging between 0.10 and 0.50. For example, the symbol B6-2 cor-
responds to a building having six storeys and normalized eccentricity equal to 0.2. The prede-
fined values of normalized eccentricities are achieved by proper selection of the CM position.

The analysed buildings are shown in Fig. 1. Their structural system consists of moment
frames in normal grid with bay width 5 m and storey height 3 m. The concrete is of class
C16/20 (fck = 16 MPa) and the reinforcement steel bars S500 (fyk = 500 MPa) according to
the Greek standards. The cross-sections’ dimensions and the reinforcement remain constant
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Fig. 1 Plan and 3D structural models of the analyzed buildings

along the height of the building (Fig. 2). Each storey has a mass equal to 150 t and a mass
moment of inertia equal to 4,062.5 tm2.

All analyses are performed using the program SAP 2000 v10.0.7. The modeling of the
inelastic behavior is based on the following assumptions:

• Shear failure is precluded.
• The inelastic deformations are concentrated at the critical sections, i.e. at the ends of the

frame elements (plastic hinges).
• Plastic hinges are modeled by bilinear elastic-perfectly plastic moments-rotations dia-

grams with practically unlimited available plastic rotations and yield moments calculated
automatically by the program.

• The moment-axial force interaction is taken into account by appropriate interaction sur-
face incorporated in SAP 2000.

4.2 Earthquake excitations

It is obvious that using of an as large as possible number of seismic excitations is desirable.
It is not easy to define a specific minimum number over which the results can be considered
as reliable. Given that according to seismic codes, when NDA is implemented a number of

123



Bull Earthquake Eng (2014) 12:2607–2632 2615

3-storey buildings 6-storey buildings 

Fig. 2 Cross-sections of columns and beams

Table 2 List of seismic excitations

No Excitation Date Magnitude (Ms) Peak ground
acceleration (m/s2)

Peak spectral
acceleration (m/s2)

1 Aeghio (longitudinal) 06/15/1995 6.4 4.918 12.099

2 Aeghio (transverse) 5.326 14.157

3 Thessaloniki (longitudinal) 06/20/1978 6.5 1.389 4.477

4 Thessaloniki (transverse) 1.430 4.809

5 Alkyonides (longitudinal) 02/24/1981 6.7 2.336 6.023

6 Alkyonides (transverse) 2.989 8.155

7 Kalamata (longitudinal) 09/13/1986 6.0 2.170 6.648

8 Kalamata (transverse) 2.913 10.125

9 Patras (longitudinal) 07/14/1993 5.5 1.402 4.455

10 Patras (transverse) 3.936 12.151

11 Pirgos (longitudinal) 03/26/1993 5.5 1.466 5.887

12 Pirgos (transverse) 4.455 7.705

seven accelerograms is sufficient, many researchers use seven ground motions in order to
evaluate their procedures (e.g., Fajfar et al. 2005). The whole investigation conducted here
comprises a number of 12 accelerograms, which is considered adequate to obtain preliminary
conclusions for the accuracy of the proposed methodology. These accelerograms correspond
to strong earthquake motions recorded in Greece and are tabulated in Table 2. The excitations
with relatively low ground accelerations (3, 4, 9 and 11) are scaled using an amplification
factor equal to 1.5. Thus, the analyzed buildings sustain excessive nonlinear deformations
for all excitations. It is considered that each ground motion acts simultaneously along the
two horizontal axes of the buildings with the same intensity.

4.3 Analysis process

For each building two sets of pushover analyses are performed:

• One based on the proposed methodology (PM). Given that each ground motion acts
simultaneously along the two horizontal axes with the same intensity, i.e. κ = 1 and
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Table 3 Modal periods (T) and modal participating mass ratios (pmrx, pmry)

Building Mode 1 Mode 2 Mode 4 Mode 5

T1
(s)

pmrx1
(%)

pmry1
(%)

T2
(s)

pmrx2
(%)

pmry2
(%)

T4
(s)

pmrx4
(%)

pmry4
(%)

T5
(s)

pmrx5
(%)

pmry5
(%)

B3-1 0.498 2.3 81.4 0.481 81.9 2.7 0.151 0.7 10.8 0.147 10.6 0.8

B3-2 0.510 15.9 63.7 0.484 65.9 18.6 0.155 3.0 7.8 0.148 7.9 3.5

B3-3 0.530 25.1 50.6 0.485 54.7 30.1 0.161 3.9 6.3 0.148 6.8 4.8

B3-4 0.555 28.9 44.4 0.486 49.7 35.3 0.169 4.2 5.7 0.148 6.3 5.2

B3-5 0.584 30.8 41.3 0.486 47.3 37.9 0.179 4.4 5.4 0.148 6.1 5.5

B6-1 0.868 1.0 78.0 0.829 78.3 1.2 0.264 0.2 10.7 0.255 10.5 0.3

B6-2 0.885 9.5 66.3 0.836 67.7 11.4 0.270 1.7 8.7 0.256 8.7 2.0

B6-3 0.917 19.2 53.2 0.840 56.2 23.2 0.281 3.0 6.9 0.257 7.2 3.6

B6-4 0.958 24.4 45.6 0.842 49.8 29.8 0.293 3.5 6.0 0.258 6.5 4.4

B6-5 1.005 27.1 41.6 0.843 46.5 33.3 0.308 3.8 5.6 0.258 6.1 4.8

ügX = ügY , the possible combinations of the seismic components are only two: ügX +
ügY (PM+) and ügX − ügY (PM−).

• A second similar to MPA (Reyes and Chopra 2011a,b; Chopra and Goel 2004) (conven-
tional procedure—CP), which comprises pushover analyses of the examined buildings
for independent uniaxial excitations along X and Y axes and directional combination of
the response quantities using the percentage combination rule. The assumptions and steps
of the second procedure are nearly identical to those of the proposed method, except that
step 11 is obviously skipped and in steps 2–4 νXi , M∗

Xi , VXi or νY i , M∗
Y i , VY i are used in

place of νXY i , M∗
XY i , VXY i .

In both sets of pushover analyses four translational vibration modes are taken into account
(1st, 2nd, 4th and 5th). 1st and 4th modes dominate the response for excitation along Y
axis, while 2nd and 5th modes dominate the response for excitation along X axis. As it has
been demonstrated, using two pairs of translational modes is adequate for the determination
of the response even of very tall buildings, while using the 3rd (torsional) and/or higher
modes does not significantly improve the results (Reyes and Chopra 2011a). The ‘modal’
superposition is conducted by applying the CQC formula. In Table 3 the modal periods as
well as the modal participating mass ratios of the modes taken into account are shown. The
maximum ‘modal’ response of each E-SDOF system is calculated by means of NDA for each
excitation. Then, the target roof displacement is estimated by multiplication of the resulting
response by the quantity νXY iϕNi (PM) and νXiϕNi or νY iϕNi (CP). For each building, the
floor displacements and storey drifts at the center of mass (CM), at the flexible side (C4) and
at the stiff side (C9) of the plan are determined.

The response values obtained by the two variants of pushover analysis are compared to
the results of NDA, which is considered as the reference solution. For the latter analysis,
each accelerogram is considered acting simultaneously along the two horizontal axes in all
possible combinations

(
ügX + ügY , ügX − ügY ,−ügX + ügY and − ügX − ügY

)
. For each

response parameter R j,s estimated by the two applied variants of NSP for an excitation j ,
the error with regard to the NDA results E j is determined by the following relation:

E j (%) = 100
R j,s − R j,d

R j,d
(17)
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where R j,d is the value of the response parameter obtained by NDA. Furthermore, the mean
error ME for the 12 excitations used in this study and the corresponding standard deviation
SD are determined using Eqs. (18) and (19) respectively:

ME(%) = 1

12

12∑

j=1

E j = 100
1

12

12∑

j=1

(
R j,s − R j,d

R j,d

)
(18)

SD(%) =
√√√√ 1

11

12∑

j=1

(
E j − ME

)2 (19)

4.4 Results

In Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 the mean errors for the 12 excitations
(referring to the maximum values obtained by NDA) of floor displacements and storey drifts
at the selected points (CM—center of mass, C4—flexible side, C9—stiff side) along X and Y
axis are shown. Notice that the positive sign (+) means that response parameters obtained by
PM or CP are greater than those obtained by NDA. Conversely, the negative sign (−) means
that the response parameters are underestimated. It is apparent that the two combinations of
PM (PM+ and PM−) provide an upper bound and a lower bound value for each response
parameter. The exact value (NDA) in most cases (188 of 270 calculated floor displacements
and 187 of 270 calculated storey drifts) lies in this range (Fig. 15a). For the vast majority of
response parameters (246 of 270 calculated floor displacements and 217 of 270 calculated
storey drifts) PM leads to conservative results (Fig. 15b). This means that the number of
modes taken into account is adequate. Non-conservative values are observed mainly for the
stiff side of the analyzed buildings. The mean errors of the more conservative combination
(PM+ or PM−) for floor displacements range between −32 and 66 %, while for storey drifts
between −51 and 63 %. In general, greater values of mean errors are observed for the response
quantities of the 6-storey buildings, except the upper storeys’ drifts. This is more evident at the
center of mass and at flexible side of the buildings. In comparison with CP, the absolute values
of mean errors resulting from PM are smaller for 253 of 270 calculated floor displacements
and for 236 of 270 calculated storey drifts (Fig. 15c). The mean errors of CP range between
−23 and 138 % for displacements and between −32 and 139 % for drifts. The predominance
of PM is more obvious for the response quantities at the mass center and flexible side of the
analyzed buildings. Concerning the influence of the normalized eccentricity, the maximum
mean errors for the response quantities at the center of mass and at flexible side of the
buildings generally occur for e/r = 0.2 and tend to be reduced with increasing eccentricity.
For the response quantities at stiff side, no specific trend is observed. Finally, concerning the
standard deviation of the results, the values range between 9 and 47 % for PM and 12 and
68 % for CP.

5 Conclusions

A recently developed multimode pushover procedure for the approximate estimation of the
seismic response of asymmetric buildings under biaxial excitation is evaluated in this paper
through an extensive parametric study. The main idea of the procedure is that the seismic
response of an asymmetric building under biaxial excitation can be related to the responses
of a series of “modal” E-SDOF systems under uniaxial excitation. The whole procedure is
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Fig. 3 Mean errors (%) of displacements at the center of mass (CM) of 3-storey buildings

123



Bull Earthquake Eng (2014) 12:2607–2632 2619

B
3-

1 

fl
oo

r 

0

1

2

3

-30 -20 -10 0 10 20 30 40

fl
oo

r 

0

1

2

3

-40 -30 -20 -10 0 10 20

B
3-

2 

fl
oo

r 

0

1

2

3

-20 0 20 40 60 80
fl

oo
r 

0

1

2

3

-60 -40 -20 0 20 40 60

B
3-

3 

fl
oo

r 

0

1

2

3

0 20 40 60 80

fl
oo

r 

0

1

2

3

-80 -60 -40 -20 0 20 40 60

B
3-

 4
 

fl
oo

r 

0

1

2

3

-10 0 10 20 30 40 50 60

fl
oo

r 

0

1

2

3

-60 -40 -20 0 20 40

B
3-

5 

fl
oo

r 

0

1

2

3

-10 0 10 20 30 40 50

fl
oo

r 

0

1

2

3

-60 -40 -20 0 20 40

X axis  Y axis

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Fig. 4 Mean errors (%) of displacements at the flexible side (C4) of 3-storey buildings
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Fig. 5 Mean errors (%) of displacements at the stiff side (C9) of 3-storey buildings
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Fig. 6 Mean errors (%) of storey drifts at the center of mass (CM) of 3-storey buildings
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Fig. 7 Mean errors (%) of storey drifts at the flexible side (C4) of 3-storey buildings

123



Bull Earthquake Eng (2014) 12:2607–2632 2623

B
3-

1 

st
or

ey
 

0

1

2

3

-40 -30 -20 -10 0 10 20 30 40 50

st
or

ey
 

0

1

2

3

-30 -20 -10 0 10 20 30

B
3-

2 

st
or

ey
 

0

1

2

3

-80 -60 -40 -20 0 20 40
st

or
ey

 
0

1

2

3

-60 -50 -40 -30 -20 -10 0 10

B
3-

3 

st
or

ey
 

0

1

2

3

-100 -80 -60 -40 -20 0 20

st
or

ey
 

0

1

2

3

-80 -60 -40 -20 0 20

B
3-

 4
 

st
or

ey
 

0

1

2

3

-100 -80 -60 -40 -20 0

st
or

ey
 

0

1

2

3

-100 -80 -60 -40 -20 0 20

B
3-

5 

st
or

ey
 

0

1

2

3

-100 -80 -60 -40 -20 0

st
or

ey
 

0

1

2

3

-100 -80 -60 -40 -20 0 20

X axis  Y axis

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Fig. 8 Mean errors (%) of storey drifts at the stiff side (C9) of 3-storey buildings
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Fig. 9 Mean errors (%) of displacements at the center of mass (CM) of 6-storey buildings

123



Bull Earthquake Eng (2014) 12:2607–2632 2625

B
6-

1 

fl
oo

r 

0

1

2

3

4

5

6

0 10 20 30 40 50 60

fl
oo

r 

0

1

2

3

4

5

6

-10 0 10 20 30 40

B
6-

2 

fl
oo

r 

0

1

2

3

4

5

6

-20 0 20 40 60 80 100 120
fl

oo
r 

0

1

2

3

4

5

6

-40 -20 0 20 40 60 80 100

B
6-

3 

fl
oo

r 

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140

fl
oo

r 

0

1

2

3

4

5

6

-60 -40 -20 0 20 40 60 80 100

B
6-

 4
 

fl
oo

r 

0

1

2

3

4

5

6

0 20 40 60 80 100 120

fl
oo

r 

0

1

2

3

4

5

6

-60 -40 -20 0 20 40 60 80 100

B
6-

5 

fl
oo

r 

0

1

2

3

4

5

6

-20 0 20 40 60 80 100

fl
oo

r 

0

1

2

3

4

5

6

-60 -40 -20 0 20 40 60 80

X axis  Y axis

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Fig. 10 Mean errors (%) of displacements at the flexible side (C4) of 6-storey buildings
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Fig. 11 Mean errors (%) of displacements at the stiff side (C9) of 6-storey buildings

123



Bull Earthquake Eng (2014) 12:2607–2632 2627

B
6-

1 

st
or

ey
 

0

1

2

3

4

5

6

-20 -10 0 10 20 30 40 50

st
or

ey
 

0

1

2

3

4

5

6

-20 -10 0 10 20 30 40 50

B
6-

2 

st
or

ey
 

0

1

2

3

4

5

6

-60 -40 -20 0 20 40 60 80 100
st

or
ey

 

0

1

2

3

4

5

6

-60 -40 -20 0 20 40 60 80 100

B
6-

3 

st
or

ey
 

0

1

2

3

4

5

6

-40 -20 0 20 40 60 80 100 120

st
or

ey
 

0

1

2

3

4

5

6

-60 -40 -20 0 20 40 60 80 100

B
6-

 4
 

st
or

ey
 

0

1

2

3

4

5

6

-40 -20 0 20 40 60 80 100 120

st
or

ey
 

0

1

2

3

4

5

6

-60 -40 -20 0 20 40 60 80 100

B
6-

5 

st
or

ey
 

0

1

2

3

4

5

6

-40 -20 0 20 40 60 80 100

st
or

ey
 

0

1

2

3

4

5

6

-60 -40 -20 0 20 40 60 80

X axis  Y axis

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Mean error (%) Mean error (%)

Fig. 12 Mean errors (%) of storey drifts at the center of mass (CM) of 6-storey buildings
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Fig. 13 Mean errors (%) of storey drifts at the flexible side (C4) of 6-storey buildings
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Fig. 14 Mean errors (%) of storey drifts at the stiff side (C9) of 6-storey buildings
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Fig. 15 Effectiveness of the proposed method (PM)

quite similar to the well-known MPA. However, the establishment of the E-SDOF systems
is based on an essentially different concept. From the presentation and the evaluation of the
proposed method the following conclusions are derived:

• The proposed methodology does not require independent analysis in each direction of
excitation, so application of simplified directional combination rules is avoided.

• Two pairs of modes, one dominating the response for seismic excitation along X axis
and the other along Y axis (2nd–5th and 1st–4th respectively in the buildings analyzed in
the present study), are, in general, adequate to obtain a reasonable estimation of response
values.
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• Concerning the response parameters of the center of mass and the flexible side of the
analyzed buildings, the proposed methodology provides for each response parameter an
upper limit and a lower limit which in the vast majority of cases envelope the correspond-
ing value obtained by NDA. Furthermore, the mean errors with regard to the NDA results
are significantly smaller than those resulting from a multimode pushover procedure com-
prising independent analysis along two horizontal axes and directional combination of
the results (conventional procedure). The maximum values of mean errors occur for
e/r = 0.2 and tend to be reduced with increasing eccentricity.

• Concerning the stiff side of the analyzed buildings (which dispose low torsional stiffness),
the proposed methodology, although it gives generally better results than the conventional
procedure, in many cases fails to provide a reasonable estimation of the response para-
meters. Similar trends have been observed during the application of various pushover
procedures in the past and some modifications have been proposed. Relevant investi-
gations are now in progress in order to develop an improved version of the proposed
methodology which will be able to estimate the response parameters at the stiff side of
asymmetric buildings with acceptable accuracy. This will be the objective of a forthcom-
ing paper.

Finally, it is worth noticing that despite the fact that no restrictions are set to the develop-
ment of the proposed methodology, generalization of the above conclusions for all types of
asymmetric buildings requires further investigations, comprising application to a large variety
of spatial structures and using an adequately high number of earthquake ground motions.
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