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Abstract A simplified procedure is proposed to predict the largest peak seismic response
of an asymmetric building to horizontal bi-directional ground motion, acting at an arbitrary
angle of incidence. The main characteristics of the proposed procedure is as follows. (1) The
properties of two independent equivalent single-degree-of-freedom models are determined
according to the principal direction of the first modal response in each nonlinear stage, rather
than according to the fixed axis based on the mode shape in the elastic stage; the principal
direction of the first modal response in each nonlinear stage is determined based on pushover
analysis results. (2) The bi-directional horizontal seismic input is simulated as identical
spectra of the two horizontal components, and the contribution of each modal response is
directly estimated based on the unidirectional response in the principal direction of each. (3)
The drift demand at each frame is determined based on four pushover analyses considering
the combination of bi-directional excitations. In the numerical example, nonlinear time-
history analyses of six four-story torsionally stiff (TS) asymmetric buildings are carried out
considering various directions of seismic inputs, and these results are compared with the
predicted results. The results show that the proposed procedure satisfactorily predicts the
largest peak response displacement at the flexible-side frame of a TS asymmetric building.

Keywords Asymmetric building · Bi-directional excitation · Direction of incidence
of seismic input · Equivalent linearization technique · Nonlinear static procedure ·
Torsional index

1 Introduction

Asymmetric buildings are known to be vulnerable to earthquakes. This is because excessive
deformation may occur at the frame of the flexible and/or weaker side owing to unfavorable

K. Fujii (B)
Department of Architecture and Civil Engineering, Chiba Institute of Technology,
2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
e-mail: kenji.fujii@it-chiba.ac.jp

123



910 Bull Earthquake Eng (2014) 12:909–938

torsional effects. This may lead to premature failure of the brittle members of the structure
and final collapse of the whole building.

In designing of new buildings for earthquake resistance or when conducting seismic
evaluations of existing buildings, horizontal ground motion is applied to each of the main
orthogonal axes of the building. However, for seismic assessment of asymmetric buildings
this procedure may be inadequate because the most critical direction of incidence of the
seismic input, which would produce the largest response, may be different from the direction
of the building’s main orthogonal axes, and the major component of ground motion may
act in any direction. The influence of the direction of incidence of the seismic input on
the response of the building’s structure has been investigated analytically (González 1992;
López and Torres 1997; Sudo et al. 1996; Kostinakis et al. 2013) and experimentally (Fujii
and Ikeda 2012). The results point to a critical direction of seismic input that produces the
largest response.

Therefore, it is essential to carry out 3-dimensional analysis considering all the possible
directions of seismic input. However, evaluating the seismic response of a building under
all possible seismic intensities using nonlinear dynamic (time-history) analysis is very time-
consuming.

Simplified nonlinear analysis procedures, which combine the nonlinear static (pushover)
analysis of a multi-degree-of-freedom (MDOF) model, and the response spectrum analysis
of an equivalent single-degree-of-freedom (SDOF) model (Saiidi and Sozen 1981; Fajfar and
Fischinger 1988), have been widely implemented in seismic design codes and seismic eval-
uation schemes (ATC-40 1996; FEMA 1997; ASCE 2007; CEN 2004). These procedures
work well on the condition that the building oscillates predominantly with a single mode.
In recent decades, several researchers have tried to extend these simplified procedures to
improve the seismic performance estimates of buildings with plan and/or elevation irregular-
ities (Moghadam and Tso 1996). A review of the research on the seismic behavior of irregular
building structures over the last decade can be found in Stefano and Pintucchi (2008).

From the author’s point of view, there are three possible approaches when considering the
torsional effect for predicting the peak response of asymmetric buildings. The first approach is
a combination of nonlinear pushover analyses and linear elastic analyses proposed by Fajfar
et al. (Perus and Fajfar 2005; Fajfar et al. 2005). The second approach is a combination
of nonlinear pushover analysis representing several mode responses with the application
of square-root-of-sum-of-square (SRSS) or complete quadratic combination (CQC) rules
in linear elastic analyses, and was proposed by Chopra and Goel (2002, 2004). The third
approach combines several pushover analyses and envelopes the results, as proposed by
Bosco et al. (2012).

The first approach, named the Extended N2 method, is the extended version of the simpli-
fied procedure by Fajfar and Fischinger (1988). In this procedure, the peak response of each
frame is estimated using the pushover analysis results multiplied by a “correction factor”,
which is defined using linear elastic analysis. This procedure was verified by Bhatt and Bento
(2011), who analyzed three multi-story reinforced concrete (RC) asymmetric buildings with
regular elevation, and by D’Ambrisi et al. (2009), who applied the extended N2 method to
existing multi-story RC buildings with plan and elevation irregularities. In recent years, the
extended N2 method was modified by Kreslin and Fajfar (2010, 2012) by considering the
elastic response displacement distribution in both plan and elevation.

The extended N2 method is based on the assumption the elastic envelope of lateral dis-
placements is conservative with respect to the inelastic envelope, as noted by Stefano and
Pintucchi (2010). They pointed out that this assumption may be invalid for structures char-
acterized by very high torsional stiffness. Isakovic and Fischinger (2011) performed shaking
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table tests on an RC bridge structure and showed that the extended N2 method failed to
estimate the peak responses under high seismic intensity because it did not take into account
the change in the fundamental mode.

The second approach, called modal pushover analysis (MPA), was proposed by Chopra
and Goel (2002) for regular buildings considering the higher-mode effect, and was extended
for asymmetric buildings (Chopra and Goel 2004). In this approach, the seismic response is
estimated using pushover analysis of a MDOF model with a force distribution based on each
elastic mode shape, and a spectrum analysis response of independent equivalent SDOF mod-
els, and the combination rules, which are applied in linear analysis (the SRSS or CQC rule).

The applicability of the first and second approaches depends strongly on whether the
change in the mode shape in the inelastic range is significant. Because the mode shape of
an asymmetric building may change significantly, the predicted results based on an elastic
mode shape may provide erroneous results.

The third approach, which was proposed by Bosco et al. (2012), estimates the peak
response at the stiff and flexible-side frames by enveloping two pushover analyses results.
In their procedure, “corrective eccentricity” is the key parameter in the pushover analy-
ses. This may be a promising approach, because the various possible collapse mechanisms
resulting from the combination of several mode responses can be properly predicted using
a combination of different force distributions. However, because the corrective eccentricity
is formulated using the parameters of a single-story building model, and the reliability of its
formulation relies strongly on the results of a large number of numerical examples of single-
story asymmetric building models, this method may be difficult to apply to more general
cases such as multi-story buildings with dual-systems (moment-resisting frame+ structural
walls) or various dampers, or multi-story buildings with setbacks.

The author has tried to extend the nonlinear static procedure to asymmetric buildings
subjected to bi-directional excitation (Fujii et al. 2006; Fujii 2007, 2010, 2011, 2012). A
single-story asymmetric building model with elasto-plastic dampers (Fujii et al. 2006) and
multi-story asymmetric frame building models (Fujii 2007, 2011) were used and the critical
direction of each asymmetric building was determined from the first mode shape and was
named the principal direction of the first modal response. In these studies, the principal axis of
the first modal response was assumed to be fixed in the elastic range. Therefore, its prediction
may include a significant error if the shape of the first mode changes significantly.

In 2010, the author proposed a simplified seismic assessment procedure for asymmetric
frame buildings considering the critical direction of the seismic input at each nonlinear stage
(Fujii 2010). In this procedure, the critical direction of the seismic input, which produces
the maximum response at a flexible side frame, was assumed to coincide with the principal
direction of the first modal response which was evaluated using pushover analyses results
at each nonlinear stage. However, only one-component horizontal ground motion was con-
sidered in this procedure; to improve the estimates of this method, bi-directional horizontal
ground motion needs to be considered.

In this article, a simplified procedure is proposed to predict the largest peak seismic
response of asymmetric buildings, caused by horizontal bi-directional ground motion acting
at an arbitrary angle of incidence. This procedure is the extended version of the procedure
proposed in Fujii (2010) which accounts only for uni-directional excitation. Note that the
procedure presented here is modified from the procedure proposed previously by the author
(Fujii 2012) to improve the accuracy at the flexible-side frame in the stronger direction of
the building.

In the numerical example, nonlinear time-history analyses of six four-story reinforced
concrete asymmetric frame buildings under various directions of seismic input were carried
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Fig. 1 Concept of the proposed procedure

out and compared with the predicted results. Note that the following discussion focuses
only on torsionally stiff (TS) buildings, as in the previous study by the author (Fujii 2010,
2012). The applicability of this procedure for torsionally flexible (TF) buildings is discussed
elsewhere.

2 Description of the proposed procedure

2.1 Concept of the proposed procedure

The concept of the proposed procedure is shown in Fig. 1. A set of orthogonal axes U–V in the
X–Y plane is considered, with the U-axis being the principal axis of the first modal response
(Fujii 2010, 2011). The asymmetric buildings are N -story buildings, with 3N degrees of
freedom (3N -DOFs) oriented for the multi-story model presented here.

The spectra of the two horizontal ground motion components are assumed to be identical;
the spectrum of the horizontal minor component is assumed to be the same as that of the major
component. López et al. (2006) showed that the ratio of the spectra for the horizontal minor
and major components varied between 0.63 and 0.81. Therefore, the identical-component
assumption would be expected to provide conservative prediction results. This approach was
discussed by López and Torres (1997) for elastic spectrum analysis; here it is applied to
estimate the largest peak response using a simplified nonlinear procedure.

The largest peak responses of the first and second modes are obtained independently from
the equivalent SDOF models. The prediction of the largest peak response at each frame is
based on a set of pushover analyses considering the combination of the two modal responses.

2.2 Outline of proposed procedure

The proposed procedure consists of the following steps:

STEP 1: Pushover analysis of the asymmetric building model (first mode)
STEP 2: Prediction of the peak seismic response of the equivalent SDOF model (first mode)
STEP 3: Pushover analysis of the asymmetric building model (second mode)
STEP 4: Prediction of the peak seismic response of the equivalent SDOF model (second
mode)
STEP 5: Prediction of the largest peak response at each frame

The formulations of the equivalent SDOF model can be found in “Appendix 1”.
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Fig. 2 Equivalent SDOF model (first mode). a Plan of asymmetric building structure. b Equivalent SDOF
model (first mode)

2.2.1 Step 1: Pushover analysis of the asymmetric building model (first mode)

The equivalent SDOF model for the first modal response is shown in Fig. 2. As in Fig. 1, the
U-axis of the orthogonal U–V axes indicates the principal axis of the first modal response in
the X–Y plane.

The nonlinear properties of the equivalent SDOF model, the equivalent acceleration A∗
1U

and equivalent displacement D∗
1U relationship, referred to as the capacity curve, are deter-

mined using the pushover analysis considering the change in shape of the first mode at each
nonlinear stage. In this article, the displacement-based mode-adaptive pushover analysis
(Fujii 2010) is applied (details of the analysis can be found in “Appendix 2”).

The equivalent displacement and acceleration at each loading step n, n D∗
1U and n A∗

1U ,
are determined from Eqs. (1) and (2), respectively, assuming that the displacement vector at
each loading stage nd is proportional to the first mode vector at each loading stage n�1U nϕ1.

n D∗
1U = n�1U nϕT

1 Mnd
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M =
⎡

⎣
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nd = {n x1 · · · n xN n y1 · · · n yN nθ1 · · · nθN }T , (6)

nfR = {n fR X1 · · · n fR X N n fRY 1 · · · n fRY N n fM Z1 · · · n fM Z N }T , (7)
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nαU = {cos nψ1 · · · cos nψ1 − sin nψ1 · · · − sin nψ1 0 · · · 0}T , (9)
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In Eqs. (1)–(11), m j and I j are the mass and moment of inertia of the j th floor, respectively,
n M∗

1U is the equivalent first modal mass with respect to the U-axis at each nonlinear stage,
and nψ1 is the angle of incidence of the principal axis (the U-axis) at each nonlinear stage.
Note that the reference axis considering the first mode response (U-axis) is displacement-
dependent; it changes at each nonlinear stage as the first mode vector changes.

2.2.2 Step 2: Prediction of the peak seismic response of the equivalent SDOF model (first
mode)

The largest peak equivalent displacement D∗
1U max and equivalent acceleration A∗

1U max are
obtained using the equivalent linearization technique (Otani 2000). Alternatively, the inelastic
response spectrum may be used to obtain the seismic demand curve of the equivalent SDOF
model.

2.2.3 Step 3: Pushover analysis of the asymmetric building model (second mode)

From the results of Steps 1 and 2, the first mode vector corresponding to D∗
1U max, �1Uieϕ1ie,

is obtained. The second mode vector, �2V ieϕ2ie, is then determined from Eq. (12), in terms
of �1Uieϕ1ie and the second mode vector in the elastic range �2V eϕ2e, considering the
orthogonal condition of the mode vector.

�2V ie = ϕT
2ieMαVie

ϕT
2ieMϕ2ie

, ϕ2ie = ϕ2e − ϕT
2eMϕ1ie

ϕT
1ieMϕ1ie

ϕ1ie, (12)

where

αVie = {sinψ1ie · · · sinψ1ie cosψ1ie · · · cosψ1ie 0 · · · 0}T , (13)
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cosψ1ie =
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Next, another pushover analysis of an MDOF model is carried out to obtain the force–
displacement relationship representing the second mode response by applying the invariant
force distribution P2 determined by Eq. (16).

P2 = M (�2V ieϕ2ie) . (16)

The equivalent displacement n D∗
2V and acceleration n A∗

2V of the equivalent SDOF model
representing the second modal response at each loading step n are determined by Eq. (17).

n D∗
2V = �T 2V ieϕ

T
T2ieMnd

M∗
2V ie

, n A∗
2V = �T 2V ieϕ

T
2ienfR

M∗
2V ie

, (17)

M∗
2V ie = �2

2V ieϕ
T
2ieMϕ2ie. (18)

In Eq. (18), M∗
2V ie is the equivalent second modal mass with respect to the V-axis determined

in terms of �2V ieϕ2ie.

2.2.4 Step 4: Prediction of the peak seismic response of the equivalent SDOF model
(second mode)

The largest peak equivalent displacement D∗
2V max and the equivalent acceleration A∗

2V max
for the second modal response are obtained using the equivalent linearization technique as
discussed in Step 2. Note that the spectrum used in Step 2 is used again for the prediction of
the second mode response.

2.2.5 Step 5: Prediction of the largest peak seismic response at each frame

The scheme for predicting the largest peak seismic response at each frame is shown in Fig. 3.
The four force distributions are determined as the sum of the contribution of the first and
second modal responses. The largest peak seismic response is then predicted as the envelope
of the four pushover analyses results. Details of the largest peak response prediction at each
frame are described below:

1. Determine the four combined forces P+
U ,P−

U ,P+
V , and P−

V from Eq. (19).
{

P±
U = M

(
�1Uieϕ1ie A∗

1U max ± 0.5�T 2V ieϕ2ie A∗
2V max

)

P±
V = M

(±0.5�1UieϕT1ie A∗
1U max + �2V ieϕ2ie A∗

2V max

) . (19)

2. Perform pushover analyses using P+
U and P−

U until the equivalent displacement n D∗
U cal-

culated by Eq. (20) reaches D∗
1U max obtained from Step 2 (referred to as Pushover-1U

and 2U, respectively); similarly, P+
V and P−

V are used in the analysis until the equiva-
lent displacement n D∗

V calculated using Eq. (20) reaches D∗
2V max obtained from Step 4

(referred to as Pushover-1V and 2V, respectively):

123



916 Bull Earthquake Eng (2014) 12:909–938

Fig. 3 Prediction scheme for the peak response at each frame using pushover analyses

{
n D∗

U = �1Uieϕ
T
1ieMnd/M∗

1Uie

n D∗
V = �2V ieϕ

T
2ieMnd/M∗

2V ie

. (20)

In Eq. (20), M∗
1Uie is the equivalent first modal mass with respect to the U-axis determined

in terms of �1Uieϕ1ie.
3. Determine the largest peak response at each frame from the envelope of (a) Pushover-1U

and 2U and (b) Pushover-1V and 2V.

Note that Step 5 is different from the previous study (Fujii 2012) in which this procedure used
only two pushover analyses (using P+

U and P−
U ) to predict the largest peak seismic response

at the flexible-edge frame in the weaker direction of the building models. In this article, four
pushover analyses are performed to improve the accuracy at the flexible-side frame in the
stronger direction.

3 Building and ground motion data

3.1 Building data

In this study, six four-story asymmetric buildings were investigated. Figures 4 and 5 show
the plans of the six building models: two with uni-directional eccentricity (Models A1 and
A2) and four with bi-directional eccentricity (Models B1, B2, B3, and B4).

The height of the first story is 4.0 m and the upper stories are 3.6 m high. The floor
mass m j and moment of inertia I j ( j = 1−4) are assumed as 524.9 t and 4.37 × 104 tm2,
respectively. The cross sections of the beams (second floor to the roof) and columns are
350 × 650 and 600 × 600 mm, respectively. The thickness of the structural wall is 220 mm.
The columns are assumed to be supported as fixed-ends by the foundation. The compressive
strength of the concrete, σB, is assumed to be 24 N/mm2. In addition, SD345 steel (yield
strength: σy = 345 N/mm2) is used for the longitudinal reinforcement, and SD295 steel
(σy = 295 N/mm2) is used for the shear reinforcement. Each frame structure is designed
according to the weak-beam strong-column concept; the longitudinal reinforcements of the
concrete sections are determined so that the potential hinges are located at all the beam-
ends and bottoms of the columns and the structural wall in the first story. Sufficient shear
reinforcement is assumed to be provided to prevent premature shear failure. Table 1 shows
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Fig. 4 Plans of the six model buildings

Fig. 5 Elevation of the model buildings (Model-A1)

Table 1 Longitudinal
reinforcement of each member

Member Location Reinforcement

Boundary beam 2nd to roof floor 6-D25 (top and bottom)

Beam 4nd and roof floor 3-D25 (top and bottom)

2nd to 3rd floor 4-D25 (top and bottom)

Column 2nd to 4th story 20-D29 (top and bottom)

1st story 20-D29 (top),
8-D29 (bottom)

Structural wall All story D10@200Double

the longitudinal reinforcement of each member. The crack moment Mc and yield moment
My of each concrete member are calculated according to the AIJ Design Guidelines (AIJ
1999). The base shear coefficients obtained from the planar pushover analysis in both the X-
and Y-directions, which are the values when the roof displacement reaches 1 % of the total
height HN , are shown in Table 2.

The building structure is modeled as a pseudo 3-dimensional frame model in which the
floor diaphragms are assumed to be rigid in their own planes with no out-of-plane stiffness, and
the frames oriented in the X- and Y-directions are modeled independently. One-component
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Table 2 Base shear coefficients
of building models based on
planar frame analysis

Model X-Dir. Y-Dir.

Model-A1 0.532 0.455

Model-A2 0.522 0.510

Model-B1 0.522 0.455

Model-B2 0.546 0.525

Model-B3 0.546 0.525

Model-B4 0.546 0.525

Fig. 6 Envelope of the force-deformation relationship of nonlinear springs. a M–θ relationship (flexural
spring). b Q–γ relationship (shear spring of stuctural wall)

model, with two nonlinear flexural springs at both ends and one nonlinear shear spring in
the middle of the line element, is used for all the concrete beams, columns, and structural
walls. At the end of each member, rigid zones are assumed to identify the depth of the
intersecting members. To determine the flexibility of the nonlinear flexural springs, an anti-
symmetric curvature distribution is assumed for the beams and columns, and a uniform
curvature distribution is assumed for the structural walls. Figure 6a, b show the envelope
curve for the force-deformation relationship of each nonlinear spring. The envelopes are
assumed to be symmetric in both the positive and negative loading directions. As shown in
Fig. 6a, the secant stiffness degradation ratio of the flexural spring at the yield point, αy , is
assumed to be 0.25 for all the beams and columns. For the structural walls at the bottom of
the first story, αy is assumed to be 0.12 and for all other points it is 0.19. In Fig. 6b, the secant
stiffness degradation ratio of the shear spring at the “yield point” βy is assumed to be 0.16.
The axial stiffness of the columns and walls is assumed to remain elastic, and the effects of
the biaxial bending and axial–flexural interaction are ignored. The torsional stiffness of the
members is also ignored. No second-order effect (e.g., the P-� effect) is considered. The
Muto hysteretic model (Muto et al. 1974) with one modification is used to model the flexural
springs, as shown in Fig. 7a. Specifically, the unloading stiffness after yielding decreases in
proportion to μ−0.5(μ is the ductility ratio of the flexural spring) to represent the degradation
of the unloading stiffness after the yielding of the RC members, as in the model of Otani
(1981). The origin-oriented model (Fig. 7b) is used to model the shear spring of the structural
wall. The shear springs of the beams and columns are assumed to be elastic. The damping
matrix is assumed to be proportional to the instant stiffness matrix with 3 % of the critical
damping for the first mode.

Figure 8 shows the natural modes of the building models in the elastic range. Here, Tke

is the kth natural period in the elastic range, ψke is the angle of incidence of the principal
direction of the kth modal response in the elastic range with its tangent given by Eq. (21),
and Rρke is the torsional index of the kth mode (Fujii and Ikeda 2012) in the elastic range,
as defined by Eq. (22).
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Fig. 7 Hysteretic model for the nonlinear flexure spring and shear spring. a Flexural spring (modified Muto
model). b Shear spring (origin-oriented model)

tanψke = −
∑

j

m jφY jke

/ ∑

j

m jφX jke, (21)

Rρke =

√
√
√
√
√

∑

j

I jφ
2
�jke

/
⎛

⎝
∑

j

m jφ
2
X jke +

∑

j

m jφ
2
Y jke

⎞

⎠. (22)

The formulation of Rρke is summarized in “Appendix 3”.
As shown in Fig. 8, the principal direction of the first three modes coincides with the

main orthogonal axes of the building models (the X- and Y-axes) for the building models
with uni-directional eccentricity (Models A1 and A2); however, for the building models with
bi-directional eccentricity (Models B1–B4) the principal direction of the first three modes
is not along the X- and Y-axes. In all the building models, the first mode is predominantly
translational (Rρ1e < 1) and the second mode is almost purely translational (Rρ2e � 1)
while the third mode is predominantly torsional (Rρ3e > 1) and the angles between the
principal directions of the first two modes are close to 90◦ (within 89.6◦–90.4◦). Because the
first and second modes are predominantly translational (Rρ1e, Rρ2e < 1) in all the building
models, they are classified as TS systems in this article. Further discussion can be found in
“Appendix 4”.

3.2 Ground motion data

In this study, the seismic excitation was considered to be bi-directional in the X–Y plane,
and three sets of artificial ground motions were generated.

The target elastic spectrum of the “major” components with 5 % critical damping
SA1(T, 0.05), determined from the Building Standard Law of Japan (BCJ 2010) consid-
ering soil conditions, is calculated using Eq. (23), where T represents the natural periods of
the SDOF model.

SA1 (T, 0.05) =

⎧
⎪⎨

⎪⎩

4.8 + 45T m/s2 : T < 0.16 s

12.0 : 0.16 s ≤ T < 0.576 s

12.0(0.576/T ) : T ≥ 0.576 s

. (23)
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Fig. 8 Shape of the first three natural modes of the building models in the elastic range
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The target spectrum of the “minor” components SA2(T , 0.05) is reduced by the parameter γ.
Here, the parameter γ is set to 0, 0.5, 0.7, and 1.0; for γ = 0 the ground motion is considered
unidirectional whereas when γ = 1.0 the spectra of the two horizontal components are
identical, as is assumed for the prediction of the largest peak response.

The phase angles are given by uniform random values and the Jennings type envelope
function e(t) proposed by the Building Center of Japan, as shown in Eq. (24).

e(t) =

⎧
⎪⎨

⎪⎩

(t/5)2 : 0 s ≤ t < 5 s

1 : 5 s ≤ t < 35 s

exp {−0.027(t − 35)} : 35 s ≤ t < 120 s

. (24)

The elastic acceleration response spectra of the artificial ground motion with 5 % critical
damping are shown in Fig. 9, and the artificial ground motions are listed in Table 3. The
artificial ground motions used in this paper are generated independently, i.e., there is no cor-
relation between the sets of two components. As shown in the table, the correlation coefficients
of all three sets are close to zero although the envelope functions of the two components are
the same; therefore, the two horizontal components can be considered independent of each
other.

Fig. 9 Elastic acceleration response spectra for simulated ground motion. a Major component. b Minor
component

Table 3 List of artificial ground motions

Ground
motion ID

Max. acc. (m/s2) Correlation
coefficient

“Major” “Minor”a

γ = 0.0 γ = 0.5 γ = 0.7 γ = 1.0

Art-001 5.152 0.000 2.200 3.080 4.400 0.0047

Art-002 5.174 0.000 2.344 3.282 4.688 −0.0313

Art-003 5.189 0.000 2.257 3.160 4.514 0.0445

a The acceleration of the “Minor” component is reduced by multiplying the artificial motion generated as the
“Minor” component (γ = 1.0) by γ
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4 Validation of the proposed procedure

4.1 Pushover analyses results and prediction of the peak response of the equivalent SDOF
model

For the prediction of the largest peak response of the equivalent SDOF model representing
both the first and second mode, the same elastic response spectrum defined by Eq. (23), is
used.

Figure 10 shows the prediction curves of the largest peak response of the equivalent
SDOF model obtained in Steps 2 and 4 of the proposed procedure, for all six models. The
intersection point of the capacity and demand curves represents the predicted peak response
of the equivalent SDOF model.

To investigate the change in critical direction in the inelastic range, the relationship
between nψ1and n D∗

1U is investigated based on the pushover analysis results in Step 1,
where nψ1is the angle of incidence of the principal axis of the first modal response (the
U-axis) with respect to the X-axis in each loading stage, and n D∗

1U is the corresponding
equivalent displacement. Figure 11 shows the relationship between nψ1 and n D∗

1U for all six
models. The angle of incidence of the U-axis with respect to the X-axis in the elastic range,
ψ1e, is also shown. The black dot “•” on the nψ1−n D∗

1U curve corresponds to the point of
the predicted peak equivalent displacement of the first modal response, D∗

1U max.
Figure 11a, b show the curves for the building models with uni-directional eccentricity

(Models A1 and A2) where nψ1 remains unchanged. In contrast, Fig. 11c–f indicate that
significant changes to nψ1 may occur in the building models with bi-directional eccentricity
(Models B1–B4); the change of nψ1 is negligible in Model B1 (Fig. 11c) and relatively small
(about 10◦) in Model B4 (Fig. 11f), while the difference between nψ1 and ψ1e is significant
(close to 40◦) for Models B2 and B3 (Fig. 11d, e).

4.2 Comparison of the predicted results with the results of the time-history analyses

The validity of the proposed procedure is evaluated as follows. In the first part (Case 1), the
predicted peak responses are compared with the results of the nonlinear time-history analyses
under bi-directional excitations in which the spectra of the two horizontal components are
identical (γ = 1.0). In the second part (Case 2), nonlinear time-history analyses are carried out
for various values of γ, the spectral ratio of “minor” to “major” components, (γ = 0, 0.5, and
0.7) and various directions of incidence of seismic input. Finally, the largest peak responses
for each value of γ are compared with the predicted results. Note that in both Cases 1 and
2, ψ , the angle of incidence of the “major” component with respect to the X-axis, varies at
15◦-intervals from (ψ1 − 90)◦ to (ψ1 + 90)◦, where ψ1 is the angle of incidence of the U-
axis corresponding to the predicted peak equivalent displacement of the first modal response
D∗

1U max shown in Fig. 11. Therefore, 3 × 13 = 39 cases were considered for the nonlinear
time-history analysis of each building model in Case 1, while 3 × 3 × 13 = 117 cases were
considered in Case 2.

4.2.1 Case 1: peak response subjected to two ground motion components with identical
response spectra

Figure 12 shows comparisons of the peak roof displacement at each frame for all six models.
The results of four pushover analyses (envelope of P±

U and P±
V ) from this study and two

pushover analyses (envelope of P±
U ) from a previous study (Fujii 2012), are also shown. The
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Fig. 10 Prediction of the largest peak response of the equivalent SDOF model using the equivalent lineariza-
tion technique. The intersection point for the capacity and demand curves indicates the predicted peak response
of the equivalent SDOF model

predicted peak response from the envelope of P±
U and P±

V agrees well with the results of
the time-history analyses except for a stiff-side edge frame in one direction of some mod-
els (frame X1 of Models A1, B1, and B4 and frame Y1 of Model B3). This is because
only two (the first and second) modal responses are considered in the proposed proce-
dure to predict the peak response, while the contribution of the third and higher mode
response to the peak response may be significant in frames such as frame X1 of Models
A1 and B1.

Note that the predicted peak response from the envelope of P±
U underestimates the results

of the time-history analyses at all the frames in the X-direction of Models A1, B1, B2, B3,
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Fig. 11 Change of the angle of incidence for the principal direction of the first modal response with respect
to the X-axis

and B4, while it underestimates the results of the time-history analyses at all the frames in
the Y-direction of Model A2. As can clearly be seen, using the results of the four pushover
analyses is the key to the improvement on the results of the previous study (Fujii 2012). In
the following discussion, the predicted peak response from the results of the four pushover
analyses (envelope of P±

U and P±
V ) is considered.

Figures 13 and 14 compare the predicted peak story drift of the stiff-edge frames (frames
Y1 and X1) and flexible-edge frames (frames Y4 and X6) with the results of the time-
history analyses. The predicted results for the flexible-edge frames are in good agreement
with the results of the time-history analyses for all models, while the predicted results may
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Fig. 12 Comparisons of the peak roof displacement at each frame (γ = 1.0). a Model-A1. b Model-A2. c
Model-B1. d Model-B2. e Model-B3. e Model-B4

be underestimated significantly in one direction for the stiff-edge frames (e.g., frame X1 of
Model A1, Fig. 13a).

The results of the analyses of the responses for the six building models suggest that
the peak response displacement in the flexible-side frames of asymmetric building models
under bi-directional excitation can be satisfactorily predicted by the procedure presented
here when the spectra of the two horizontal components are identical. Note that even in the
case of Models B2 and B3, where the principal direction of the first modal response changes
significantly from that of the elastic stage (Fig. 11d, e), the predicted largest peak responses
agree very well with those of the time-history analyses. Therefore, the proposed procedure
can be applied to asymmetric buildings where the change in the principal direction of the first
modal response is significant; this point is one of the biggest improvements on the procedure
previously presented (Fujii et al. 2006; Fujii 2007, 2011).
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Fig. 13 Comparisons of the peak story drift at each frame (Model A series). a Model-A1. b Model-A2

4.2.2 Case 2: peak response subjected to two ground motion components with identical
spectral shapes and different intensities

In this section, the discussion will focus on the peak response of the flexible-edge frames,
because the proposed procedure is extremely accurate for predicting the peak response at the
flexible-edge frames for γ = 1.0 (Case 1).

Figures 15 and 16 show the influence of the direction of incidence of the “major”
component on the peak roof displacement at flexible-edge frames. The plot for γ =
0.0, 0.5, and 0.7 shows the average of the results of the time-history analyses for three
sets of ground motions, while the plot “γ = 1.0 (Ave.)” indicates the average of 36 cases
(three sets of ground motions × 12 directions). Also shown is the largest peak response pre-
dicted by the proposed procedure, andψ1, the angle of incidence of the U-axis corresponding
to the predicted peak equivalent displacement of the first modal response, D∗

1U max shown in
Fig. 11.

These figures indicate that, as expected, the plot “γ = 1.0 (Ave.)” is close to the predicted
peak response, and it envelopes almost all the results of γ = 0.0, 0.5, and 0.7. This is similar
to the results in the elastic response case discussed by López and Torres (1997).

These figures also show that when γ = 0.0, 0.5, and 0.7, the largest peak response at
the flexible-edge frame in the Y-direction occurs when the angle of incidence of the “major”
componentψ is close toψ1 for all models except Model A2. This is because, for all the models
except Model A2, the contribution of the first modal response is significant for frame X6,
while in the case of Model A2, the contribution of the second modal response is significant
for frame X1.
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Fig. 14 Comparisons of the peak story drift at each frame (Model B series). a Model-B1. b Model-B2. c
Model-B3. d Model-B4

In Fig. 17, the predicted peak story drift at the flexible-edge frames (frames Y4 and X6)
is compared for different values of γ obtained from the time-history analyses. The results
for γ = 0.0, 0.5, and 0.7 are the average of three sets of results; in each set, the largest peak
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Fig. 15 The influence of the direction of incidence of the “major” component on the peak roof displacement
at a flexible-edge frame (Model A series). a Model-A1. b Model-A2

response in 13 cases is taken as “the largest peak response of each set”. The figures show
good agreement between the predicted results and all the results of the time-history analysis.

5 Conclusions

This article presents a procedure to predict the largest peak seismic response of an asym-
metric building to horizontal bi-directional ground motion acting at an arbitrary angle of
incidence. Nonlinear time-history analyses of six four-story reinforced concrete asymmetric-
frame buildings under various directions of seismic inputs were carried out and compared
with the predicted results. The primary findings of the present study are as follows.

1. The main characteristics of the proposed procedures are: (i) The properties of two inde-
pendent equivalent SDOF models are determined according to the principal direction of
the first modal response in each nonlinear stage, and not according to the fixed axis based
on the mode shape in the elastic stage; the principal direction of the first modal response
in each nonlinear stage is determined based on the results of pushover analysis. (ii) The
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Fig. 16 The influence of the direction of incidence of the “major” component on the peak roof displacement
at a flexible-edge frame (Model B series). a Model-B1. b Model-B2. c Model-B3. d Model-B4
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Fig. 17 Comparisons of the peak story drift at flexible-edge frames considering various γ values. a Model-A1.
b Model-A2. c Model-B1. d Model-B2. e Model-B3. f Model-B4

bi-directional horizontal seismic input is presented as spectra of two identical horizontal
components, and the contribution of each modal response is directly estimated based on
the unidirectional response in the principal direction of each modal response. (iii) The
drift demand at each frame is determined from the envelope of four pushover analyses,
taking into consideration the combined bi-directional excitation.

2. For the six asymmetric building models investigated, the largest peak response displace-
ment at the flexible-edge frames was satisfactorily predicted by the proposed procedure
when the spectra of the two horizontal components were identical, even when the princi-
pal direction of the first modal response changed significantly. However, the largest peak
response displacement at the stiff-edge frame in one direction was underestimated. This
is because the contributions of the third and higher mode responses to the peak response
were ignored in this procedure.
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3. When the spectra of the two horizontal components have similar shapes and different
intensities, the upper bound of the largest peak response displacement at the frames
on the flexible side can be satisfactorily predicted by the proposed procedure. This is
because the assumption that the spectra of the two horizontal ground motion components
are identical, is conservative.

There are still two critical assumptions in the proposed procedure presented. The first assump-
tion is that the building oscillates predominantly in a single mode in each set of orthogonal
directions, and the second is that the principal directions of the first and second modal
responses are almost orthogonal. These assumptions may be valid if the asymmetric building
being considered is TS for both orthogonal directions. For TF systems, the principal direc-
tions of the first and the second modal response may not be orthogonal and therefore those
responses cannot be estimated independently.

Another critical issue is the effect of the correlation of the two horizontal components
of ground motion. In this article, the two horizontal components are assumed uncorrelated.
This assumption is valid when the principal components of ground motion, shown by Penzien
and Watabe (1975), are considered as components of the seismic input, and the direction of
incidence of the major principal component coincides exactly with the principal direction
of the first modal response. However, if the direction of incidence of the major principal
component differs significantly from the principal direction of the first modal response, the
effect of correlation may be significant. Therefore, the following two questions may arise in
the presented procedure; that is, (1) whether the first and second modal response can still
be estimated independently, and (2) how to modify the combined forces used in Step 5 by
considering the effect of correlation.

It should also be noted that the assumption that the spectra of the two horizontal ground
motions are identical to that of the major component, as presented in this article, may be
too conservative for use in the seismic assessments of structures. The selection and scaling
of bi-directional seismic input are discussed by Beyer and Boomer (2007). For estimating
“the median” response of the structure for all possible incidences of seismic input, the author
believes that the geometric mean spectrum of the major and minor components may be chosen
as the spectrum used in the presented procedure.

Further investigation is needed on the limitations these assumptions pose. Extending the
proposed procedure to more general cases such as buildings with set-backs is another direction
for future research.

Acknowledgments The author thanks the two anonymous reviewers who provided considerable help in
improving the content and text of the original manuscript.

Appendix 1: Formulation of the equivalent SDOF model considering bi-directional
excitations

Considering a set of orthogonal ξ - and ζ -axes in the X–Y plane with an angle ψ as shown
in Fig. 18, the equation of motion for an N -story asymmetric frame building model can be
written as Eq. (25).

Md̈(t)+ Cḋ(t)+ fR(t) = −M
{
αξ agξ (t)+ αζ agζ (t)

}
, (25)

where

αξ = {cosψ · · · cosψ − sinψ · · · − sinψ 0 · · · 0}T , (26)
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Fig. 18 Plan of the asymmetric buildings and corresponding equivalent SDOF model. a Plan of asymmetric
building structure. b Equivalent SDOF model (first mode)

αζ = {sinψ · · · sinψ cosψ · · · cosψ 0 · · · 0}T . (27)

In Eq. (25), C is the damping matrix, and agξ (t) and agζ (t) are the ground accelerations of
the ξ - and ζ -axis components, respectively. Let the U-axis be the principal axis of the first
modal response, while the V-axis is orthogonal to the U-axis. The tangent of ψ1, the angle
of incidence of the U-axis with respect to the X-axis, is determined from Eq. (28).

tanψ1 = −
∑

j

m jφY j1

/ ∑

j

m jφX j1 (28)

Assume that the building oscillates predominantly in the first mode under U-directional (uni-
directional) excitation, and predominantly in the second mode under V-directional excitation.
Under bi-directional excitation, it is assumed that displacement d(t) and the restoring force
fR(t) can be written in the form of Eqs. (29) and (30), respectively, even if the building
oscillates beyond the elastic range.

d(t) = �1U ϕ1 D∗
1U (t)+ �2V ϕ2 D∗

2V (t), (29)

fR(t) = M
{
�1U ϕ1 A∗

1U (t)+ �2V ϕ2 A∗
2V (t)

}
, (30)

�1U = ϕT
1 MαU

ϕT
1 Mφ1

, �2V = ϕT
2 MαV

ϕT
2 Mϕ2

, (31)

where

αU = {cosψ1 · · · cosψ1 − sinψ1 · · · − sinψ1 0 · · · 0}T , (32)

αV = {sinψ1 · · · sinψ1 cosψ · · · cosψ1 0 · · · 0}T , (33)

It is also assumed that Eqs. (29) and (30) are still valid in the nonlinear stage if the change
in mode shape is properly taken into account, and the U-axis is determined based on the first
mode vector in the nonlinear stage. By substituting Eqs. (29) and (30) into Eqs. (25) and (34)
is obtained:
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M
{
�1U ϕ1 D̈∗

1U (t)+ �2V ϕ2 D̈∗
2V (t)

} + C
{
�1U ϕ1 Ḋ∗

1U (t)+ �2V ϕ2 Ḋ∗
2V (t)

}

+M
{
�1U ϕ1 A∗

1U (t)+ �2V ϕ2 A∗
2V (t)

}

= −M
{
αξ agξ (t)+ αζ agζ (t)

}
(34)

By multiplying �1U ϕT
1 from the left side of Eq. (34) and considering Eqs. (35) through (38),

the equation of motion for the equivalent SDOF model representing the first modal response
is obtained as Eq. (39).

M∗
1U = �2

1U ϕT
1 Mϕ1, C∗

1U = �2
1U ϕT

1 Cϕ1, (35)

ϕT
1 Mϕ2 = 0, ϕT

1 Cϕ2 ≈ 0, (36)

cos�ψ = cos(ψ − ψ1) = ϕT
1 Mαξ

ϕT
1 MαU

, (37)

sin�ψ = sin(ψ − ψ1) = ϕT
1 Mαζ

ϕT
1 MαU

, (38)

D̈∗
1U (t)+ C∗

1U

M∗
1U

Ḋ∗
1U (t)+ A∗

1U (t) = − {
agξ (t) cos�ψ + agζ (t) sin�ψ

}
. (39)

In Eq. (35), M∗
1U and C∗

1U are the first modal mass and the first modal damping coefficient,
respectively. The ground acceleration component in the U-axis, agU (t), is defined as:

agU (t) = agξ (t) cos�ψ + agζ (t) sin�ψ. (40)

Therefore, Eq. (39) can be rewritten in a simplified form as:

D̈∗
1U (t)+ C∗

1U

M∗
1U

Ḋ∗
1U (t)+ A∗

1U (t) = −agU (t). (41)

To derive the equation of motion for the equivalent SDOF model representing the second
modal response, the tangent of ψ2, the angle of incidence for the principal direction of the
second modal response with respect to the X-axis, is formulated as:

tanψ2 = −
∑

j

m jφY j2/
∑

j

m jφX j2. (42)

By multiplying �2V ϕT
2 from the left side of Eq. (34) and considering Eqs. (36) and (43), Eq.

(44) is obtained.

M∗
2V = �2

2V ϕT
2 Mϕ2, C∗

2V = �2
2V ϕT

2 Cϕ2, (43)

D̈∗
2V (t)+ C∗

2V

M∗
2V

Ḋ∗
2V (t)+ A∗

2V (t) = −
{

ϕT
2 Mαξ

ϕT
2 MαV

agξ (t)+ ϕT
2 Mαζ

ϕT
2 MαV

agζ (t)

}

. (44)

In Eq. (43), M∗
2V and C∗

2V are the second modal mass and the second modal damping
coefficient, respectively. It is assumed that the principal directions of the first and sec-
ond modal responses are mutually close to orthogonal. This assumption can be expressed
as:

(tanψ1) (tanψ2) ≈ −1. (45)
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In other words, the principal axis of the second modal response is close to the V-axis. From
Eqs. (42) and (45), Eq. (46) is obtained.

∑

j

m jφY j2/
∑

j

m jφX j2 = − tanψ2 ≈ − 1

tanψ1
= cosψ1

sinψ1
. (46)

Therefore, considering Eq. (47), Eqs. (48) and (49) can be derived.

ϕT
2 Mαξ

ϕT
2 MαV

=
∑

j m jφX j2 cosψ − ∑
j m jφY j2 sinψ

∑
j m jφX j2 sinψ1 + ∑

j m jφY j2 cosψ1
≈ − sin(ψ − ψ1) = − sin�ψ,

(47)

ϕT
2 Mαξ

ϕT
2 MαV

=
∑

j m jφX j2 sinψ − ∑
j m jφY j2 cosψ

∑
j m jφX j2 sinψ1 + ∑

j m jφY j2 cosψ1
≈ − cos(ψ − ψ1) = cos�ψ,

(48)

Substituting Eqs. (47) and (48) into Eq. (44) and considering Eq. (49), the equation of
motion of the equivalent SDOF model representing the second modal response is obtained as
Eq. (50).

agV (t) = −agξ (t) sin�ψ + agζ (t) cos�ψ, (49)

D̈∗
2V (t)+ C∗

2V

M∗
2V

Ḋ∗
2V (t)+ A∗

2V (t) = −αgV (t). (50)

In Eq. (49), agV (t) is the ground acceleration component along the V-axis.
As described in Sect. 2, it is assumed that the spectra of the two horizontal ground

motion components are identical. From this assumption, the relationship for the response
acceleration spectra of the U- and V-components SAU (T ) and SAV (T ) is expressed
as:

SAU (T ) = SAV (T ) = SAξ (T ) = SAζ (T ). (51)

In Eq. (51), SAξ (T ) and SAζ (T ) are the response acceleration spectra of the ξ - and ζ -
components, respectively. Therefore, the same response spectra are used to predict the peak
response of the first and second mode.

Appendix 2: The flow of “the displacement-based mode-adaptive pushover analysis”

In the pushover analysis, which is referred to as the “displacement-based mode-adaptive
pushover analysis”, the following assumptions are made.

(1) One-component model, with two nonlinear flexural springs at both ends and one non-
linear shear spring in the middle of the line element, is applied to all members. The
envelope curve for each nonlinear spring of all members is symmetric over the positive
and negative ranges.

(2) The equivalent stiffness of each nonlinear spring can be defined by its secant stiffness
at the peak deformation previously derived in the calculation.

(3) The first mode shape at each loading stage nϕ1 can be determined based on the equivalent
stiffness.

(4) The deformation shape imposed on a model is similar to the first mode shape obtained
in (2) and (3).
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Fig. 19 Flow chart for the displacement-based mode-adaptive pushover analysis procedure

Figure 19 shows a flow chart of the displacement-based mode-adaptive pushover analysis
procedure applied in this paper. The main difference between the present analysis and the
pushover analysis proposed by Antoniou and Pinho (2004) is that in the present analysis the
secant stiffness of each element is used to determine the mode shape and the displacement
shape (not the displacement increment) at each nonlinear stage. Antoniou and Pinho use
the tangent stiffness of each element to determine the mode shape and the displacement
increment in their analysis.

Appendix 3: Formulation of the torsional index based on mode shape

The kth equivalent modal mass with respect to the kth principal direction of the modal
response M∗

k is expressed as Eq. (52). Assuming from Eq. (51) that the kth mode is purely
translational (φ�jk = 0), the kth equivalent modal mass ignoring the rotational component
M∗

kT can be expressed as Eq. (53).

M∗
k =

(∑
j m jφX jk

)2 +
(∑

j m jφY jk

)2

∑
j m jφ

2
X jk + ∑

j m jφ
2
Y jk + ∑

j I jφ
2
�jk

, (52)

M∗
kT =

(∑
j m jφX jk

)2 +
(∑

j m jφY jk

)2

∑
j m jφ

2
X jk + ∑

j m jφ
2
Y jk

. (53)

From Eqs. (52) and (53), the ratio (M∗
kT /M∗

k ) is obtained as:
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M∗
kT

M∗
k

=
∑

j m jφ
2
X jk + ∑

j m jφ
2
Y jk

∑
j m jφ

2
X jk + ∑

j m jφ
2
Y jk + ∑

j I jφ
2
�jk

. (54)

In Eq. (54), the ratio (M∗
kT /M∗

k ) is the reduction ratio of the kth equivalent modal mass
resulting from the rotational component; if the kth mode is purely translational, the ratio
(M∗

kT /M∗
k ) is unity, while if it is a purely torsional mode, the ratio (M∗

kT /M∗
k ) is zero.

Equation (54) can be rewritten as Eq. (55), considering the torsional index of the kth mode,
Rρk , defined by Eq. (56), which is identical to Eq. (22).

M∗
kT

M∗
k

= 1

1 + R2
ρk

, (55)

Rρk =

√
√
√
√
√

∑

j

I jφ
2
�jk

/
⎛

⎝
∑

j

m jφ
2
X jk +

∑

j

m jφ
2
Y jk

⎞

⎠. (56)

From Eq. (55), it can be seen that the ratio (M∗
kT /M∗

k ) is unity when Rρk is zero (purely
translational), while (M∗

kT /M∗
k ) is close to zero when Rρk is significantly large. Therefore,

the terms “predominantly translational” and “predominantly torsional” can be defined by
the value of Rρk ; when Rρk < 1, the mode is “predominantly translational” and when
Rρk > 1, the mode is “predominantly torsional”. Note that the index Rρk can be used for
both single-story and multi-story irregular buildings.

Appendix 4: Classification of structural systems as torsionally stiff (TS) or torsionally
flexible (TF)

In general, the classification of structural systems as TS or TF systems is based on the ratio
of uncoupled torsional to lateral frequencies �θ of the corresponding torsionally balanced
system (e.g., Hejal and Chopra 1987). However, here the classification is made based on
the first and the second modes because the ratio �θ can be rigorously evaluated only for
one-story asymmetric buildings (and multi-story asymmetric buildings that satisfy certain
conditions). In other words, the classification is made using the torsional indices of the first
and second modes, Rρ1 and Rρ2.

Bosco et al. (2013) proposed a method to evaluate the static eccentricity and the ratio �θ
of multi-story asymmetric buildings from static analyses. In this appendix, their method is
applied to the six four-story building models investigated in this article and the ratio �θ in
each story is evaluated.

The evaluated results are shown in Table 4. The ratio of uncoupled torsional to lateral
frequencies in the X- and Y-direction, �θX and �θY , respectively, are larger than 1 for all
the stories in the four building models (Models A1, A2, B2, and B3). Therefore, from the
classification based on �θ , these four building models are classified as TS systems in both
directions. However, in the case of Models B1 and B4, the classification based on �θ is
difficult because in the first story �θX and �θY are smaller than 1, while in the upper two
stories �θX and �θY are larger than 1. Conversely, the classification based on Rρ1 and Rρ2

is quite clear, as shown in Fig. 8; for all building models,Rρ1 and Rρ2 are smaller than 1.
Therefore, the author believes that for a multi-story building the classification of the structural
system as a TS or TF system should be made based on the mode shape of the first and second
modes.
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Table 4 Ratio �θ in each story of building models evaluated based on Bosco et al. (2013)

Story Model-A1 Model-A2 Model-B1

�θX �θY �θX �θY �θX �θY

4 1.27 1.30 1.40 1.43 1.22 1.24

3 1.22 1.25 1.42 1.44 1.08 1.12

2 1.18 1.21 1.44 1.45 0.98 1.01

1 1.14 1.16 1.46 1.46 0.89 0.92

Story Model-B2 Model-B3 Model-B4

�θX �θY �θX �θY �θX �θY

4 1.27 1.28 1.24 1.25 1.11 1.11

3 1.28 1.29 1.24 1.25 1.01 1.02

2 1.29 1.29 1.24 1.25 0.93 0.94

1 1.30 1.30 1.24 1.24 0.86 0.87
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